UNIVERSITAT TUBINGEN

Fachbereich Mathematik

Introduction to Partial Differential Equations

Based on a course given by Prof. Dr. Marcello Porta
Written by Dr. Giovanni Antinucci

2017-2018






Introduction

These notes are the transcription of the lectures of the course Introduction to Partial Differen-
tial Equations given by Marcello Porta during the academic year 2017-2018, at the University of
Tiibingen. They are not meant to replace an ordinary textbook, but rather to help the students
in keeping track of the topics discussed in class. The list of recommended textbooks can be found
on the course webpage: https://www.math.uni-tuebingen.de/arbeitsbereiche/maphy/lehre/
ws-2017-18/DiffEquat.

The reader is encouraged to point out mistakes and typos, that will unavoidably be present,
and to report them to: giovanni.antinucci@math.uzh.ch.

Giovanni Antinucci

(Version of 12.02.2018)


https://www.math.uni-tuebingen.de/arbeitsbereiche/maphy/lehre/ws-2017-18/DiffEquat
https://www.math.uni-tuebingen.de/arbeitsbereiche/maphy/lehre/ws-2017-18/DiffEquat
giovanni.antinucci@math.uzh.ch




Contents

1 Four important PDEs 7
1.1 Introduction, notation and definitions . . . . . . . . . . ... ... L. 7
1.2 Transport equation . . . . . . . . . Lo e 9

1.2.1 Homogeneous transport equation . . . . . . . ... ... 0oL 9
1.2.2  Non-homogeneous transport equation . . . . . ... ... ... .. ...... 9
1.3 Laplace and Poisson equations . . . . . . . . . . .. .. o 10
1.3.1 Laplace equation . . . . . . . . . .. 10
1.3.2 Poisson equation . . . . .. ... oL 11
1.3.3 Fundamental solution . . . . . . .. . .. ... 11
1.3.4 Mean-value formula . . . . .. ... oL 15
1.3.5 Maximum principle . . . . . . . ... 17
1.3.6 Regularity . . . . . . .. . 20
1.3.7 Green’s function . . . . . . . ... 27
1.3.8 Existence of solutions for the Laplace problem . . . ... ... ... ... .. 31
1.3.9 Energy methods . . . . . . . .. ... 36
1.4 Heat equation . . . . . . . . . o e 38
1.4.1 Fundamental solution . . . . .. ... ..o 39
1.4.2 Mean-value formula . . . . . . ... oo 44
1.4.3 Maximum principle . . . . . . .. Lo 46
144 Regularity . . . . . . oL e 49
1.4.5 Long time limit . . . . . . . . .. L 50
1.4.6  Energy methods . . . . . . . . ... 51
1.5 The wave equation . . . . . . . . .. L L 53
1.5.1 Solution in one dimension: d’Alembert formula . . . . . ... ... ... ... 53
1.5.2  Solution in higher dimensions . . . . . . . .. ... ... . 0L 56
1.5.3 Non-homogeneous wave equation . . . . . . .. .. ... ... ... ..., 60
1.5.4 Energy methods . . . .. .. ... ... 61

2 The Fourier transform 65
2.1 Elements of the theory of LP spaces . . . . . .. .. ... ... ... ...... 65
2.2 The Fourier transform of L' functions . . . . . .. .. ... ... ... ........ 66
2.3 The Fourier transform of L? functions . . . . . . . .. . .. ... . ... .. ..... 67
2.4 Applications . . . . . ... 70



Quasi-linear partial differential equations

3.1 Quasi-linear partial differential equations of first order . . . . . . ..
3.1.1 Homogeneous case with constant coefficients . . . . . .. ..

3.1.2 Non-homogeneous case with non-constant coefficients

3.1.3 Burgersequation . . . .. .. ... Lo
3.1.4 Weak solutions for conservation laws . . . . . . .. ... ...

Second order elliptic PDEs

4.1 Sobolev spaces . . . . . ..
4.2 Existence and uniqueness for second order elliptic PDEs . . . . . ..
4.2.1 Weak solutions . . . . . .. ... L oo
4.2.2 Lax-Milgram theorem . . . .. ... ... ... ... ....
4.2.3 First existence theorem . . . . .. ... .. ... ... .. ..

Elements of the theory of distributions

Elements of the theory of Hilbert spaces

CONTENTS



Chapter 1

Four important PDEs

1.1 Introduction, notation and definitions

Definition 1 (Derivatives). Let U < R™ an open subset of R", x € U and u : U — R. Let
a={ay, - ,a,} be a multi-indezx (a; € N). Then:

N olal
D%u(x) = e e

ux),  lof =)o (1.1)
i=1

In the following, we will also use the notation

O, aii , Uz, = O, U (1.2)

Definition 2 (Set of partial derivatives of order K). Let K € N. Then:
DEy = {D% | || = K}. (1.3)
We shall denote by CX(U) the set:
CKU):={u:U—->R | wis K — times continuously differentiable} (1.4)
Example 1.1.1. o Du = (0g,u,--+,0,,u) = Vu is the gradient.
e Let o = (a1,0,0,---,0). Then: D* = 99} u.
o Let a = (a1,02,0,---,0). Then D% = 05! 052 u.

Remark 1.1. DXu(x) can be thought as a point in R for any fixed x € U. Indeed, the number
of element of DX is

>, (cn " an> — n’t, (1.5)

o ) .
2@1’1 =K multinomial theorem
i



8 CHAPTER 1. FOUR IMPORTANT PDES

where

K
<a1 o an) = number of ways of

(1.6)
partitioning K objects in {aq, s, -+ ,ap} s.t.Zai =K.
Definition 3 (Partial Differential Equation). Let
F:R™ xR " x...xR"x Rx U — R. (1.7)
A partial differential equation (PDE) is an equation of the form
F (Dku(x), DFYu(z), - - , Du(z),u(z),z) =0, zel. (1.8)

Definition 4 (Classification of PDEs). We say that the PDE is

e linear if it has the form

Y, aal@)Du(x) = f(a), (1.9)

|la|=K
for given functions a, and f.
e semi-linear if
2 o (x)D%u + ag(DX 1w, -, Du,u,x) = 0, (1.10)
el

i.e. it is linear in the higher derivatives only.
e quasi-linear if

2 ao(DE " u, - Ju, ) D% + ag(D*u, - - -, Du,u, = 0). (1.11)
la|=K

A semi-linear PDE is in fact a particular quasi-linear PDE.
e fully non-linear if it depends non-linearly upon the higher derivatives.
More generally, one could introduce systems of PDEs, by considering;:

F—>E:(F17"'7Fm)a

U<—>u:(’u1,"' 1um)'

(1.12)

Definition 5 (Order of a PDE). The order of a PDE is the order of the highest derivative of u
appearing in the PDE.

We shall discuss some methods to study the solutions of PDEs. In general, systems are more
complicated to study with respect to equations, while non-linear PDEs are more difficult than the
linear ones. It is worth also remarking that there is no general theory to solve PDEs; instead, there
exist methods for classes of PDEs.

A typical question one is interested in is to establish existence of solutions for a given PDE. Then,
one might investigate regularity, uniqueness, etc. Later, we shall see that the notion of “solution”
of a PDE will have to be generalized, in order to take into account weak solutions as well.
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1.2 Transport equation

1.2.1 Homogeneous transport equation
Given u = u(x,t),x € R",t € (0,00), the transport equation is a linear, first order PDE:
dru+b-Du=0. (1.13)

Let us consider the initial value problem:

ug+b-Du=0 (x,t)eR™x (0,00), (1.14)
u=g (z,t) e R™ x {0},
where g = g(z) is a given function and b € R™ is a fixed vector.
Eq. (1.14) is telling us that a certain directional derivative is vanishing. Let us define:
z(s) = u(x + sb, t + s), (x,t) fixed. (1.15)
One can easily check that:
d
u+b-Du=0< d—z(s) =0, (1.16)
S
meaning that u(s + bt,t + s) is constant in s. Thus, choosing sg = —t, and recalling the boundary
condition of (1.14), we get:
2(s0) = u(x,t) = u(x — t,0) = g(x — tb). (1.17)

The solution corresponds to the rigid transport of the graph of the initial datum, along the constant
rectilinear motion.

1.2.2 Non-homogeneous transport equation

Consider now the nonhomogeneous initial value problem:

u+b-Du=f (x,t)eR" x(0,00), (1.18)
u=g (x,t) e R™ x {0}, '
where f = f(x,t) and g = g(x) given, and b € R™.
As before, define z(s) as in (1.15). Using the first of (1.18), we get
d
%z(s) = f(z + sb,t + s). (1.19)
Therefore,
0 d
u(z,t) —u(x —tb,0) =2(0) — z(—t) = f ds—z(s) =
—t ds
. ) (1.20)
=.[ dsf(x + sb,t +s) Ef dsf(zx + (s —tb),0),
—t 0
which implies that
¢
u(z,t) = gz —tb) + J dsf(z + (s —t)b,0). (1.21)
0
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1.3 Laplace and Poisson equations

1.3.1 Laplace equation

Let the Laplacian A be defined as

Definition 6 (Laplace equation and harmonic functions). The Laplace equation is:

A=Y
=1

Au = 0.

A solution of the Laplace equation is called harmonic function.

(1.22)

(1.23)

Proposition 1. The Laplace equation is invariant under rotations. That is, let u(x) be a solution
of Au = 0. Then v(z) = u(Rz) with RRT = RTR =1 solves Av = 0.

Proof. Let y := Ox, where O is the n x n orthogonal matrix whose entries are {a;;}1<i j<n. S0

v(z) = u(Ox) = u(y),

where y; = >\ | aj;x;. We compute

which implies

that is:

Finally

Remark 1.2. The Laplace equation is linear.

ov nélﬁyj:ii

— Qs
. Ay EN A
0x; = Oy; 0x; = 0y,

v ou ou
e a1 N P | oY1 oY1

. . . . . AT .

: - . : : =0 : )
v ou ou
EE A1n ... Qpp Dy OYn

Dx'U=OTDy‘u.

Av = D,v-Dyv = (0'Dyu) - (O'D,u) =

= (0" Dyuw)" O Dyu = (D) (OT)TOTDyu =

= (D,u)T 00" Dyu = (D,u)" Dyu = (Dyu) - (Dyu) =
= Au(y) = 0.

U c R"™. Then, A(uj + uz) = 0.

(1.24)

(1.25)

(1.26)

(1.27)

(1.28)

O

Suppose uy, usy are two harmonic functions in
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Motivations. The Laplace equation describes the equilibrium state of incompressible fluids. Let
U c R”, and let u : U — R be the the density of a given fluid. Let us now consider the subset
V < U, and introduce the vector field F', describing how much fluid passes through the boundary
0V of the given region V. One expects the fluid to move from regions of higher concentration
towards regions of lower concentration. It is reasonable to assume that:

F(z) = —Vu(x). (1.29)
If the fluid is incompressible, the amount of fluid entering V' is equal to the amount of fluid exiting
V. Thus, by Gauss theorem,
Ozj F-udS:J divFdx (1.30)
ov 1%
where v = v(z) is the outward normal and divF = 0,, Fy + -+ + 0y, F}, is the divergence of F.

Being V is arbitrary, we get:
divF = divVu = 0, (1.31)

or, equivalenly, Au = 0.

1.3.2 Poisson equation

Definition 7 (Poisson equation). Let U < R™ be an open domain, and u: U — R™. The Poisson
equation 18
—Au = f. (1.32)

What does the Poisson equation describe? In classical electrodynamics, the electric field
E(x) solves the Maxwell equation:
V- FE =A4mp, (1.33)

where p(x) is the density of charge. Let u(z) be the electrostatic potential, in terms of which
E = —Vu. Then,
— Au = 4mp. (1.34)

Setting 4mp(x) = f(x), we get (1.32).

1.3.3 Fundamental solution

Laplace’s equation. Being the Laplace equation invariant under rotations, recall Proposition 1,
it is natural to look for solutions that enjoy this symmetry. That is, we are looking for solutions
that only depend on r = |z| = y/23 + 23 + -+ + 22,

u(x) = v(r). (1.35)

With the purpose of writing explicitly Au = 0 in radial coordinates, let us compute

Li

m7

€T 2 1 2
Ura, = 0" (|2 () /() (— )
] @l fal?

Uy, = O, u(x) = 0z,v(|]) = v'(|z|)

i

(1.36)
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Therefore,
n 2 2
S gz, = 0" (1) + /() (” - ) (1.37)

meaning that

-1
Au=0=2"(r)+ v’(r)n = 0. (1.38)
T
By defining h(r) = v/(r), Eq. (1.38) becomes:
-1
W (r) + h(r) == = 0= h(r) = rna_l, (1.39)

which gives:

v(r) = fdrh(r) = Jdrrna_l - {b(i‘)g’“) te ifn=2 (1.40)

rn—2 +c if n > 3.
Definition 8 (Fundamental solution of the Laplace equation). For x € R™\{0}, the function
1 .
—1] _9
o= {EpEl (a
Tr—am e ¥n =3,

F(%fl) the volume of the unit ball in R™, T'(z) = Sgo dxx*"te™®, is called the funda-

mental solution of the Laplace equation.

with a(n) =

Poisson’s equation. We will use the fundamental solution to find the solution of Poisson’s equa-
tion —Awu = f. Consider the function:

f dy @z — ) f(y)- (1.42)

Being ®(z) harmonic for z # 0, ®(z —y) is harmonic for z # y; thus, ®(x —y)f(y) is still harmonic
for x # y. Nevertheless, the convolution (1.42), which can be read as a linear combination of
solution of the Laplace equation, is not harmonic. To understand why, we formally compute:

Au = fdymcc — W), (1.43)

which is however problematic, since A®(z —y) ~ which is not integrable at x = y. Instead,

we shall see that the function defined in Eq. (1.42) is a solution of the Poisson equation.

1
lz—y[™>
Theorem 1.1 (Solution of the Poisson equation). Let f € C2(R"), and let

ule) = [ dy(o— ) 1) (1.44)

Then, u e C*(R™), and —Au = f in R™.

Remark 1.3. This theorem provides one solution of the Poisson problem in R™. We still do not
know anything about uniqueness.
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Proof. The proof consists in four steps: the explicit computation of uy ., the rewriting of Au as
the sum of two integrals: the dominating part and the remainder, and finally the explicit estimates
for these two integrals.

1. Let
u(r) = LW Oz —y)fly) = LW (y)f(z —y), (1.45)
by a simple change of variables. Let ey, -+ ,e, be the standard basis of R™, and consider
u(x + he;) —u(x flx+he;—y)— flxa—vy

By assumption f € C?, which means that

i F@ HhE = 9) = (o = y)

=f (z— 1.4
ho0 h fzz (.T y)’ ( 7)
and the limit is reached uniformly in x — y. Therefore,
un(@) = [ B fole = )y (1.48)
Repeating the argument,
Uiy = J (I)(y)f:m% (J,‘ - y)dy7 (149)

and using again that f € C2? we infer that Uz, is continuous in .

2. Let us now compute the integral. Let € > 0, and let us rewrite:

Au(z) = j B(y) A, f(x — y)dy + j B(y)A S —y)dy . (150)
B(0,¢) R™\B(0,€)

_

I. Je
We will study the two integrals separately.

3. We have:

L] < f B()| A f (o — )| dy <
B0 (1.51)

< swp |Acf(z ) j 1B()] dy
yeB(0,¢) B(0,¢)

Being D?f continuous and compactly supported in B(0,¢), it is bounded by a constant.
Hence:

dy|lo , ifn =2,
(151) < C B(y)|dy < C Y50, W f'y” ' (1.52)
B(0,¢) SB(O,G) dyW if n > 3.
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Now we are left with bounding the integrals: let us first study the case n = 2.

=C

| dynoglyl -

s

J dylog|y

)

f drrlogr
0

1.53
" (153)
5 ogr

=C

€—Jllrﬁl <c (€ [logel +€*) — 0
0 0 2 r = e—0

Suppose now n = 3.

1 € n—1 €
f dy——s = cj alrrn—71 = cf dyr = ce> — 0 (1.54)
B(0,¢) |y o T 0 €0

We then conclude that I, - 0.

. In order to study the integral J,, it is worth recalling that, by Gauss-Green:

J Uy, dT =J uv;ds (1.55)
U U

where v is the outward normal of 0U. Let u = ®(y)d,, f(z —y). We get:
| oW s+ 2w s -] = [ 500)8, fa@ - y)dste) (150)
B(0,¢) 9B(0,¢)
so that

= [ e D pist) - [ dgDew)-Dyfe-y). (157
2B(0,¢) R"\B(0,¢)

L. K.

We will study the two terms separately:

1 ifn=2
Li<c|  jog)l - dsw) celloge| ifn =2, (1.58)
OB(0,¢) ce if n> 3.

Therefore, L, e 0. Integrating again by parts the last term K. we get
€e—

K, - ARy S~y | D8 (e~ isty) -
R™\B(0,¢) 0B(0,¢)

=0 (1.59)

—_ f v-Dy®(y)f(z —y)ds(y)
0B(0,¢€)

where we used that ®(y) is harmonic if y # 0. To evaluate the last term, we start by computing

—5=log |y if n =2
Do(y) =Dy °", 1 : =
A e prr ifn =3 (1.60)
{_21@712 ifn =2, '
- -1 — 1y 1 y .
n(n—2)a(n) (Tl 2) "= Ty =  na(m) [y[* if n > 3,
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where we recall

7(-”/2 )
a(n) = T2 11 =a2)="7
Summarizing
1 Y .
Do = — — f 0. 1.61
O (1.61)
Moreover, the normal of 0B(0,¢€) is
y y y Iy 1
ly| e Y ) e na(n) e®  na(n) en! (162)

Hence

K = j v Dy®(y) f(x — y)ds(y) =
0B(0,¢)

) (1.63)
= TR gy T W) = 2B Ss(0) 1)
Finally, taking the limit € — 0 we get
Au(z) = —f(x). (1.64)
O

Remark 1.4. Fven if the source term f is compactly supported, the fundamental solution ® prop-
agates it on all R™.

Poisson’s boundary problem. Let us now consider the boundary value problem:

—Au=f ol (1.65)
u=g in oU.
1.3.4 Mean-value formula
Theorem 1.2 (Mean value formula). Let u € C?(U) be harmonic. Then
u(z) = J[ uds = J[ udy , VBcU. (1.66)
0B(z,r) B(z,r)
Proof. Define
o(r) := J[ u(y)ds(y) = J( u(z + rz)ds(z). (1.67)
0B(z,r) 0B(0,1)
We compute:
! y—=z
@' (r) :J[ Du(z + rz) - zds(z) = J[ Du(y) ds(y) =
¢ 0 r
pB(0,1) B(0,1) (1.68)

r

N JB(z,r)
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being v harmonic. This means that ¢ is constant, which implies:

o) = lmo(®) =l u@)ds(y) - ule) (1.69)
0B (z,t)

To prove the equivalence with the average over the ball we write:

JB(I,T) udy = JZ (LB(m,s) udS) ds = u(z) LT na(n)s" tds = u(z)a(n)r" = (1.70)
=u(x)|B(z,r)|;

which implies:

J[ udy = u(x) . (1.71)
B(z,y)

One can also prove the following converse implication.

Theorem 1.3 (Converse to mean value formula). Let U < R™, u e C?(U), and suppose that
u(z) = J[ uds, VB(z,r) < U. (1.72)
0B (z,r)

Then u is harmonic.
Proof.

u(z) = ][ﬁB( )uds = ¢'(r) = 0. (1.73)

Let us proceed by contradiction, supposing that « is not harmonic: Au(z) # 0 for some x € U.
Then
r

0=¢'(r) = TLJ[B( ) Au(y)dy # 0 (1.74)

which is a contradiction. O

Remark 1.5. The mean-value formula is a very important property of harmonic functions. It is
related to the Cauchy formula for analytic functions:

_ 1 f(z)

(1.75)

with C(x) a closed curve, counterclockwise oriented, encircling the point x.
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Application: Newton’s theorem. Consider the Poisson problem, with f radial and compactly
supported:

—Au=f on R”,
f(z) = f(lz)), (1.76)
flx)=0 if |z| > R, {daf(z) < w0

Physically, the function f might describe a spherically symmetric charge distribution. In R3, the
corresponding electrostatic potential is:

1
uw) = ||y fw) (1.77)

which is a solution of the Poisson problem.
Proposition 2. Let x € R" s.t. |z| > R. Then
@=[ i = ) (1.9
u(z) = y——fy) = — yf(y : :
TR v I R
—

total charge of the ball

Remark 1.6. Thus, the potential generated by the spherical distribution f is equivalent, for || > R,
to the potential generated by a point-like charge with charge §dyf(y)

Proof. Let us rewrite, using the assumption that f is a radial function,

1 " 1
= ] WO =], (LB@,S) U y> T

(1.79)
R 1
- [ wsonosf dst) ).
0 2B(0,s) |z —y|
Noticing that | 7] is harmonic away from 0, we can use the mean value formula to rewrite
1 1
fooas)—— =
0B(0,s) |z -y |z|
so that
(1.79) ‘ |J ds|0B(0, s)| f(s) | |f dyf(y). (1.80)
O
1.3.5 Maximum principle
Definition 9 (Subharmonic functions). A function u such that
— Au <0, (1.81)

1s called subharmonic.
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Theorem 1.4 (Weak maximum principle). Let u e C2(U)nC(U), with U < R™ open and bounded.
Suppose that u is subharmonic. Then

max u(z) = max u(zx). (1.82)
welU xeoU

Remark 1.7. This means that a (sub-)harmonic function in an open bounded domain reaches its
mazimum value on the boundary.

Proof. The proof is split in two parts: first we will assume that —Awu < 0, and then we will extend
the proof to the harmonic functions.

1. Suppose that —Awu < 0 in U, and that there exists g € U such that

u(zp) = maxu(z). (1.83)
zeU
Then, by definition of maximum
Du(xg) = 0, D?u(z) <0, (1.84)

i.e. the gradient vanishes and the Hermitian matrix H(20) = {0z, u(%0) }1<i<j<n = D*u(xo)
is non-positive, meaning that

(o, D*u(z0)er) <0, Va e R". (1.85)

Equivalently, one can say that all the eigenvalues of D?u(zg) are non-positive. In particular
this implies that

Au(zg) = TrD?u(zg) <0, (1.86)
which is a contradiction, since we assumed —Aw < 0. This means that the maximum of u is
on oU.

2. Suppose now that
Au =0onU. (1.87)
Let v(z) = 22, then
—A(u+ev) = —-Au—2e<0 Ve > 0. (1.88)
Therefore, we are back to point 1. We have
max(u + ev) = max(u + ev). (1.89)
zeU zedU
Using that
maxu + eminv < max |u + ev| = max(u + ev) < maxu + e maxv =
zeU zeU zeU zedU zedU zedU (1 90)
= MaX U + €,V < MAX U + €4coU V. '
zeU xedU
Since U is a bounded set, there exist two constants C, ¢ such that
| minv| < C, | maxv| < ¢, (1.91)
zeU zedU
so that, taking the limit ¢ — 0 we get
max v < maxu (1.92)

xelU xeolU
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Remark 1.8. For harmonic functions,

minu = min u (1.93)
xelU xeoU

Under suitable assumptions on the domain U, the weak maximum principle can be extended to
the strong maximum principle.

Theorem 1.5 (Strong maximum principle). Let u € C?(U) n C(U), harmonic in U < R™ open
and connected, and suppose that there exists xg € U such that

u(zo) = r;lezgcu(x) (1.94)

Then, u is constant in U.

Proof. Suppose that there exists a point zg € U such that, for some constant 0 < M < o0,

u(zg) = maxu(z) < M. (1.95)
rzelU
Let us call
V= {zeUlu(z) = M}. (1.96)
Let now 0 < r < dist(xg, 0U): by the mean value theorem we know that
M = u(zg) = J[ u(y)dy < M = u(y) = M,Vy € B(xzo,r). (1.97)
B(zo,r)

This means that B(zg,r) € V = the set V is open. Let us rewrite:
U=V u(U\V), (1.98)

where U\V = {z € Ulu(z) # M}. By continuity of u, this set is open as well. Clearly U n (U\V) =
. Therefore, by definition of connected set,

cither V = {z e Ulu(z) = M} = F or U\V = {z € Ulu(z) # M} = &. (1.99)
However, by assumption U # (J, therefore U\V = & = u(x) is constant in U. O

Remark 1.9. The strong mazimum principle implies the weak maximum principle, and it can be
shown by just applying the strong mazrimum principle to each connected component in case U is
disconnected. Moreover, it generalizes the weak mazimum principle because it tells us that the only
way in which u(x) can reach its mazimum in U is via the constant function.

Applications of the maximum principle.

Proposition 3. Let U = R” be connected and u e C*(U) n C(U) such that

(1.100)

Au=0, inU,
u=g, on 0U,

with g = 0. If g > 0 somewhere on U, then u > 0 everywhere in U.
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Proof. Suppose that there exists xg € U such that u(zg) < 0, and let @ = —u, § = —g. @ is
harmonic in U =
max % = max 4 = max g, (1.101)
zeU zeoU zedU
—
=0 <0
which is a contradiction. O

The strong maximum principle allows to prove the uniqueness of the solution of the initial value
problem of the Poisson equation.

Theorem 1.6 (Uniqueness of the solution of the initial value Poisson problem). Let g € C(dU),
feC(U), withU open and bounded. Then, there exists at most one solution u € C*(U) n C(U) of
the initial value problem

{_M =/ b (1.102)

u=g on 0U.

Proof. Let us suppose, by contradiction, that there exist two solutions w, %, and let us define
hy = +(u— @). Of course, hy solve the initial value problem

{Ah+—0 in U, (1.103)

hy =0 on 0U,
hence it is harmonic in U. Then, the maximum of +(u — @) is reached on 0U, which implies
u =i (1.104)

O

Remark 1.10. This theorem does not apply to unbounded domains, e.g. U = R™. In this case, we
know one solution but we do not know whether it is unique. Instead, for U bounded we do not know
yet how to prove uniqueness of the solution, in general. In the trivial case g = const, the unique
solution is u = g = const.

For unbounded domains, uniqueness can only hold in a restricted class of functions. Consider

—Au=f in R™\{0}.

Then the solution is trivially not unique if we allow w to be unbounded: if u is a solution, then
also u + ug is solution if Aug = 0. Thus, we can take ug = ® = fundamental solution of Laplace’s
equation. In n > 2 dimensions, ®(x) — o0 at |x| — 0, meaning that u is unbounded.

1.3.6 Regularity

Here we will establish some regularity properties of harmonic function. We shall use the notion of
mollifier, which we briefly recall.
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Mollifiers. Let

ceFPTif x| <1
2) = ) 1.105
(@) {O if |z| = 1. ( )

By definition, n € C*(R™), and the constant ¢ is chosen in such a way that {n(z) = 1. We also

define a rescaled version of 7:

1 =z

ne(a) = Zn()- (1.106)

€

Notice that

supp(n) := {z € R"|n(z) # 0} = B(0,1), (1.107)

while suppne = B(0,€). Notice also that {n.(z)dz = 1. We call 5. the standard mollifier. One can
”smoothen” a given function by taking the convolution with 7.. Let

Ue := {x € U|dist(z,oU) > €}. (1.108)

We define

Ue =N * U = f dyu(y)ne(z —y) = f ne(y)u(z — y)dy. (1.109)
U B(0,¢e)

Remark 1.11. The set U, is defined in such a way that x € U, y € B(0,e) = z —y e U.
Proposition 4. For small €, ue is a smooth approximation of u in the following sense:
1. u. € C*(U,).

2. ue —> u almost everywhere.

e—0

Proof. 1. FixxeU,, i€ {l,-,n} and h so small that « + he; € U.. Then

u(z + heé) —f(@) _ einfU % [,7 (W) - (T’)] u(ydy) =

(1.110)
11 x+ he; —y _ r—y u(ydy)
- €n v h 77 € n € y y 9
for some open set V cc U. Since
p (=) (5 .
h P Neyw: (T —Y), (1.111)
uniformly in V', we can bring the limit in the integral so that
€ h ) — €
i “EELD =T [ gy - ), (1112)
h—0 h U ’

We can repeat this procedure for all D%wu..
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2. Suppose that u is continuous. Using that §n.(y)dy = 1,

WJ@U@N=\L()m@yHMwUW»@=S
kS YN ) — wla)ldy < 1.113
<z ] () ) iy < (1113

< CJ[ lu(y) — u(z)|dy p— 0.
B(z,€) e

By using some notions of measure theory, one could prove convergence almost everywhere by

only assuming that u is locally integrable.
O

Theorem 1.7 (Smoothness of harmonic functions). If uw e C(U) satisfies

u(z) = J[ u(y)dS(y), VB(z,r) c U, (1.114)
0B(z,r)

then uw e C*(U).

Proof.
. 1 T —y
u(z) = J Ne(z — y)u(y)dy = — 7 (") u(y)dy =
U € B(z,€) €
1 /r 1 ¢ neil
_ = z = — 2z = 1.115
o n (6) (LB(%T) udS) 6nu(sc)f0 n (6) na(n)r™ tdr ( )
(@) |y = (o)
B(0,¢)
This shows that u = u, on U, so u € C*(U,) for each ¢ > 0 . O

Theorem 1.8 (Estimates on the derivatives of harmonic functions). Let u be harmonic in U. Then

a Ck
|D%u(zo)| < g [ul L1 (B(wo,r) (1.116)
VB(zg,r) c U and |a| = K, and where:

1 (2n+1nK)K

Co = ., Ck~= (1.117)

a(n) a(n)

Remark 1.12. |u[1(B(zy,r) = SB(IO’T) dylu(y)|-

Proof. We shall proceed by induction on the order of the derivatives K = 0,1,2,---.
Consider first the case K = 0: by the mean value formula we have

1
_ dvuly) — — d 1.11
U(xo) }B(xo,r) yu(y) |B(.TQ, T)| B(zo.r) yu(y) ( 8)
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so we can bound

1 1
< —— = —— 1 . .
)| < s | dlulw)] = sl ) (1.119)

Consider now K = 1: we know that w is harmonic, so u,, is also harmonic, and we can use again
the mean value formula

Ug; (zO) = f Ug; (y)dy (1120)
B(zo,r/2)
Therefore, by Gauss-Green:
ool € 2 [ g <2 sw () [0BGor/D)] (120
z; \L0)| =X n T; < n 0> ) .
Ol(n)’f’ B(zo,r/2) OZ(TL)T‘ yedB(xg,r/2) T/l—(/l)
| S — no(n)rn—12-(n—
‘SaB(mD,T/z) ds(y)'/iu(y)‘
so that

2n
|ua, (20)| < 7”“||L°C(0B(xo,r/2))~ (1.122)

Since B(zo,r/2) < B(xo,7) < U, we can use the argument we used in the case K = 0 to bound the
HUHLOO((?B(;EO,r/Q))7 getting

1 2 n
|wll Lo (0B (z0,r/2)) < ot \r |l L1 (B (o,r))s (1.123)
and, summarizing,
2n 1 2™ ontly
|uz, (z0)] < 7wfn\|u\|u(3(zo,r)) = W|\U|\L1(B(xo,r)) (1.124)

which proves the claim in the case K = 1.
Generic step: suppose that (1.116) holds V|a| < K — 1. Then consider the next step |a] = K. We
have D% = (Dﬂu)ng for some multi-index 3 such that |5] = K — 1, therefore for B(zg,r/K) c U:

o nkK
|D%u(xo)| < T”DBUHLOC((?B(QCO,T/K)), (1.125)

analogously to what we had before. So, if z € 0B(zg,r/K) then B(z, £22r) < B(z¢,r) = U, hence

(1.116) for K — 1 implies

(2 (K — 1))

|DPu| < e [ull 2 (B o) (1.126)
a(n) (—Klglr)
Plugging this estimate in the previous one, we get
N (2n+1nK)K
|D%u(xo)| < WHUHL%B@O,T» (1.127)
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Remark 1.13. The main point of the proof is to find the right sequence of constants Ci .
These estimates are analogous to the bounds for the derivatives of analytic functions on C, that can
be derived from f(z) := 5= {, dw% (recall (1.5)).

2me

Corollary 1 (Liouville’s Theorem). Let u : R®™ — R harmonic, and suppose that u is bounded.
Then, u is constant.

Proof.

C C C
| Du(zo)| < WHUHU(B(IO,T)) < m|B(I07T)| << 0. (1.128)

Therefore, Du = 0 and hence wu is constant. O]

Corollary 2 (Solution of Poisson’s initial value problem in R"). Let f € C2(R"), n > 3. Then,
any bounded solution of —Awu = f in R™ has the form

u(x) = o oz —y)f(y)dy + C (1.129)

for some constant C'.

Proof. Looking at the explicit form of u, we have

o)) <[ avote - 00| < €| [ dvote — )] < (1.130)

so u is bounded. Suppose now that @ is another solution of —A% = f on R”. Then, —A(u—a) = 0,
but since u — u is bounded, u — @ = const by Liouville’s theorem. O

After these important corollaries, we come back to remark 1.13 and prove the following theorem.
Theorem 1.9. Let u be harmonic in U. Then u, is analytic in U.

Proof. We have to show that, for any xg € U, there exists a neighbourhood of xg such that u can
be represented as a convergent power series in x — xg. Let us call

1. 1
rTi= Zdlst(w07aU), M = W“ul‘Ll(B($0,2T)) < Q0. (1131)

For each x € B(xg,r), by construction we have that B(x,r) < B(xo,2r), and we already got the
bound

2n+1n |a|
L N e L (1132)
Using the Stirling formula
) kk+3 1
O R~ 2 (1.133)

we get
laflel < Cel®l|a)! (1.134)



1.3. LAPLACE AND POISSON EQUATIONS 25

for some constant C' and all multi-indices . Invoking the multinomial theorem:

=14 D= Y Jod! (1.135)

al’

from which we get
la|! < nlelal. (1.136)

Combining these inequalities we get

2n+1n26 |a|
HDQUHL@(B(IU,T)) <CM (7’) al. (1.137)
The Taylor series for u at xg is
DDL
3 Do) (e, (1.138)

[}

where the sum is taken over all multi-indices. The claim is that this power series converges provided

r

In order to check this claim, we have to compute, for each N € N, the remainder
N-1
Du(zp)(z — 20)® D*u(zo + t(z — o)) (x — x0)*
Ry(x):=u(x)— Y. Y ~ = > — . (1.140)
k=0 |a|=k ) la|=N ’

for some ¢ depending on z, 0 < ¢t < 1. Finally, using the estimates on the derivatives we get

antlpZe\ N r N Ny 1 CM
|RN(:1:)|<CMZ_]N( - ) (2n+2n3e) <OMnY oo = S 2, 0 (L)

O

The next theorem allows to show that maxima and minima of harmonic functions are in some
sense comparable.

Theorem 1.10 (Harnack inequality). Let U be a bounded open subset of R"™. Let V cc U connected
and open, and u harmonic in U such that uw = 0. Then, there exists a constant C > 0 such that

supu < Cinf u. (1.142)
v \%4
Moreover, since
inf u < u(y) VyeV, supu = u(y) VyeV (1.143)
v v .
then
u(z) < Culy) Vo,yeV (1.144)
that is: )
gu(y) < u(zx) < Cu(y). (1.145)



26 CHAPTER 1. FOUR IMPORTANT PDES

Proof. Let r:= 1distt(V,0U). If 2,y € V, |z — y| < r, then

1
u(x) = J[B(x’%) u(x)dz = 7‘3(% 20| JB(y’r) u(2)dz (1.146)

being u > 0. In particular

1 1 1
—_— u(z)dz = — u(2)dz = —u(y) (1.147)
|B(,2r)] Jp(y.r) 2" JB(y,n) 2
so that )
2"u(y) = u(z) = Q—nu(y) Ve,ye Ve —y| < r (1.148)

Now, since V is connected and V is compact, we can cover V with finitely many balls {Bi}é\il of
radius /2 and B; n B;_1 # . This implied that

1
u(zx) = Wu(z) Ve, z €V, (1.149)

where N = Ny depends on V. O

Properties of the solutions of Poisson’s initial value problem. We now have enough tools
to discuss the simplest extension of Newton’s law, in the case f is not radial.

Example 1.3.1 (Multipole expansion). Let ®(x) be the fundamental solution of Laplace’s equation.
Consider

= fdyf(y)@(x —9), x # U D suppf. (1.150)

Being ®(x — y) harmonic, it is also analytic, so we can expand around y = 0:
1
®(z —y) = 0(2) — y(Dy®)(2) + 54iy; 0y 0y, B(2) + -+, (1.151)
and in particular

u(o) = [ s -y = [ o) 2@ - [dpwuoe) + @), (1152

|
In the case n = 3, ®(x) = W and 0;®(z) = 1 Tajap SO that
u(z) = a + L * oL (1.153)
B 47|z dr|z|3 || '
—— ——

1—charge potential dipole momentum

which can be interpreted as a potential generated by to point-like charges sitting at x; and x5, with
charges respectively +q such that p = q121 + gax2 = q(x1 — x2).
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1.3.7 Green’s function

We want now to discuss the existence of the solution of the Poisson initial value problem (1.100),
that we recall here for simplicity

—Au=f, inU,

u=g, on oU.
with prescribed f and g. We know (Thm. (1.6)) that this initial value problem has at most one
solution. As we we shall see, existence can be proved in certain cases. In particular, we will discuss
a useful representation formula for the solution of the initial value problem that allows to write an
explicit expression for the solution u, whenever it exists. This expression can actually be used to
prove the existence of the solution in some simple cases.

Definition 10 (Green’s first identity). Let U < R™, and u,v € C?>(U). Then:
J vAudx + J Du - Dvdz = f v - DyudS(y). (1.154)
U U U

By just interchanging the rule of w,v and subtracting the two identities, we get the second
Green’s identity.

Definition 11 (Green’s second identity). Let U = R™, and u,v € C?(U). Then:
f (vAu — uAu) = f (vv - Dyu — uv - Dyv)dS(y) (1.155)
U ou

In particular, we would like to apply such identities to the case in which u is a solution of the
Poisson initial value problem (1.100) and v is the fundamental solution of Laplace’s equation:

L log | — v ifn=2,
v(y) = {2” ) . 403 (1.156)
n(r=2)a(n) o=y >3

A priori, the problem in doing that is, as we already commented in (1.43), A® is not integrable
due to the singularity at x = y. To solve this problem, let us just start by considering the domain
U\B(z,¢€):

f (®(z — y)Au — uAP(x — y)) dy =
UAB e (1.157)

| @@y Dyuly) - gy Dye(e - ) dS(0).
(U\B(,¢))

Now we use that A, ®(x — y) = 0 for each y € U\B(x, ¢), and also that the integral appearing in
the r.h.s. can be rewritten as the sum of the integral along two boundaries:

f (@(z — y)v - Dyuly) — uly)v - D®(z — y)) dS(y) =
O(U\B(z,e))

= LU (®(x — y)v - Dyu(y) —u(y)v - Dy®(x —y)) dS(y) +

(1.158)

with outward normal

" f (( — y)v - Dyuly) — uly)v - Dy®(x — y)) dS(y).
0B(z,€)

with inward normal
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Hence,

[ e pauwdy = [ (@@= D) - uwv- Dyd( 1) dS(w)+
dW\B(z,e)) ou (1.159)

" f (B — y)v - Dyuly) — uly)v - D,®(z — y)) dS(y).
0B (z,€)

We would like to take the ¢ — 0 limit: with this purpose, notice that

< [®(e) |Dyu(y)| dS(y) <

f ®(x — y)v - Dyu(y)dS(y)
0B (z,€) 0B (z,€)

(1.160)

<|®(e)] sup |Dyu(y) dS(y) < Ce ! |®(e)] — 0.
yeB(z,¢) 0B (z.) e—0

Now we have to bound the other term:

.
| e R T e e
0B (z,€) 0B(x,€) |$ - y|

—— [ wele- L -0 [ s - e
0B(xz,€) |z -y OB ((x,€)

1

_ n—1 . _
- ’I’LO((TL)€”_1 € na(n) J["B(;E,g) u(y)dS(y) 0+ U(IE)7

where we just used, to pass from the first to the second line, that v(y) = — \i:zl' All in all,

lir% O(x — y)Au(y)dy =
€=V JU\B(z,€)

(1.162)
- L [ =) Dyuly) = u(w)- DyBla = ] dS(y) + ula),

and, since

lim B(a —y)Dulp)dy = | @(x —y)Au(y)dy, (1.163)
€2V JU\B(z,€) U

we finally get
u(z) = f O(x — y)Au(y)dy + f [—®(z — y)v - Dyu(u) + u(y)v - Dy®(x —y)]dS(y) . (1.164)
U oU

Remark 1.14. The last equation (1.164) tells us that to find u(zx) in U it is enough to know dyu(y)
on the boundary oU .

Consider now the solution of Laplace’s equation in U < R™: ¢*(y) such that Ay¢(y) = 0in U.
By Green’s second identity we get

J d" Audy = J (¢"v - Dyu — uv - Dy¢®) dS(y), (1.165)
U ou
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so that we can just add this identity to (1.164) that we get before, obtaining

ulx) = L(‘I’(“’” —y) + 6% () Audy+

+ LU [(=®(x —y) = ¢"(y)) v - Dyuly) + u(y)v - Dy®(z —y) + ¢"(y)] dS(y) == (1.166)
::J GAudy + J [—Gv - Dyu(y) + u(y)v - D,G]dS(y)
U oU
where we defined
G(z,y) = ®(z —y) + 6" (y). (1.167)
Remark 1.15. Suppose now that we can choose ¢*(y) such that G =0 on 0U. Then
u(z) = f GAu(y)dy + f u(y)v - D,GdS(y), (1.168)
U oU

meaning that, if u is a solution of the initial value problem
—Au=finUu=g on dU,

then (1.164) gives an explicit expression for u as a function of f and g, which are the prescribed
functions of the problem. Conversely, if one can prove that the Laplace initial value problem

AP® =0 in U, ¢" = ®(xz —y) on U,
admits a solution, then (1.164) gives a solution for the Poisson initial value problem (1.100).
Definition 12. G = G(x,y) is called Green’s function for U < R™ for x,y € U,x # y.

Before discussing the computation of the Green’s function is some special cases, let us discuss
some symmetry property of the Green’s function.

Theorem 1.11 (Symmetry of the Green function). Va,y € U,z # y,
G(z,y) = Gy, x). (1.169)

Proof. Let v(z) = G(z,z2), w(z) = G(y, z). Then by construction Av = 0 if z # z, and Aw = 0 if
z#y,and v =w = 0 on oU. Let now

V :=U\B(z,€) u B(y,e€), € small. (1.170)

Using Green’s identity,
J (v-D,vw—v-D,wv)dS(z) = f (v-D,wv —v- Dow)dS(z). (1.171)
0B(z,¢€) 0B(ye)

Being w smooth close to x,

— 0. (1.172)

e—0

J v - D,wvdS(z)
0B (z,€)




30 CHAPTER 1. FOUR IMPORTANT PDES

Also, we can conclude that

f v-Dyow = f v-D,®(x — 2)w(z) — w(z). (1.173)
0B(,¢) 0B (w,¢)

e—0

Similarly, the r.h.s. of

f (v-Dywv —v- Dyow)dS(z) — v(y). (1.174)
9B(y,€)

e—0
Therefore w(z) = G(y,x) = v(y) = G(x,y). O

Example 1.3.2 (Green’s function in the half space). Let us consider the half space RY} := {z =
(z1,,Ty), }xn > 0}.
Notice that this region is unbounded, so we cannot rely on the previous results. We shall

compute the Green function using a reflection trick, known as method of the images.

Definition 13 (Reflection). Given x € R, we define its reflection with respect to 0R"} = {x =
(z1, @n), |Tn = 0} as
T = (xlf" axn—la_xn)~ (1175)

We are looking for a function ¢*(y) such that

{Ayd’m(y) =0 R (1.176)
G*(y) = D(z —y) on IR
The problem is that ¢*(y) is not defined at x = y. Therefore consider the function
" (y) = (T —y). (1.177)
If z € R} = & ¢ RY, therefore ¢”(y) is well defined Vz,y € R} and, in particular
{Aydjx(y) =0 n R, (1.178)
#*(y) = Dz —y) on ORL
being x = & on JR’. So the Green function for the half plane R} is
G(z,y) = ®(x —y) — ®(T —y), z,ye R,z +#y. (1.179)

Let us now use G to compute the solution of the Poisson initial value problem (1.100). We have

~ 1 Yn — Tn Yn T Tn
Recalling that
u(z) = J GAu + J u(y)v - DG, (1.181)
U oU
for y € dR}
2xy, 1
v DyGl,y) = —Gy, (2,y) = — (1.182)

na(n) |z —y[*
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Suppose that u solves the initial value problem

Au=0, inR%, (1.183)
u=g, on JRY,
we expect that, for z € RY,
u(x) = dy = | K(z,y)g(y)dy, (1.184)
= ) Jown T = o ()l

where we have introduced the Poisson kernel KC for the half plane. To conclude, we are left with
proving that u is indeed a solution of (1.183).

Proposition 5. Let g e C(R"1) n L®(R" 1), hence
1. uwe C*(R"™) n L*(R?%),
2. Au =0 in R7,
3. for x e RY, lim, .z u(x) = g(Z) for each T € IR} .

Proof. 1. Since G is harmonic for z # y, K(z,y) = —G,, (x,y) is also harmonic for z # y, so it
is harmonic for = € R% ,y € IR}

2. Au(w) = Ay §opy dyK(x,y)g(y) = §dyAaK(z, y)g(y) = 0.

3.
lu(z) — g(z)] < K(z,y)lg(y) — g(@)| =

oR?

- K wlo) 9@+ | Kaals) - g(@)] <
(')RimB(;i,j) [}Ri\B(iﬁ,j)

<Ce + f K(z,9)lgy) - 9(2)| < (1.185)

ORT\B(z,)
<ce+cug||wf Klz,y)  — 0.
RIBG) S w0

FTo—ym

integrable in oR7

O
1.3.8 Existence of solutions for the Laplace problem
We want to prove existence of solutions for:
Ay — :
{ u=0 1inU, (1.186)
u=g on 0U,

where U < R" is open and bounded and g € C°(dU).
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Definition 14 (Mean-value subharmonic/super-harmonic/harmonic). u € C°(U) is called mean-
value subharmonic if

u(z) < J[ u(y)dy, VB(z,r) < U. (1.187)
B(z,r)

u e COU) is called mean-value super-harmonic if —u is mean-value subharmonic, and mean-value
harmonic if u is both mean-value sub-harmonic and mean-value super-harmonic.

Remark 1.16. 1. Ifue C?(U), the three situations just describe coincide respectively with
— Au <0, —Au =0, Au = 0. (1.188)
2. For harmonic functions, "mean-value harmonic = harmonic”. From now on, we will often
drop the term “mean-value”.
Theorem 1.12.
Let u € C°(U). The following statements are equivalent:
1. u(z) < §aB(£,T) u(y)dy VB(x,r) c U,
2. u(@) < §p, yuly)dy  VB(x,r) = U,
3. u(z) < h(z), ¥ harmonic function h such that, for all B(z,r) € U, u 6Bz, < P 1oB(2,r)-

Proof.
1. = 2. already proven.

2. = 3. Let h be harmonic. Thus, u — h is mean-value subharmonic and « —h < 0 on 0B(z,r) for
all B(z,r) < U. Hence, by the maximum principle,

sup (u(y) —h(y)) = sup  (u(y) — h(y)) <O. (1.189)

yeB(z,r) yedB(z,r)
3. = 1. by the mean value formula. O
Theorem 1.13. 1. Let u,v € C°(U), u subharmonic and v super-harmonic. If u < v on oU

then either u <v oru=v in U.

2. Let ue CO(U) subharmonic and B(z,r) = U. We define the harmonic lifting of u on B(x,7)

as
3 Yy e U\B ,T),
v(y) = (o) ye UN\B(a,r) (1.190)
SaB(z’T) KBy, 2)u(2)dS(z) Vye B(x,r),
where Kp(y r(y,2) is the Poisson Kernel for the ball
r2—ly—z|> 1
KB(JI7’I‘)(y’ Z) = | | (1191)

na(n)r |y —z*
Then, ve C°(U), v is subharmonic and u < v.

3. Let uy,- - ,up € C°(U) be subharmonic. Then, u = max;— 1. k U; 15 subharmonic.
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Proof. 1. Follows directly from the maximum principle: u — v is subharmonic and v — v < 0 on
ou.

2. Let B’ = B(2/,r") < U. Let h be harmonic in B’ and such that v < h on 6B’. Goal: prove
that v < h on B’ and that u < v. Let us start by proving the second statement: by the
definition of v (1.190), u < v for y € U < B(z,r). Let now y € B(x,r): for all y € 0B(z, )
v(y) = u(y) by definition of Poisson kernel. Also, u — v is subharmonic = u < v Vy € B(z,r)
by the maximum principle. Therefore, we are left with proving that v is subharmonic in U,
and we want to use point 3. of Theorem (1.3.8). Since u < v in B’, so u < h in B’ and

ulop<v lop< h lop (1.192)

= 4 < h in B’ by the maximum principle. Since v = v on B'\B, v < h in B’\B. Suppose
now that v is in B’ n B: then v is harmonic. Then, since v < h on é (B’ n B) we get v < g
in B'nBc 0B udB\B)=v<hin B, so v is subharmonic in B’ and hence in U.

3. Let u(y) = max; u;, and y € B(z,r) < U. Let p e {1,--- , k} such that
u(z) = up(z), x fixed . (1.193)

So
wm:%m<f umwﬂw<f u(y)dS(y). (1.194)
0B(z,r) 0B(

z,7)
by definition of v and using that u, is subharmonic.
O

Finally, we will need some result about the limits of subharmonic functions.

Theorem 1.14. Let {vg}ren be a nondecreasing sequence of bounded harmonic functions in U < R™
open, bounded and connected. Suppose that

on(u) — uly)

Then,
VE — U,

uniformly in U and u is harmonic.

Proof. Let z € U. The function vg(z) — ve(z) is harmonic for k, £ € N. Moreover, vy (z) — vg(z) = 0
for k > ¢. By Harnack’s inequality

1

o (We) = ve()) < (vk(2) — ve(2)) < C (ve(y) = vely)), (1.195)

meaning that (vi(z) — ve(2)) is a Cauchy sequence, uniformly in z € U. Let us denote by u(z) the
limit of the sequence, and let B(z,7) < U. By the mean value theorem

k—o0

w@=£mw@@—W@=ﬁmMW% (1.196)

which proves that the limit is harmonic. O
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Definition 15 (Set of subharmonic functions relative to a continuous function). Let g € C°(0U).
We define the set of subharmonic functions relative to g as

Sy = {ve C°(U)|v subharmonic and v < g on U} . (1.197)
Theorem 1.15. Let g€ C°(0U). Define, Vx € U,
u(z) := sup{v(z)|v € S4}. (1.198)
Then, u is well defined and harmonic.

Proof. To begin, notice that Sy # &, since the constant function v(z) = minyesr g(y) belongs to
Sg. Also, notice that the set S, is bounded: v(z) < maxyeor 9(y) < ©, Yv € Sy, which implies
that u is well defined. Fix y € U. We denote by {vi(y)}ren, vr € Sy, the sequence such that
limy o0 v (y) = u(y).

Assume that vg(y) < vg41(y) (if not, we reorder the v} s so that this is true). Let us introduce
the harmonic lifting

_ ”Uk(Z), Vye U\B(x,r),
wy,(2) = {SGBW) K o (22 o(D)AS() V= € Bly,r). (1.199)

Thanks to Theorem (1.13) we know that wy, is subharmonic and that vy < wg. Also, wy, € Sy, since
wy Tov= vk lou< gk lov, (1.200)

which implies vy < wg < u. Therefore, vg(y) — u(y) = wi(y) — u(y). Now, thanks to theorem
(1.14), using that wy, is harmonic in B(y,r) (up to a rearrangement of the sequence):

Wy — Wy, (1.201)

uniformly in B(y, r), with ws harmonic. We claim that w, = u. We shall proceed by contradiction.

Suppose that wy # u in B(y,r). Therefore, there exists p € B(y,r) such that wy(p) < u(p).

This also implies that there exists w € Sy such that ws(p) < w(p) < u(p). Let v = max{w, wy}
and

0 , Yy € U\B(z,r),

) {vk«z) yeU\B(x,7) (1.202)

() = SaB(a:,r) ICB(I,T) (2, 1) 0k (t)dS(t) Vze B(y,r).

As before, wy < 9 < W, < u and Wy — Wy uniformly in B(y,r), Wy harmonic. Moreover,
w < W = wy < Wy and wyi(y) = We(y) = u(y). Consider now the function wy — wy. By
what we proved, we know that: wy — Wy is harmonic; it is < 0; and it reaches its maximum,
which is 0, in y € B(y,r). Therefore, by the strong maximum principle, wy = Wy in B(y,r);
that is, W(p) < W4 (p) = wx(p), which is a contradiction. Hence w, = u, which proves that u is
harmonic. O

Remark 1.17. The function u is our candidate for the solution of the Laplace initial value problem
(1.186). We are left with checking that the solution fulfills the boundary condition u = g on oU.

Definition 16 (Barrier function, regular point). Let U < R"™ be open, x4 € 0U. A function
we C%U) is called a barrier in x4 if:
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1. w(zy) =0 and w > 0 on U\{xy}.
2. w is mean-value super-harmonic in U.
A point x4 € U is called regular if there exist a barrier at xy.

Definition 17. An open set U  R™ has the exterior sphere property at x4 € U if there ewists
y € R™ and r > 0 such that -
B(y,r) nU = {xy}. (1.203)

Lemma 1.1. If z, € 0U has the exterior sphere property, then x4 is regular.

Proof. Let u(z) = ®(z4 —y) — ®(x — y). Then by definition u(z) = 0 if © = x4, and u(z) > 0 if
x € U. Moreover, u is super-harmonic for y € U (in fact it is harmonic). Therefore we explicitly
constructed a barrier at x,, which implies that z, is regular. O]

Remark 1.18. Any set U with boundary 0U of class C? has the exterior sphere property.
Lemma 1.2. Let U = R™ open and bounded, g € C°(oU). Let

u(x) = sup{v(z) | v e Sg}. (1.204)
If x € OU is regular, then

lim u(z) = u(zy) = g(xx) (1.205)

T Ty

Proof. Let € > 0. There exists 6 > 0 such that
lg(z) — g(z4)] <, V€ B(xy,d) n oU. (1.206)

Therefore, YV € 0U:

maXpy |9|

lg(z) — g(z4)] < €+2 w(z) (1.207)

Ming g(g,,5) Wl
—_—
=:C
where w appears without the absolute value since w > 0. We then have:

g(zy) — Cw(z) — e < g(x) < g(z4) + Cw(z) + ¢, Vx € oU. (1.208)

The function g(zy) — Cw(x) — € is subharmonic and belongs to Sy. Therefore, Vo € U, g(zy) —
Cw(x) — e < u(z). Also, the function g(z,) + Cw(x) + x is super-harmonic. This implies that
Yve S,

v(z) < g(x) < g(zs) + Cw(z) + € Va € U, (1.209)

and by the max principle
v(z) < g(ay) + Cw(x) + € Vo e U. (1.210)

Therefore

u(z) = sup{v(z)|v € Sy} < g(z4) + Cw(z) + ¢, VeeU =

= lim supfu(z) - g(zs)] < e+ lim Cw(z)=¢,  VYe>0. (1.211)
TTox T Ty

O
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Theorem 1.16. Let U < R” open and bounded. The boundary value problem

{Auz() i U, (1.212)

u=g on oU

with g € CY(0U) admits a solution if and only if all points x4 € OU are reqular.

Proof. Let all 2, € 0U be regular. Then, existence follows from Theorem (1.15) and Lemma (1.2).
Suppose now that the Dirichlet boundary problem admits a solution Vg € C°(0U), and let z € oU.
Then, the solution of AU = 0, u(z) = |z — 24| on 0U is a barrier at x4. By the maximum principle,
u = 0 on U. Suppose now that y € U such that u(y) = 0. Then, u(y) = 0in U since 0 = infeoy u(z)
by the strong maximum principle. But this is a contradiction, since

u(x) # constant on OU,
and u € C?(U) n C(U) which implies that u(z) > 0 for all x € U,z # z4. O

To conclude, we would like to extend the previous results to prove existence of solutions for the
nonhomogeneous case (1.100). Recall the definition of Green’s function, G(z,y) = ®(z —y) — ¢*(y)
with

A¢p* =0 i
{ ¢ n 0, (1.213)

¢"(y) = ®(x —y) on U

We look for a solution u of (1.100) as u = w1 + ug, where u; and ug are defined as follows. We
have:

A — .
up =0 inU, (1.214)
U =g on 0U,
which admits a unique solution, as we proved, while
Aup = in U
w=[ b (1.215)
uy =0 on 0U,
which also admits a unique solution, given by:
@) = | 106 =y (1.216)
1.3.9 Energy methods
Let us consider:
—Au = i
u=/ b (1.217)
u=g on oU,

with U < R” open, bounded and such that oU is of class C''. Here we shall give a different proof
of the following theorem.

Theorem 1.17. The boundary value problem admits at most one solution u € C(U).
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Proof. Suppose u; and ug are two solutions. Then, w = u; — us is a solution of:

Aw — .
w=0 b (1.218)
w =0 in 0U,
and this implies that
0= —J wAwdr = J |Vw|?dz, (1.219)
U U
which is true if and only if |[Vw| = 0 in U, meaning that w is constant in U. Being w = 0 on U,
then w=0in U. O
Remark 1.19. The functional
1
I(w) :J ~|Vwl?, (1.220)
U 2

is called the energy of the solution. In the more general case of the Poisson initial value problem
(1.100), the energy functional would read as

I(w) := JU dx%|Vw|2 — fw (1.221)

defined on the domain
A:={we C*(U)|lw =g on oU}. (1.222)

Theorem 1.18 (Dirichlet’s principle). Suppose that u € C?*(U) solves the initial value problem
(1.186). Then

I(u) = ur{lgﬁ[(w) (1.223)

Conversely, if u € A satisfies (1.223), then u solves the initial value problem (1.186).

Proof. Suppose that u is a solution of the initial value problem. Let w € A. Then
0= JU(—AU — v —w)dz. (1.224)
Integrating by parts we get:
0= fU(Du'D(u—w) — fu—w))dz, (1.225)
where the boundary terms vanish since u — w [sy= g — g = 0. Hence,
L|Du|2 —uf = JDu Dw—wf < %JU | Dul* + %J|Dw|2 —wf = JDU -Dw—wf. (1.226)

Thus, we have
1 1
ff |Dul? —uf < ff|Dw\2—wf. (1.227)
2 Jy 2

Therefore, since u € A, u is the minimizer of I on A. Now we want to prove that if u is the
minimizer of I, then it solves the boundary value problem. Let v € CP(U), and define

i(r) == I(u + 2v), TeR. (1.228)
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Notice that u+2v € A for all 7. Being u by assumption the minimizer of I, 7 — i(7) has a minimum
at 7 = 0. Suppose now that i(7) is differentiable at 7 = 0, then

d .
%Z(T)L:O: 0. (1.229)

Let us now compute the derivative and check that it exists:

1 1 2?
i(r) = JU §|Du +2Dv|? — (u + 2v) fdx = JU §|Du|2 +2Du - Dv + §|Dv\2 — (u+22)f, (1.230)

so that p
—I(7) :f Du - Dv + 2|Dv|* — vf. (1.231)
dT U
Being u,v € C2(U) the derivative exists. Moreover, if we impose the condition (1.229), we find
d
0=—i(r)|__,= J Du-Dv—vfdr = J (—Au — flvde (1.232)
dT =0 U U

where we used that v = 0 on 0U. Being the identity valid Yv € CL(U), the latter equality can be
true only if —Au = fin U. O

Remark 1.20. This theorem tells us that the uniqueness of the solution of the initial value problem
is equivalent to the uniqueness of the minimizer of I(-) on A.

1.4 Heat equation

In this section, we will be interested in understanding the so called heat equation, in both the
homogeneous and in the non homogeneous case:

ur —Au = 0, (1.233)
ur—Au = f, (1.234)

where t > 0, x € U < R™ open. The unknown is u(x,t) and the Laplace operator acts only on the
variables (1, ,xy).

Motivations. The heat equation describes a time dependent phenomenon: one can think as
x € R™ to be a space variable and ¢ a time variable. The function f(x,t) is also given. Let
F = F(x,t) be a local flux through x, and

d

— | udzr = ff F-vDS = u; = —divF (1.235)
dt Jy ov

since V' is arbitrary. Phenomenologically, the flux is directed from regions with high concentration
to regions with low concentration, which motivates the choice:

F = —aDu, a>0. (1.236)

Thus,
uy = adiv(Du) = aAu. (1.237)
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1.4.1 Fundamental solution

For the Laplace equation, we found the fundamental solution by looking at radial solutions. Here,
we notice that if u solves u; — Au = 0, then

up = ut(x,t) = u(\x, \*t), (1.238)

solves
up — Aut = 0. (1.239)

Therefore, one would like to find a solution such that
ut =u, VA (1.240)
It is convenient to be a bit more general, and to look for solutions invariant under the rescaling
u(z,t) = \*u(Nx, ), VA >0, (1.241)
for some o and 3. Let A = t~1. The latter condition reads:
u(z,t) =t~ u(t=Pz, 1), (1.242)
and the homogeneous heat equation (1.233) becomes:

—at™ (P, 1) + T (P, 1)+

(=)t P (@ Dyu) (t7P2,1) — 722 (Du) (tP2,1) =0 =
sat~ @y (y,1) + t*(o‘Jrl)B(yDyu)(y, 1)+

+t2T28(Au)(y,1) = 0

(1.243)

Let now 8 = 3. The coefficient ¢~(“*1) factors out and, calling u(-,1) = v(-), we are left with
1
av(y) + Sy Dyv+ Av =0. (1.244)
Let us further assume that v is radial
v(x) = v(|z]). (1.245)
Proceeding as for the Laplace equation, we get

Y n—1

av(y) + y- )+ () +

v'(y) = 0. (1.246)

>

2

Laplacian of v

Setting w(r) = v(z), r = |x| the latter equation reads:
1 -1
aw + arw’ '’ + T =0, (1.247)
r

Then, fixing a = n/2
-1
gw + gw’ +w" + nTw’ =0. (1.248)
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Now, notice that

n—1 w, n—1 n—1, 1/
= 1.249
, (w £ w) (1w (1.249)
1
rl (gw + gw’) =3 (r"w)’ (1.250)
Hence, (1.248) implies
1 1
(r" ') + 2 (r"w) = 0= r" ' + Zr"w = a, for a constant. (1.251)

2

Suppose now that w,w’ — 0 fast enough. Then a = 0, hence
r—00

1
w' = —5rw. (1.252)

Therefore, we reduced the problem to an ordinary differential equation, whose solution is
w=be T, (1.253)

for some constant b. Summarizing

|2

u(z,t) =t~ u(t Pz, 1) =t “wt Plz]) =t~ Fbe o . (1.254)

Definition 18 (Fundamental solution of the heat equation). The function

{@(m,t) = ch%, xeR" t>0, (1.255)
0 reR" t <0,
is the fundamental solution of the heat equation.
Remark 1.21. Notice that, for x # 0,
lim ®(z,t) = 0. (1.256)

t—0+

Instead, ® is singular at (0,0). The normalization constant has been chosen in such a way that
J O(z,t)dr = 1. (1.257)

Consider now the initial value problem

{ut —Au =0, inR"x (0,00), (1.258)

u=g, on R™ x {t = 0}.

For t > 0, the function (x,t) — ®(x — y,t) is perfectly regular. Therefore, analogously to the
Laplace initial value problem case, one expects

uu¢>=jn¢u—y¢mwm% (1.259)

to be a solution of the heat equation. In fact, this is true for g € C(R™) n L*(R™).
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Theorem 1.19 (Solution of the initial value problem). Let g € C(R™) n L*(R™). Let

1 e—y|?
uu¢>=f ¢@4yiwwﬂyf“iﬁi‘de4yg@% VeeR"t>0.  (1.260)
n (47Tt) / R

Then,
1. we C®(R™ x (0,00)),
2. uy — Au =0, zeR™t>0,

3. lim(%t)_)(xmo) ’U,({E,t) = g({Eo)7 Vg e R™.

zeR™,t>0

Remark 1.22. This shows that u in (1.260) is a solution of the initial value problem (1.258).

Proof. 1. It follows from the fact that ®(z — y,t) is C* in € R™, ¢t > 0 and the derivatives are
absolutely integrable.

2. It follows from the fact that ® is a solution.
3. Let zg € R™, and fix € > 0. Being g continuous, there exists § > 0 such that
l9(y) — g(zo)| < €if [y — zo| < b,y e R™. (1.261)

Take now |z — xo| < §/2: so we have

|waw—mmﬂ<f B — y,1)]g(x) — glzo)], (1.262)

n

where we used that {dy ®(z —y,t) = 1. Then,

|M%ﬂ—ﬂmﬂ<] Bz — y.t)lg(y) — glzo)|dy+
BM\B(@0.0) (1.263)

+f ®(z—y)|g(y) — g(xo)|dy =1 + 11
B(Qfg,(s)

By continuity, 7T < e. Thus we are left with studying the term I, corresponding to |y—xzo| = 4.

We use: .
ly—aol = ly—z+ 2 —wo| < |y—x|+5/2< |y — 2|+ 3ly —wol, (1.264)
meaning that [y — x| > %|y — xg|. Therefore
c N
I<2H9HOO ‘P(x—y,t)dy< T e 4t dy<
R™\B(0,5) L= Jrm\ B(20,6)
2 (1.265)
& _ lzo—vl =2
gT/QJ e 16t dy:CJ e~ 16 dz — 0,
t R7\B(zo,0) ]Rn\B(O,(;/\/{) t—0+

where in the latter step we performed the change on variables (y — xg)/vt = 2. So, for
|z — xo| < §/2 and ¢ > 0 small enough,

lu(z,t) — g(wo)| < 2e. (1.266)
O
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Remark 1.23. The solution has infinite propagation speed: as soon ast > 0, u(x,t) is everywhere,
even if g is compactly supported.

We are now ready to discuss the solution of the non-homogeneous problem:

{ut —Au=f, inR"” x (0,0),

1.267
u=0 on R™ x {0}. ( )

We would like to find a solution of the problem starting from the solution of the homogeneous
equation. Before writing the expression and checking it, let us first discuss some heuristics behind
it: the solution of the non homogeneous equation is found via the Duhamel principle, which is a
very useful trick in PDEs.

Suppose that u(x,t) is a solution of the problem and, at a given time s < ¢, evolve u(-, s) with the
homogeneous equation (f = 0), and let us call @(x, s'; s) the solution of

- , — A“' — 3 Rn /
{ué =0, in x {s > &'}, (1.268)

U= u, on R” x {s' = s}.
Consider @(x,t;s): in general, @(z,t;s) # u(z,t). They would be the same if there was no non-
homogeneity. Therefore, one expects c(lit (z,¢;8) to depend on f. We compute
dN( t;s) df dy®( t —s)u(y, s) (1.269)
—a(z,t;8) = — x—y,t—s)u(y,s). .
ds 2] ds |, Y Y, Y,

u(+,$) = g is the initial condition. By what we proved before

lim a(z,t;s) = u(y,t). (1.270)
s—t—
Also
lin%J a(z,t;s) =0, (1.271)

since u(y,0) = 0 by assumption. Therefore,

u(y,t) = Jt dsdiu(x t;s) j ds—fdyfb x—y,t—s)u(y,s) =

0

Ltdsfdy [( —y,t—s)) u(y, s) +@($_yat—5)iu(g/,s)] _

t
s [ ay [—cb ot SJuls) 4 o gt = ) ()| -

[l
S
jsW

(1.272)

Il
S

ds f dy [~ Ay ®(x — y,t — s)uly, s) + Bz — .t — 5) (Ayuly, s) + f(, )] =
dsj

. dy[®(x —y,t — ) (=Byuly, s) + Byuly,s) + f(y, )] =

=f0 dsfdycb(a: —y,t—38)f(y.s) = u(x,1).

Il
~ ~

In this way we have a guess for the solution of the non homogeneous initial value problem (1.267).
Of course, we have to prove that (1.272) is indeed a solution of the partial differential equation.
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Theorem 1.20. Let f € C}(R™ x [000)) = {f : R® > R|f is C*(R?) in z, and C'(0,0) in t} and
suppose that f has compact support on (x,t). Let u be given by (1.272). Then

1. ue C}(R™ x (0,0)).
2. u(z,t) — Au(zx,t) = f(x,t), x e R", ¢ > 0.
3. lim($7t)_,(mo70)ze]]§n7t>o 'U,({E,t) =0, Vzo e R™.

Proof. 1. ® has a singularity at (0,0): we cannot exchange directly the integral and the deriva-
tives 0, A. However, we can change variable in the integral, so that the derivatives only act

on f:
u(z,t) fdsJ- dy®(z —y,t —s)f(y, s stf dy®(y,s)f(x — s, t—s). (1.273)

Recall that f € CZ(R™ x [0,00)). We compute

Uy = f ) dy®(y,t) f(x —y,0) + Lt dsJ ) dyd(y, s) fe(z —y,t — s), (1.274)
and .
tain, = [ ds [ Ay, 9) o, o = gt ) (1.275)
which exists since f has compactosupport.

ut—Au—LtdsJndy<1>(y,s)(0t—Az)f(rv—y,t—S)+f -

R dy®(y,t) f(z—y,0)

=J- dstanq)(y,s) (—0s — Ay) flx —y,t —s)+

(1.276)
f dsf dy®(y,s) (—0s — Ay) f(z —y,t — )+
f Oy, t)f(x —y,0)dy=T+ 1T+ 111
Let us consider the three terms separately:
111 % (il +10%71) [ as ([ avpio) < ce (1277
0
[
=1
Now we will see that a piece of the I compensates I11:
t
1= ] i@ = a) 0w ra—pt -9+
+J (y,e)f(z —y,t — €)dy—
" (1.278)

- J ) O(y,e)f(x —y,0)dy =

EJ Oy, e) f(x —y,t —e)dy — II1T
Rn
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being (s — A)® = 0. All in all,

ug(x,t) — Au(z,t) = lim D(y,e)f(z—y,t —e)dy = f(x,1), xeR" t>0. (1.279)

e—0t Jpn

3. We are left with checking the boundary condition u(x,0) = 0. We have:

fute o < | ds [ 10 =3t = 9170 5)ldy <

] (1.280)
<l [ ds [ dypiy—at—s) <tlfle — 0
0 Rn t—0+
O
Remark 1.24. By the linearity of the heat equation, we have that
t
u(et) = [ @ —pgtdy+ [ [ oyt 5 (. o)duds (1.281)
n O n
is a solution of
ug—Au=f, inR" x (0,00), (1.282)
u=g, on R™ x {0}.

1.4.2 Mean-value formula

Definition 19 (Parabolic cylinder and parabolic boundary). Let U < R™ open and bounded. Let
T > 0 be a fized time. A parabolic cylinder is the set

Ur:=U x (0,T]. (1.283)
Also, we define the parabolic boundary of Ur as
FT = UT\UT. (1284)

Remark 1.25. To formulate the analog of the mean value theorem for the harmonic functions
(1.2), we need to introduce the analog of the ball B(x,r) for the Laplace equation. Notice that
0B(x,r) is a level set for the fundamental solution of the Laplace equation ®(x —y), ®(x —y) =r
on 0B(x,r).

Definition 20 (Heat ball). For (z,t) € R"™ ¢t > 0 and for r > 0, we define

E(x,t,r) := {(y,s) ER"+1|‘I>(x—y,t—s) > Tln} (1.285)

Remark 1.26. The set E(x,t,s) does not contain points (y,s) with s > t, since for these points
O(x —y,t —s) = 0. Also, the point (x,t), where ® is not defined, is on 0FE. Moreover, since

the set E is bounded. OF is regular away from (x,t).
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Theorem 1.21 (Mean value formula). Let u € C%(Ur) be a solution of the heat equation (1.258).
Then,

u(z,t) = — dydsu(y, s) 2~ y\j, (1.286)
4rm E(z,t;r) |t - S|
VE(xz,t;7) < Ur.
Proof. Without loss of generality, let = 0 and t = 0. Let E(r) = E(0,0;r) and
1 2 2
O(r) = —J u(y, s)%dyds = J u(ry,rzs)ly—Ldyds. (1.287)
™ JE) s E(1) s

As in the proof of the mean value theorem (1.2) for Laplace’s equation, we will show that ®(r) is
constant in r. We compute:

1 2 2
i<I>(r) = — [y . Du'igf| + QTUSZ{J] dyds =

dr (1) 2
1 b, 1o 25
Let us define
" [yl
= ——log(—4ns) + =—— + nlogr, (1.289)
2 4s
which in particular vanishes on 0E\{(0,0)} since ®(y, —s) = . We use 1) to write
1 2
B=—F J clyds2usM =
rm E(r) S
1J dd4iw 1J ddlél w+4i P
= Yyastus ) YiVy, = — o7 yas | anus Yi UsYi¥ | =
ey a7 e i=1
" (1.290)
= ! dyd 4 4 =
- Tn+1 B(r) yas | — nusw+ i;yi'uyiws

1 on &
= JE(T) dyds l—élnusw - ; uyiyi] — A,

where we used Gauss-Green theorem and the integration by parts exploiting the fact that ¢ = 0
on 0F. Therefore

¢ (r)=A+B = L f dyds | —4nusp — 2—nDu cyl =
T‘n+1 E('r) S

1 2
= JE( ) dyds [—4nAu1/) — ?nDu . y] = (1.291)

1 2
=— dyds 4nDu-Dw——nDu.y =0,
e s
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being, in the last line, D1y = L. Therefore, ¢ is constant and

é(r) = lim ¢(a) = lim 1JE( )u(y,s)'i{';dyds. (1.292)

a—07+ a—0t+ a™

The set E(a) shrinks to (0,0) as r — 0, and ¢ is always bounded for (y,s) # (0,0). Therefore,

(1.292) = »(0,0) lim if Malyds = J @dyds (1.293)
a—0t+ a™ E(a) 52 E(1) 52
since u is continuous. Finally, since
Iyl _
dyds=5- =4, (1.294)
E(1) o
the claim is proved. O

1.4.3 Maximum principle

We can use the mean value formula to prove the strong maximum principle for the heat equation,
which in turn can be used to prove the uniqueness of the solution of the heat equation.

Theorem 1.22. Let U  R™ open and bounded, and suppose u € C2(Ur) n C(Ur) solves the heat
equation in Up. Then:

1. Mazxzimum principle:

max % = max . (1.295)
UT FT

2. Strong mazimum principle: let U be also connected. Suppose that there exists a point (zo,to) €
Ur such that u(xo,tg) = maxg,. u. Then, u is constant in Uy,.

Remark 1.27. The solution might however change after to, provided the boundary condition u = g
on U'r changes after to. This is natural: what happens at ty is only influenced by what happens
before tg.

Proof. Suppose that there exists a point (z,to) € Ur with u(xo,t9) = M = maxg,, u. Then, for r
small enough, E(zg, tp;r) € Ur. By the mean value formula

1

M = U(.’,L'O,t()) = m

— |2 1 12
j u(y, S)Mdyds <M-— Mdyds =M.
E(xo,to;r)

fto — 5I2 T Jitoo sy To— 5P

(1.296)
The equality holds if u = M in E(zg, to;r). Now, we are left with extending the result to the whole
Ur: we will show that the function is equal to M in z, Vz € Uy, by proving that it is equal to M on
all the paths connecting (xo, to) with (2o, so). It is convenient to look at paths made of the union of
connected segments. To begin, let us show that U is constant for any segment L connecting (zg, to)
to any other point (yo, so) in Ur. Let

ro = min{s > solu(z,t) = M V(z,t) € L,s >t > to}. (1.297)
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We claim that rg = sg, i.e. that u is constant over the whole line L. Suppose it is false. Then,
u(zo,r0) = M for some (z9,79) = L n Ur, (ro > So), = u= M in E(zg,r0;7), by the mean value
formula and by the previous argument. But E(zg,79) © L n {rg — o < t < rg}, for some o > 0,
that is a contradiction: so ro = sg. To prove that u is constant for all points in Uy, we connect
(x0,1t0) to any point (29, s0) € Uy, by choosing an appropriate polygonal path. This proves the
strong maximum principle. The max principle follows from the strong maximum principle for all
the connected components of Ur. O]

Remark 1.28. Consider the heat equation in a bounded domain Ur, with U open, bounded and
connected. Let u e C2(Ur) n C(Ur) be a solution of

ug —Au =0 in Ur,
u=0 on U x [0,T1, (1.298)
u=g on U x {t = 0}.

Suppose that g = 0: then u > 0 everywhere if g is positive somewhere on U (this means that there
is an infinite propagation speed!). If g > 0 on U, there is nothing to prove thanks to the mazimum
(minimum,) principle. Suppose that there exists x4 € U such that g(xy) = 0. Suppose that there
exists (z4,tx) € Up such that u(zs,ty) = 0. Then, by the minimum principle, u(x,t) = 0 for any
(z,t) € Up, which is impossible since g(yy) > 0 for some y, € U and u is continuous.

The maximum principle can be immediately used to prove that the solution of the heat equation
in bounded domains is unique.

Theorem 1.23 (Uniqueness of the solution of the heat equation initial value problem). Let g €
C(Tr), f € C(Ur). Then, there exist at most one solution u € C?(Ur) n C(Ur) of

{ut—Au—f in Ur, (1.299)

u=g on I'p.

Proof. Let u, @ be two solutions of the heat equation initial value problem. Let w = +(u — ). We
have:

we — Aw =0 in UT, (1 300)
w=20 on I'p. '
By the maximum principle,
maxw = maxw = 0 = u = 4. (1.301)
UT FT
O

Let us now drop the boundedness condition for the domain, and consider the heat equation on
R™. It turns out that, if one focuses to a suitable class of solutions, uniqueness holds true. In the
case of Laplace’s equation, a crucial ingredient if the proof of uniqueness among bounded functions
was the Liouville theorem. Here, we shall instead rely on a version of the maximum principle for
unbounded domains.
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Theorem 1.24 (Maximum principle for the Cauchy problem). Suppose that u € CZ(R™ x (0,T]) N
C(R™ x [0,T1]) is a solution of

—Au=0 inR"x(0,T
Ut u=0 nR"x(0,T), (1.302)
u=g on R™ x {t = 0},
2
and satisfies u(z,t) < Ae®®l” for xe R", 0 <t < T for some A,a > 0. Then
sup u =supg. (1.303)

R™ % [0,T] R

Proof. At first, suppose that 4a7 < 1. This in particular means that 4a(T + ¢) < 1 for € small
enough. Let y € R, u > 0, define
v(x,t) :=u(z,t) — $e4<l;?ft> (1.304)
T ’ (T+e—1t)2 ) '
Then, one can check that vy — Av = 0 in R™ x (0,7]. Let now r > 0, U := B(y,r), Ur :=
B(y,r) x (0,T]: by the maximum principle we get

max v = maxuv. (1.305)
UT 1—\T
To extend the maximum principle to the whole R, first of all note that for ¢t = 0 there is nothing
to prove:
v(z,0) < u(zx,0) < g(x). (1.306)

Suppose now 0 < t < T. Our goal is to prove that u(y,t) < sup,cpn g(2) for all y € R™. To prove
this we proceed as follows. Fix r, take = € dB(y,r), |t —y| = r. Then:

x— 2 o— 2
v(z,t) =u(z,t) — ﬁelgTiﬁ—gl—t) < Ae?llyl+m)? _ ﬁeﬁ < ( :
e-ue €)2 1.307
<A6a(|y|+r)2 — u(4(a+ ,Y))n/2e(a+"/)r2, 0O<t<T,e>0.

where we used that the condition 4a(T + €) < 1 implies

— —a+7>0, > 0.
AT+e 477 7
Clearly, Eq. (1.307) implies that there exists r large enough so that v(z,t) < sup, g(z), for all
x € 0B(y,r), and in particular for x = y. Therefore, by the maximum principle for v, v(z,t) <
sup,ern g(2) for all x € B(y,r). Taking the ¢ — 0 limit, and using that lim, o v(y,t) = u(y,t), we
finally get:

u(y,t) < sup g(2) , (1.308)

zeR"

which is what we wanted to prove. If 4aT > 1, we divide T into small subintervals, and repeat the
argument for each subinterval. O

This theorem can be used to prove uniqueness of the solution of the Cauchy problem.
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Theorem 1.25. Let g € C(R™), f € C(R™ x [0,T]). Then, there exists at most one solution
ue CH(R" x [0,T]) n C(R™ x [0,T7]) of:

—Au = in R™ x (0,T
Uy u=f in x (0,7), (1.309)
u=g on R™ x {t = 0}.
such that u(zx,t) < Aecl=l? forx e R™, 0 <t <T for some A,a > 0.
Proof. Let u, @ be two solutions. Then, apply the maximum principle for w = +(u — @). O

1.4.4 Regularity

The next step is to show that, as for the Laplace equation, if u is a solution of the heat equation,
then it is automatically smooth.

Theorem 1.26 (Regularity of the solution of the heat equation). Suppose u € C2(Ur) is a solution
of the heat equation. Then,
ue C*(Ur). (1.310)

Remark 1.29. The statement is also true if the boundary values of u are non-smooth on I'r. The
proof is based on the use of the mollifiers as for the corresponding result for the Laplace equation.

Proof. To begin, let us consider a ball B(0,r) < Ur. We would like to prove that u € C*(B(0,r/4)).
The same argument can be repeated for balls centered in any point in Uy, and this would conclude
the proof. Let € be a smooth, compactly supported function such that

0 — 17 Tf (‘T7t) € B(O7r/2)7 (1.311)
0 if (z,t) € B(0,r)°.
Suppose that B(0,7) < Ur. Let
v(z,t) = 0(x, t)u(x,t). (1.312)

Then, v(z,t) € C?(Ur), and v is compactly supported. We compute

0w = 0¢(0u) = (00)u + O0u, (1.313)
Av = (AQ)u+ 0Au+2D0 - Du. (1.314)

Therefore,

O — Av = 00tu + 0,0u — (AB)u + 0Au+ 2D - Du =

= 0(0,u— Au)= 0+ (9,8)u — (AB)u — 2D9 - Du = f(x,1t), (1.315)
—_—
in particular
f(z,t) = (00)u — (AG)u — 2DO - Du. (1.316)

Therefore, being the solution of the heat equation unique among the bounded functions, we can
write down v thanks to Duhamel’s principle. Let now ¢y be the time of the initial datum, and
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suppose that [tg| > r. Therefore, (x,tq) # B(0,r) for all x, so v(x,tg) = 0 for all z. By Duhamel’s
formula,

v(z,t)=| ds| dy®(z—y,t—3s)f(y,s) =
L’ f” (1.317)

j dyds®(x — y,t — s) [(0:0)u — (Af)u — 2D6 - Du] .
B(0,r)\B(0,r/2)

Notice that f = 0 if (y,s) € B(0,r/2), being 6 constant. Le us now choose (z,t) € B(0,r/4):
(x —y,t —s) # (0,0) since y € B\B’, then v(z,t) is C*(B(0,r/4)) since ® is C® away from
(0,0). O

Therefore, we proved that the solution of the heat equation is unique and bounded in bounded
domains, and on unbounded domains we proved that |u(z,t)| < Aedlel?, Also, the solution is
C*(Ur). It is however possible to see that there exist infinitely many solutions of the heat equation
that do not fulfill the exponential bound. This is the content of the next theorem, whose proof will
be omitted.

Proposition 6. There exists a function u € CZ(R™ x R) such that u; — Au = 0, u(z,0) = 0 for all
x e R"™ but u # 0.

1.4.5 Long time limit

The next theorem establishes a connection between the infinite time limit of the heat equation and
the Laplace equation.

Theorem 1.27 (Convergence to the solution of the Laplace equation). Let U < R™ open and
bounded, OU regular and let g € C°(0U). For every solution u € C2(U x (0,0)) nC°(U n[0,0)) of

Oru—Au =0, inU x(0,0), (1.318)
u=g, on 0U x [0, 00),
the limit
tlirg u(+,t) = v, (1.319)
exists uniformly in U, with ve C*(U) n C%(U) the solution of the initial value problem
Ay — .
v=0, ul (1.320)
v =g, on oU .
Proof. For € > 0 let us define w, : R"*! — R" as
we(x,t) = cos(exl)e_€2t. (1.321)

Then
(0 — Awe = (—€* + H)w, = 0, in R+ (1.322)
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and we(x,0) > 0 for any x € [—1/e, 1/€]™, we(,?) b 0 uniformly. In particular, we want to take e
so small that U < [—1/¢,1/€e]™. We define

M = max M (1.323)
U [we|
Let v be the solution of Eq. (1.320). Then (0; — A)w, = 0, which implies:
(0t —A)(u—v—Mw)=0. (1.324)
This, together with the inequality
u—v—Mw.<0onTqy, (1.325)
implies, by the maximum principle:
u <v+ Mw. on Uy . (1.326)
Analogously,
u—v+ Mwe =0 on Ty, (1.327)
which gives, thanks again to the maximum principle,
u=v— Muw. on Ug. (1.328)
Thus, |u — v| < Mw, = 0, which proves the claim. O

1.4.6 Energy methods

We conclude the discussion of the heat equation by discussing energy methods.

Theorem 1.28 (Uniqueness of the solution of the heat equation). There exists at most one solution
ue C¥(Ur) of (1.258) with U « R", oU € C*.

Proof. Let us proceed by contradiction: let us assume that w, @ are solutions of (1.258), so w := u—a
solves the initial value problem

w; — Aw =0, in Ur, (1.329)
w =0, on I'p. '
Now set )
e(t) := if w?(x, t)de, for0<t<T. (1.330)
U
We compute:
é(t) = J w(zx, )w(x, t)dr = f w(z, t)Aw(z, t)dr = ,J |Dw|?(z,t)dx <0, (1.331)
U U U
meaning that dfi—(tt) < 0, that is e(t) < e(0) = 0 for 0 < t < T. This implies e(t) = 0 for all
0<t<T = w(x,t)=0in Ur, i.e. u— 0 =0 in Ur. O
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Let us now discuss the backward initial value problem associated to the heat equation.

Theorem 1.29 (Backwards uniqueness). Let u,@ € C?(Ur) be the solutions of

ur — Au=f in Ur, iy — Au = f in Ur, (1.332)
u=g on dU x [0,T], U=y on U x [0,T], '
for some given g, and
w(z,T) = a(z,T), xeU. (1.333)
Then
u = 4 within Ur. (1.334)
Remark 1.30. Note that we are not supposing that v = @ for t = 0.
Proof. Let w :=u — u and
1
e(t) := if w?(z,t)de, 0<t<T. (1.335)
U
Then, as in the proof of the previous theorem:
ét) = —2[ |Dwl|?(z,t)dx < 0. (1.336)
U
Furthermore,
é(t) = —4f Dw - Dwdx = 4f Aww; = 4f (Aw)?dz, (1.337)
U U U

where we just integrated by parts. Being w = 0 on 0U, by the Holder inequality we get

JU |Dw[*dr = — L wAwdz < (L wzdm>% (J{j(m;)%;)é (1.338)

By (1.336) and (1.337) we get

(E(1)? = 4 (L Dw|2)2 < l(L deas); (JU(Aw)zdx> é] _ e()E(t), (1.339)

meaning that

E(t)e(t) = (¢(1))?, 0<t<T. (1.340)
Of course, if e(t) = 0 we are done: we are in the case proved in the previous theorem. On the other
hand, if e(t) # 0, there exists an interval [¢1,t2] < [0, 7] such that

e(t) > 0 for t; <t <ta,e(ty) =0. (1.341)
Now it is convenient to introduce:
F(t) = log e(t) = F(t) = Zg; - 228 >0, (1.342)
thanks to (1.340): this means that f is convex on (t1,t2). Hence, if 0 <7 < 1, t; <t < to,
f(A=mtr+7t) < (1 —7)f(t1) + (1), (1.343)
i.€e.
e((1 =7t +7t) <e(t)' ™ "e™(t) = 0 < e((1 — 1)ty + 7ta) < e(t1) ™ Te™ (ta), (1.344)

meaning that e(¢) = 0 for any ¢; <t < t3, which is a contradiction. O
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1.5 The wave equation
Definition 21 (Wave equation). The partial differential equation

upy — Au = 0, t>0,zelUcR"” (1.345)
with U open and bounded is called wave equation. Correspondingly,

up — Au = f, t>0,xelUcR"” (1.346)

Jor some given f s called non-homogeneous wave equation. The unknown is the function u :
U x [0,00) = R.

Motivations. The wave equation describes the motion of vibrating systems, such as strings in
one dimension, membranes in two dimensions, or elastic solids in three dimensions. Let u(zx,t) be
the displacement in some direction of the point x at ¢t < 0, and let V < U an arbitrary smooth
subregion. If we consider without loss of generality the mass density to be equal to one, the

acceleration within V is given by
d2

— udx:f uged, 1.347
o |, e = [ (1.347)

while the net contact force on V is
_ J F-vds, (1.348)
ov

From the second law of the dynamics we know that F' = ma = a since m = 1, therefore

f Ugedr = —f F - vdS. (1.349)
\% ov

Using the Gauss-Green theorem and the fact that V' is arbitrary we get
Ut = —divF. (1350)

For ideal elastic bodies, it is reasonable to assume that F is a function of the gradient of u only:

Ut + divF(Du) =0. (1.351)

For small deformations around an equilibrium point, it is reasonable to assume that F(Du) = —aDu
for some a. Therefore,

ug + div(—aDu) = uy — alAu = 0. (1.352)

Remark 1.31. The presence of the second order time derivative implies that, in order to find a
solution, we will have to specify u(x,t = 0) and u(x,t = 0).
1.5.1 Solution in one dimension: d’Alembert formula

Consider the initial value/boundary value problem:

{utt —Au=0 inR x(0,0), (1.353)

u=g,u=h onRx{t=0}
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for g and h given. In order to find the solution, we use the following identity:

0 0 0 0
Now, let
v(z,t) = iﬁvﬁ u(z,t) (1.355)
i - at aw ) ) *
we immediately recognize that
0 0
R + R v(x,t) = ve(x,t) + vgy(z,t) =0, zeR,t>0, (1.356)
t T

is a transport equation with constant coefficients, Eq. (1.14). The solution is:
v(z,t) = a(z —t), a(x) :=v(z,0). (1.357)
This means that
ug(x,t) — ug(z,t) = a(z,t), R x (0,00), (1.358)
which is in turn a non-homogeneous transport equation, Eq. (1.18). The solution is:
T+t

u(x,t) = J alx+(t—s)—s)ds+b(z+t) = %J a(y)dy +b(z +1), b(x) := u(x,0). (1.359)

0 r—t

Now we are left with fixing ¢ and b, which we shall do using the two boundary conditions. We have:

u(z,0) = g(x) = b(z) = g(x), z e R, (1.360)
u(z,0) = h(z) = a(z) = v(z,0) = us(xg) — uz(x,0) = h(z) — ¢ (), zeR. (1.361)

~

Plugging all these informations into the solution, we find

x+t
u(a ) =1 f (h(y) — o' (9)dy + glx + 1) >

2 Jo-t » (1.362)
1 1(*
= ulwt) =5 lata+0) + o= 0]+ 5 | s

which is known as the d’Alembert formula.

Theorem 1.30 (Solution of the wave equation for n = 1). Assume g € C*(R), h € CY(R), and u
defined by the d’Alembert formula (1.362). Then

1. ue C*(R x [0,00)),
2. Ut — Ugpy = 0in R x (O,CO),
3.
u(z,t) = g(z), lim uy(z,t) = h(z0).

im
0] 0
(@,t) =2 (2°,0) (2,t) =2 (0,0)
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Proof. Left to the reader. O

Remark 1.32. 1. The solution of the wave equation has the form:
u(z,t) = Fle +t) + Gz —y) (1.363)

for some F and G. Conversely, only functions of this form solve uy — uz, = 0, meaning
that the general solution of the one dimensional wave equation is a linear combination of the
solutions of uy — u, = 0 and us + u, = 0.

2. Ifge C*, he C*1 = ye C*, but not smoother in general. In contrast to the heat equation,
the wave equation does not introduce smoothing of the initial datum.

Example 1.5.1 (Wave equation on the half line). Let us consider the wave equation on the half
line R, :
ugg — Au =0 in Ry x (0,00),
u=g,u; =h onR, x {0}, (1.364)
u=0 on 0 x (0, 0)
with g, h given, such that g(0) = h(0) = 0. It is convenient to extend the solution via an odd
reflection:

u(x,t) ifx>=0,t=0,
a(xz,t) =
—u(—z,t) ifz<0,t>0,
t fz>01t>0,
Gty = 191 ne (1.365)
—g(—z,t) ifx<0,t=0,
. h(z,t fr>0,t>0,
Ba,y = |0 e
—h(—z,t) fx<0,t=0
Being the problem
ﬂtt—AﬂZO il’l]RX((LOO)7
i=g,4g =h onRU x {0}, (1.366)
=0 on 0 x (0,0)

defined on the whole line, we can use the d’Alembert formula (1.362), thus getting

G+ ) + (e — 0] +

u(z,t) = 5

f o h(y)dy. (1.367)

r—t

1
2
Restricting the solution to the domain {z > 0,¢ = 0}, we have:

T+t

u(et) = 12 0@ D+ 9@ =D+ 512 hy)dy,  ife>120, (1.368)
’ o +t) —g(—t+ )]+ 5§00 h(y)dy, o<z <t

If h = 0, the last formula shows that the initial displacement g is propagating both in left and in
right direction with the same velocity. Finally, the integral of h reflects off the point x = 0 where
the vibrating string is fixed.
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1.5.2 Solution in higher dimensions

For n > 2 the situation is more complicated: the idea is to first find a solution for the average of u
over certain spheres.

Definition 22. Let x e R™, ¢t > 0 and r > 0.

Uirt)i=f  uly.0)ds) (1:369)
oB(z,r)
is the average of u(-,t) over 0B. Similarly
G(x;r) = ][ 9(y)dS(y, (1.370)
0B(z,r)
H(z;r) = J[ h(y)dS(y). (1.371)
0B(x,r)

We shall consider G, H, U as functions of r and ¢, and see what equation they solve.

Lemma 1.3 (Euler-Poisson-Darboux equation). Fin x € R™, and suppose that u solves

— Au = in R™
utt— u - 0, in n>< (O,io), (1.372)
u=g,uy=h onR"x {t =0}
with u e C™(R x [0,00)). Then, U e C™(R x [0,0)) and
Utt - Urr - nT_lUr = 07 in IRJr X (O? OO), (1 373)
U=G,U, = H, on Ry x {t =0}. '
Proof.
0-U(x;r,t) = 0y u(y, t)dS(y) = oy u(z +rz,t)dS(z) = ZJ[ Au(y,t)dy (1.374)
0B (z,r) 0B(0,1) nNJB(z,r)
Therefore, since Au is continuous,
lim 0,U(z;r,t) = 0. (1.375)

r—0+

Let us now compute the second derivative

1
a2U 1y t) = ari A Hdy =
2U (w7, t) Y P JB(”) u(y, t)dy
1—n 1 1
= A t)d — 90 A Hd (1.376)
r  na(n)rml jB(mﬂ) uly, t)dy + na(n)rn—1 TJB(W’) u(y,t)dy,
Son(a,m Au(y,t)dy
that is
11—
63U(x;r, t) = narU(m; r,t) + J[ Au(y,t)dy =
) ey (1.377)
1—n .

= J[ Audy + J[ AudS
r B(z,r) 0B(z,r)
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so that 1 1
lim 02U (x;7,t) = %Au(m,t) + Aulz,t) = ~Au(e, ). (1.378)

r—0+t

These formula show that U € C2. One can also compute the higher derivatives, and check that
UeC™if ue C™. Let us now check that U solves the EPD equation. We have:

1
U, = KJ[ updy = " U, = 7J- U dy
N JB(z,r) na(n) B(z,r) (1.379)
1 .
= (’I’n_lUf,«)T = J‘ ’U/ttdS = ’I"n_lf ’U/ttdS = ’I’n_lUtt,
TLO((’II) 0B(z,r) 0B(x,r)
which proves the claim since
-1 -1
("0, = ", 4, = Uy — Uy = Uy = 0, (1.380)
r r
O

Remark 1.33. U, + "T_lUr is the radial part of the Laplacian in spherical coordinates.

Three dimensional case

So far we discussed the case of general n. Now the main goal will be to reduce the EDP equation
to the one-dimensional wave equation. We will first discuss the case n = 3. Suppose that u €
C?(R3 x [0,00)) solves

g — Au =0, in R? x (0,00), (1.381)
u=g,us=h, onR?x{t=0},
and define : 3 B
U:=rU, G :=rG, H:=rH. (1.382)
Proposition 7.
Utt — Yrr = 07 in R-‘r X (07 OO);
U=G,U =H, onR,x{t=0} (1.383)
U=0, on {r = 0} x (0,0).
Proof. By definition
~ 2 -
Uit = rUp = (Urr + Ur) =rUp +2U, = | U +71U, | = Uy (1.384)
r —
U, r
Also, lim, g+ U(x;7,t) = 0 for any ¢. O
Therefore, by d’Alembert’s formula (1.362)
N 1 - _ 1 r+t ~
Ulx;r,t) = i[G(T—’—t) —Gt—-nr)]+ iJ H(y)dy . (1.385)
—r+t
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We can use this explicit expression to find u(z,t). In fact:

u(z,t) = lim 7U(x;t7r) =
r—0+ T (1.386)
|G+t =Gt—=r) |, 1 (" , " '
= lim |- - i - i
T | 2 - o | | =G0+ A,
which gives
u(z,t) =0 tJ[ gdS | + tJ[ hdS =
0B (z,t) 0B (z,t)

(1.387)

:J[ gdS + t(?tJ[ gdS +tJ[ hdS
0B (x,t) 0B(x,t) 0B(z,t)
—_——

t&aB(m,t) Dg(y)-43%dS(y)

Thus, we found the solution u(x,t) in terms of the initial data g and h. Eq . (1.387) is known as
Kirchoff formula for the solution of the three-dimensional wave equation,

me=f (h(y) + 9v) + (y — z) - Dg(y)) dS(y). (1.388)
0B(z,t)

Two dimensional case

In order to solve the two-dimensional wave equation, we shall look at it as the restriction on a plane
of the three-dimensional case. Suppose that u € C?(R? x [0, 00)) solves

uy — Au =0, inR?x (0,00), (1.389)

u=g,u = h, OHRQX{tZO}' |
Let @(z1, z2,3,t) := u(x1, x2,t). Then,

Uy — A =0, inR3x (0,0), (1.390)

@=g,4=h onR?x{t=0}, |

where g(z1,29,23) = g(z1,22) and h(zy,z2,23) = h(x1,22). Thus, by Kirchoff formula (1.388),
setting = = (z1, z2,0):

u(x,t) = (T, t) = o (tJf gdS> + t][ hdS. (1.391)
0B(z,t) 0B (Z,t)

An explicit computation shows that

_ 1 _ 1 t 1
§ds = —f §ds = —jf 9(y)————dy, 1.392)
J[aB(m,t) Amt? Jop 4mt? 2 ) gyt 2 — (y —x)? (
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and a similar identity holds true for the last term in Eq. (1.391). Therefore,

2
OIS L (YO S W 7 RPAP
20t Bat) V2 —ly — [ 2 JB(n V12 — |y — xf?

Thus, using
t
tQJ[ S [C) tJ[ gett) (1.394)
B(at) VI — |y — Bo1) /1 -z
|
9(y)
N ly—alZ
with z = |y — z|?/t?, we get
0 ¢ D tz) -t
3 tzJ[ 9(y) dy :][ 9(z + Z)dz+tJ[ gz ttz)-t, _
at B(:E,t) t2 - |y - ':E|2 B(071) 1 - |Z|2 B(Ovl) V 1 - |Z|2 (1 395)
_ ][ gl ttz) . . t][ Dyly) - y—2),
Ba.t) \/1? — |y — xf? B(z.t) A/1? — |y — af?
which finally gives
1 t t2h tD Ay —
(e ) = 7)[ 9(y) + t°h(y) + tDy(y) - (y — x) dy. (1.396)
2)B) V2= ly—zf?

for all z € R%, t > 0. This is called the Poisson formula for the solution of the wave equation in
n=2.

Remark 1.34. 1. The trick of getting the solution for n = 2 starting from n = 3 is called
method of descent.

2. The main difference between the solutions in two and three dimensions is that, for n = 3 the
solution (1.388) at (x,t) only depends on the values of h,g at |y — x| = t, while for n < 2 it
depends on |y — x| < t (Huygens principle).

3. In contrast to the one-dimensional case, the solution for n = 2,3 involves derivatives of g.
Therefore, the solution might not be as reqular as the initial datum (loss of regularity).

To conclude, we give the general expressions for the solution of the wave equation in n dimen-
sions. We refer the reader to [Evans] for the proof.

Theorem 1.31. Let n > 3 odd, and suppose that g € C™1(R™), h € C™(R") for m = "1 Then,
the solution of the wave equation is:

1 1.\"7 1.\
u(z,t) = — | (615) t"_QJ[ gds | + (@) t"_zj( hds | |, (1.397)
Tn 3 0B (x,t) 3 0B (,t)

where ¥, =1-3-5- -+ (n—2).
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Let n =2 even, and suppose that g € C™T1(R"), h e C™(R™) for m = “£2. Then, the solution
of the wave equation is:

L1\ 9()
w(z,t) = — |o (2o t"Jf 1 D —Y
(@) Tn [ t(t t) ( Blat) V7 — |y — xf? y)

n—2

(1) (v, )]

(1.398)

with v, =2-4----- (n—2)-n

Remark 1.35. As for n = 2,3, the solution for odd n only depends on the values of g and h on
0B(x,t), while the solution of the wave equation for even n depends on the values of g and h on
B(z,t).

1.5.3 Non-homogeneous wave equation

Let us now consider the non-homogeneous problem

(1.399)

Ut — Au = f, in R™ x (O,OO)7
u=0,u, =0 onR"” x {t =0}

As for the heat equation, we will solve the equation using the Duhamel principle. Consider the
homogeneous problem

ut(+;8) — Aul;8) =0, in R™ x (s,00), (1.400)
u(8) = 0,u(538) = f(5;8)  on R™ x {t = s}, '
and define
¢
u(z,t) = f u(x, t; s)ds, xreR™ t>=0. (1.401)
0

Theorem 1.32. Let n > 2, f e CI"2I+1(R" x [0,00)), and define u as in (1.401). Then, u solves
the non-homogeneous initial value problem

Proof. The proof is a direct computation, and it is left as an exercise to the reader. O

Example 1.5.2 (One dimensional non-homogeneous problem). Recall the d’Alembert formula
(1.362). We have

u(z, t;8) = 1J$+t5 Iy, s)dy, (1.402)

2 r—t+s

T+t—s
J f fy,s)dyds = J f fly,t — s)dy. (1.403)
—t+s

which implies
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Example 1.5.3 (Three dimensional non-homogeneous problem). Recall Kirchoff formula (1.388).
We get

u(z,t;s) = (t — s):E}B( f )f(y,s)dS (1.404)

which implies:

t
_ Y, 5)
u(z,t) = J ds(t s)ﬁBWt ) fly,s 471'J LB(M ) t— . =2 2dS =

(1.405)
f J yat_r)d _71 f( |y—.’17| dr
T4r oB(x,r) T AT JB(a ) |Z/ — 7

for x e R3,t > 0.

1.5.4 Emnergy methods

To conclude the discussion of the wave equation, we shall introduce energy methods, as for the
Laplace and heat equations. We shall use this method to prove uniqueness of the solution in
bounded domains, where no explicit formula is available.

Definition 23 (Energy of the solution of the wave equation). Let U € R™ bounded and open. Let
u be the solution of:
ug — Au=f, in Urp,
u=g on 'y, (1.406)
ug = h on U x {t = 0}.

The energy of the solution of the wave equation is defined as:

1

B() = L (2(z,t) + |Dulz, 1)) d . (1.407)

It is easy to see that the energy is a conserved quantity:

d
ﬁE(t) = f (uguee + Du - Dug)de = f u(uy — Au)dz = 0. (1.408)
U U

Theorem 1.33. There exists at most one function u € C%(Ur) solving (1.406).

Proof. Suppose by contradiction that % is another solution, and define w = u — %. By definition w
solves

Wit — Au = f, in UT&
w=0 on I'p, (1.409)
wy =0 on U x {t = 0}.

By energy conservation we have:

E(t) = E(0) = L (wi(z,0) + [Dw(zo)[*) dz = 0 (1.410)
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since w(t,0) = 0 and Dw(z,0) = 0 for any x € U. Therefore,

wa(a:,t):O:J |\ Du(z, B2, (1411)
U U

that is w is constant in x,t, that implies w = 0 in Urp. O]

Remark 1.36. Fven though the regularity of the solution might deteriorate in time, the energy is
constant in time.

To conclude, we shall discuss the conservation of energy to further characterize the finite speed
of propagation of the wave equation. Suppose v € C? solves the wave equation u; — Au = 0 in
R™ x (0,00)

Definition 24 (Backwards wave cone). The backwards wave cone with apez (zg,to) is
K (zo,t0) = {(z,t)|0 < t < to, |z — wo| < to—t}. (1.412)
Theorem 1.34. if u = u; =0 on B(xzg,ty) x {t = 0}, then u = 0 within K(xo,tp).

Remark 1.37. The latter theorem tells us that the solution at given time does mot depend on
what happens outside K(xo,to): in other words, suppose that u,u are two solutions, with initial
data g,§,h, h. Suppose that g = §,h = h in B(zo,to). Then, u(xo,to) = (zo,to). Moreover,
since K(xp,t4) < K(zo,to) if ty < to, B(zy,ty) < B(zmo,to), we also have u(z,t) = a(x,t) for all
x,tE K(Z‘(], to)

Proof. Let us define the local energy (energy of a given ”slice” of the cone) as

1
e(t) — 7J (2. t) + [Dule,)?) dz,  0<t<to. (1.413)
2 JB(z0,to-t)

A direct computation gives:

d 1
—e(t) = J (wuge + Du - Duy) do — ff (uf + |Dul?) dzx =
dt Ig,to t 2 5B(I0,t0 t)

J ’Z,Ltt — AU)d’J) =
B ajg,to t

1 (1.414)
= f v - DuugdS — fj u? + |Dul?dS =
FB(I(] to— t aB(CEo,t(]*t)
Ly 1 2
= v - Duuy — —uy — =|Dul| | dS.
B(ai(],to t 2 2
O
Now, we use Cauchy-Schwarz inequality to bound
1 1
|v - Duuy| < |Dul|ut| < §uf + 5\Du|2. (1.415)
Therefore,
d
—e(t) 0= e(t) <e(0) =0, (1.416)
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which implies that u; = 0 and Du = 0 in B(x,ty — t) for all ¢ < to, that is u(x,t) is constant
in K(xzo,t9). Combined with the vanishing of the initial datum, this implies that u(z,t) = 0 in
K(zo,t0).

Remark 1.38. Energy conservation allows to prove a similar result for more general partial dif-
ferential equations, e.g. the nonlinear wave equation.
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Chapter 2

The Fourier transform

2.1 Elements of the theory of L? spaces

Definition 25 (L? spaces). Letpe R, 1 < p < 0. We define:
LP(R™) := {f | f:R™ - C, f measurable, sz |f(z)]P < oo} . (2.1)

Remark 2.1. The integral {dx--- is a Lebesque integral. If the function f is Riemann integrable,
then it coincides with the standard Riemann integral. More generally one could replace "dx” by a
more general measure ” pu(dx)” and R™ by a measurable set Q) € R™:

LP(R™) — LP(Q,du).
One can check that LP is a vector space.

Definition 26 (L? norm). For each f € LP, we define the L norm of f as

1=l 1= ([t 22

Remark 2.2. |- |, has the following properties:
1 Afllp = [MIf]p, AeC.
2. |flp =0< f(z) =0 ae.

3 f+ gl <1 flp + gl

Actually, these properties only imply that | - |, is a semi-norm. It is easy to imagine functions
such that | f|, = 0 and f(x) # 0 (take f to be zero everywhere except at an isolated point). To
ensure that || - || defines a norm, one has to redefine LP by identifying functions that differ on a zero
measure set (e.g., on a countable set of points).

65



66 CHAPTER 2. THE FOURIER TRANSFORM

Definition 27 (Re-definition of L? spaces). Given f € LP, we define an equivalent class of functions
as

f={fel?|f-f =0aec} (2.3)
We redefine LP as the set of the equivalence classes of functions f.
The L* space is defined as follows.
Definition 28 (L® and | - [«).
LPR") := {f|f:R* > C, , f measurable ,3K >0 s.t. |f(z)| < K a.e. }. (2.4)
For f € L®(R™) we define as the essential supremum of f:
[0 = 1£ e @y := Inf {K | [f(2)| < K a.e. in R"}. (2.5)

We will not go through the theory of LP spaces; we refer the reader to [Lieb-Loss]. Instead, we
shall only recall some some selected results, that will be used later on.

Theorem 2.1 (Completeness). Let 1 < p < o, and let f*, i =1,2,3,--- be a Cauchy sequence in
LP(R™): ‘ ‘
If =y — 0. (2.6)
1,]—00

Then, there exists fy € LP such that
lim | fi — fulp = 0. (2.7)
1—00

Remark 2.3. We use the notation f; —> f and we say that f' converges strongly to f.
1—00

Theorem 2.2 (Approximation by C% functions). Let f € LP(R™), 1 < p < co. Then, there exists
a sequence of functions {fi}ien, fi € CP(R™) such that f* — f in LP.

Remark 2.4. That is, the smooth compactly supported functions are dense in LP.

2.2 The Fourier transform of L' functions

We are now ready to introduce the Fourier transform for L' functions.

Definition 29 (Fourier transform for L! functions). Let u € L'(R"™). We define its Fourier

transform 4 as

~ 1 —ik-x n
a(k) = oH dee Fey(z), keR". (2.8)

Remark 2.5. Since |e=**| =1 and u e L*(R"), 4 is well defined.
Let us summarize some important properties of the Fourier transform.

Lemma 2.1. 1. The map u — u is linear in u.

2. Let 1, be the shift operator: (1, f)(x) = f(x + h). Then (?h?)(k) = ¢~k f(k)



2.3. THE FOURIER TRANSFORM OF L? FUNCTIONS 67

3. Let §y be the scaling operator: (6xf)(x) = f(x/N). Then, (?,{?)(k:) = A f(Ak)
Proof. Left to the reader. O
Lemma 2.2. 1. |4(k)| < |ul1, we R".

2. k — a(k) is continuous

Proof. 1. Obvious.

2.
. . 1 ik
(k) ~ 1(0) = 52 [ = Df(a). (2.9
2n)?
Since (e~ —1)f(x) \’TO 0 and |e”*® — 1||f(x)| < 2|f(z)| € L', dominated convergence
implies:
lim [a(k) — (0)] = 0.
O
Lemma 2.3 (Fourier transform of convolutions). Let f,g € L*(R™). Consider the convolution
(Fr9)@) = | J@=y)gy)dy. (2.10)
Then
frg(k) = f(k)g(k)(2m)> . (2.11)

Proof. To begin, let us prove that the convolution is in L!(R"™). We have:

f da|f * g(x) < f dady|f (4) |9z — )| = delf(y)\ f delg(z— ) = [fllgly (212)

where the last step follows from Fubini’s theorem. Then,

& o re T (f 5 g)(x - xdye T f(x — -
(F=a)(b) = [ dae™™(/ 9)@) = oy [ dndye™ 1z = 9)o(0) .
—<27r>3’(2;)g | dedye ek @ - y)gty) = (2m)% Flk 0.
O

2.3 The Fourier transform of L? functions

It is natural to ask whether the Fourier transform can be extended to functions that are not in
L'. For these functions, the definition (2.8) does not make sense a priori (the integral might be
infinite). In particular, we will develop the theory of the Fourier transform for L? functions. As a
preliminary result, let us compute the Fourier transform of the Gaussian.
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Theorem 2.3. Let A > 0, and let g\(x) = exp ( — A@) be the Gaussian function. Then
ga(k) =A% exp _IRE (2.14)
A 2\ ) '

2
Proof. By scaling, it is enough to consider the case A = 1. Also, since g1 (z) = [[;_, exp (—%), it
is enough to consider the case n = 1. We have:

1 ; =2 1 z+iy)? 2
k) = — [doe oo ¥ = o [dne S F 2gsm), (219)
(2m)2 (2m)z
z+iy)?
where we defined f(k) = = l)l Sdme*%. By dominated convergence, we can differentiate under
)2

the integral sign:

d dx (z+ik)? der . d _(@+in?

—f(k =J —(x +ik))ie” 2 =J7i—67 2 =0. 2.16

W= | Gl i) Nerrice (216)
This means that f(k) is a constant and, in particular, f(k) = f(0) = 1. O

The key result in order to extend the Fourier transform to L? functions is Plancherel’s theorem.
Theorem 2.4 (Plancherel). Let u € L'(R?) n L?(R"™). Then, @ € L2(R™) and |d|2 = |ul2.
Proof. 1. Let v,w € L*(R™), Then 9,% € L®(R"). Moreover,
1 .
dxv(z)w(z) = WJ J dydzv(z)e™"Yw(y) = f D(x)w(x). (2.17)
m)2 Jrn Jre

n

]R’IL
Recalling the Fourier transform of the Gaussian, we have that

1 . 2 1 2
Ol J dze~kwe=elal® = gQE(lg)e*'?TE = e~ e (2.18)
)2 Jrn

Let us now consider the identity (2.17) with v = go:

Jn w(k)e <l gk = J dzw(z)e 5 (261)

In particular, notice that go/(27)% is a mollifier, in the sense discussed when proving smooth-
ness of solutions of Laplace equation (even though it is not compactly supported, but this
does not change much). Therefore, if w is continuous at = 0

(2.19)

N3

lim (2.20)

e—0 (2¢)*

w3
—
IS8
8
g
=
®
by
|
g
—~
o
=
—~
N
N
~—
N3

2. Let u e L*(R™) n L2(R™), and let v(x) = a(—z). We have w = uxv = w(k) = (27) 2 a(k)o(k),
where
0 _ 1 e kR ry(—x)de = a(k) = w(k) = (27) % |a|?
o) = vy | e = = i) = (k) = (2m)F ol (221)
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By dominated convergence, w is continuous at zero. In fact:

() - w(0)] < f dylu(z — y)o(y) — u(—y)o(y — 2))] = j dylu(z —y) — u(—y)|o(y)| (2.22)

The argument of the integral is integrable uniformly in x:

[aiuta )~ < ([t 1+ i) ([t < .
< (2 (Jul3 + Jul3 ))% ol < .

Therefore, by dominated convergence:

lim fw(z) = w(0)] = i [ dyo(u)utz )~ u(-2) =0 (224)

|z|—0

Hence, by Eq. (2.19):

1 w|? n n
lim —— Jdmw( )6_% = lim clactb(aﬁ)e_e‘””l2 = w(0)(27) 2 = |ul3(27)*2 . (2.25)
e—0 (26) e—0
By monotone convergence,
i [ @mFape = [ on)#1aP = @n?al, (226)
€—> R n

which proves that 4 € L'~ L?. Moreover, Eq. (2.25) implies that |u|2 = ||i]2, which concludes
the proof.
O

We are now ready to define the Fourier transform in L?. We shall use an approximation argu-
ment. Let u € L?(R"). Recall that C*(R") is dense in LP(R") and, in particular, that C*(R") is
dense in L'(R™) n L?(R™). Let {u;}jen, uj € CX(R™), be an approximation sequence for u, that is
u; — u in L?. By Plancherel:

lds = a2 = fui —ujl2 (2.27)

which implies that {i;};cy is a Cauchy sequence in L2. By completeness of L?, there exists @
such that 4; — @ strongly. Moreover, it is easy to see that the limit does not depend on the
approximating sequence. Let {@;}ien, @; € CP such that 4; — u in L?(R™). Then, there exists
w such that u; — u in L?(R™). Suppose now that @ # 4: if so, there exists § > 0 such that
|t —dll = 6 > 0. But then, § < | — iy < |t — @lla + | — @2 — 0 as i — oo, thus giving a
contradiction. Therefore, | — @]z = 0.

Let us discuss some important properties of the Fourier transform in L2.
Theorem 2.5. Let u,v € L*>(R"). Then

1. g uvdz = (g, ddda,

2. (D*u) = (ik)®a, Vo such that D%u € L2,
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70
3. Letue L', and u(z) = 7 1)% §dke™u(k). Let @ be also the ewtension to L. Then @ = u,

Vu e L?
1. Property 1 implies that the standard inner product in L? is invariant under

Remark 2.6.

the Fourier transform.
2. Property 2 is the main reason why the Fourier transform is important for the PDEs: after

Fourier transform, differential operators become multiplication operators.

3. is called the inverse Fourier transform of u.

1. Apply the Plancherel theorem to |u + av|z, with a = 1,1.

Proof.
2. Suppose that v € CF. Then
(DO‘ B 1 —ik-x Mo o (_1)(1 a —ik-x _
u)(k) = = e Du(x)dx = - (D ) u(z)de =
(2m)2 Jrn (2m)z Jgn
o (2.28)
1 .
= = J e~ * Ty (z)dr = (ik)*u(k)
(2m)2 Jgn
The general statement follows by approximating u with C'° functions.
3. The statement follows from this proposition:
Proposition 8.
wadm = Juvdm, ve L? ue L2 (2.29)
Proof. This proposition can be proved using the density of L' n L? in L?. Let u,v e L' ~ L2,
Then
J tvdr = f uddzx, (2.30)
and then we extend the identity to L? by approximation. In particular,
uv, (2.31)

J ﬁvdx:J mm:f a%:f

by the uniqueness of the inner product in L?

2.4 Applications
Example 2.4.1. Consider the equation —Au+u = f, f € L?(R™). We look for solutions in L?(R"),

(2.32)

—Au e L*(R"™). We have
(k)

(k) = a(k) = Wa

ks

(L+ [k)a(k) = f
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therefore .
_ 1 ik S (K)
Recall that )
07 % U = (2m) 201 (K)o (k) = vy # vg = (21) % (01 (k)02(k)) - (2.34)
Therefore, we write:
1 ikx f(k) _ 1 %
i Jdke i = G D@, (2.35)

with B the inverse Fourier transform of 1/(1+|k|?). This is however formal: the function 1/(1+|k|?)
is not in L#(R™) for n > 2. Let us ignore this fact for the moment. To find the function B we use
the identity:

1 JOO (14l
| e . (2.36
R, )

Therefore,

1 ) 1 1 ) © 2
B(z) = ——— | dye™* = — | dye’v= | dtetOHI) 2.37
(z) (2@2] v TR (2ﬂ)2f ye L e (2.37)

Interchanging the integrals:

O ) 1 © z 212
B(z) = —— f dte*tf etk etk — HJ ate™t ()7 et (2.38)
(27(')7 0 n (27T)2 0 t

From this expressions we see that, for x = 0, the integral is divergent for n > 2. It is however finite
for x # 0. The lack of regularity at z = 0 of B(x) is related with the lack of integrability at infinity
of B(k). The function B(x) is called Bessel potential. Finally, the solution is:

¢ lz—ul

_(f=B)(=) _ (” et
u(z) = E L dtfndy @F (2.39)

Example 2.4.2 (Schrodinger equation). Let us consider the initial value problem

{iut +Au=0, ifR"x {0,000} (2.40)

u=g, on R™ x {t = 0}.
The behavior of the solution of the Schrodinger equation is different from the heat equation, due to

the presence of a factor ¢ in front of the time derivative. In order to find a solution, let us replace
t with it in the solution of the heat equation, (1.255). We get:

lz—y|?

T g(y) (2.41)

1
t = = d
wEt) = i J . e

where we used iz = ‘5. Suppose that g € L'(R™) and that |y|2g € L*(R™). Then, one can check
that sus + Au = 0 in R™ x (0,00). One can also prove that u(-,t) —~. 9 by using stationary phase
t—0

methods (which we will not discuss).
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Suppose that g € L'(R") n L?(R™). We rewrite the solution of the Shrédinger equation as

|z]?

vl | .
u(et) = S ot [ i), (2.2
iz (2m)2 Jgn
2
with g(y) = (Qtl)% exp (z%) g(y), so that
'3
u(x,t) = ——g(a/2t). (2.43)

w3

]

That is, if g € L*(R™) n L2(R") then §(-/2t) € L2(R"). By Plancherel’s theorem, u(-,t) € L2(R").
Moreover, again by Plancherel:

luC, t)llz = 19C/20) 2 = [3(-/2t)]2 = (deg(y/%)lz(;)ny = lgll- (2.44)

Therefore, the map g — u(-,t) preserves the L? norm of the initial datum. Moreover, as we did for
the Fourier transform, we can extend the solution u(x,t) of the Schrédinger equation for (2.42) for
g€ LY(R™) n L%(R"™) to functions g € L2(R™).

The solution of the Schrodinger equation has the form

Jz—y|?

1
u(m,t) = ﬁf dyez a g(y)7E (w(at> * g) (LU), (245)
(4mit)2 Jgn
with ¢(z,t) = (Zﬂ;t)% the fundamental solution of the Schrédinger equation. This function plays

the same role as ®(z,t) for the heat equation. Notice that, due to the i factor at the exponent in
the definition of 1, the convolution (¥(-,t) * g) (z) makes sense for ¢t < 0 as well, in contrast to the
heat equation.

Thus, u(z,t) = (P(-,t) * g) (x) solves the Schrédinger equation (2.40) for all times in R. In
particular, the Schrédinger equation is reversible in time: if u(z,t) is a solution of Eq. (2.40), then
u(z, —t) is also a solution of Eq. (2.40).

Example 2.4.3 (The wave equation). Let us now use the Fourier transform to solve the wave
equation:

Ut — Au = 0, in R” x (0, OO), (2 46)

u=g,us=h, onR"x{t=0} .
Taking the Fourier transform we get:

’&tt + |k|27:6 = 0, in R™ x (0, OO)7 (2 47)

G=g,a;=h  onR"™x {t=0}. '

Thus, after taking the Fourier transform, the initial PDE is reduced to an ODE. The solution is:

a(k) = §(k) cos(t|k]) + h(kk') sin(t|k]). (2.48)
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One easily checks:

iy (k) = —g(k) k| sin(t[k]) + h(k) cos(t|k]), (2.49)
e (k) = —g(k)|k|* cos(t|k]) — h(k)|k| sin(t[k]) = —|k[*a(k).
Also,
lima(k) = g(k),  lima, = h(k). (2.50)

t—0 t—0

Therefore, the solution of the wave equation can be written as, taking the inverse Fourier transform:

u(z) = (g cos(t|k|) + |Z|sin(t|k|)> . (2.51)

As a check, suppose, for simplicity, that h =0 and n— 1. Then

u(x) = (geos(tlk])) = (271)% Jdkeik“’g(k) cos(t|k]|)
1

(2m)’}

1, . _
Jdkg(k) cos(t/k) (emﬂt‘k + ezkmflt\k) , (2.52)

which immediately gives d’Alembert formula.

Recall the definition of energy of the solution of the wave equation

E(t) = %f (w(2)? + |Du(@)]P)dz, ¢ 0. (2.53)

First of all, notice that if Dg, h € L? then the energy is finite and constant in time:

E(t) = E(0) = lf (h* + |Dg|?) dz < 0. (2.54)

We will now prove the following proposition that tells us that the energy splits equally into kinetic
and potential parts.

Proposition 9 (Equipartition of energy).

: 2. 1 27 _
75li)rrolo - |Du(x,t)|?dx = tli)rglo o ug(x,t)“dr = E(0). (2.55)
Proof. We have
[ pupas = [ wlaray -
n ]Rn
— [ dullyPlaP cos (el + P sin* eyl )+ (2.56)

>

| dvlylcostlul) snelyl) i + ).
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Let f € CP(R™). We have:

. 1 . 1
| aveostehsintetu) ) = 5 | dwsinCa) s o) = 5 |

0

1 joo (2tr) 2 J fdsd
=— | cos(2tr)— r
4t Jo dr Jopo,r)

where the last integral defined a compactly supported function, due to the fact that f is compactly
supported. Therefore,

Q0

dr sin(2tr) J dSf =
o (2.57)

t t—00

. C
' [ dyCOS(tIyI)sm(tlyl)f(y)‘ <9 o (2.58)
Now, if Dg, h € L?, then |y] (ﬁﬁ + Q;L) e L. In fact:

Iyl (kg + 3k ) I < Llylhglh + Ilylghls < 20lylgllils = 21Dglalhl2, (2.59)

where for the last inequality we used Cauchy- Schwarz, and for the last equality we used Plancherel’s
theorem. Therefore, |y| (izfy + gﬁ) can be approximated with C' functions: for any fixed ¢ > 0

there exists ¢ > 0 such that for ¢ > ¢, and for all ¢ > 0:

|| costlubsinelaD ol (i) + ah)| < | | costel) st fit)| + . 200
and o
| costtusinte )] < T (2.61)
Therefore, taking ¢ large enough,
[ costetu) sl i) < 2 (262)
By the arbitrariness of ¢, we conclude that:
Jim | cos(tly|) sin(t|y]) |yl (h(¥)g(y) + d(W)h(y)) = 0. (2.63)
Consider now the first two terms in the right hand side of (2.56), and recall that
1 1
cos?(t|y|) = §(cos(2t|y|) +1), sin?(t|y|) = 1 — §(cos(2t|y|) +1). (2.64)
Therefore, proceeding as before, we get:
. . 1 .
Jim | lyPlal? cos* )y = 5 | WPlady.
R ) R (2.65)
Jim | Jhf st ey = 5 | dylhl.
In conclusion:
. 1 N . 1
tim [DuC, 0 = 5 | dy (WPla@)P + b)) = 5 (IDglB + 1) = B©). (260)
Rn



Chapter 3

Quasi-linear partial differential
equations

3.1 Quasi-linear partial differential equations of first order
Let U < R™ open. Quasi-linear partial differential equation of first order are PDEs of the form:
F(Du,u,x) =0, xrelUcR" (3.1)

with F' linear in Du. Notice that, however, F' might be nonlinear in u. Equivalently, we consider
PDEs of the form:
b(x,u(zx)) - Du(z) = c(u(x), x). (3.2)

3.1.1 Homogeneous case with constant coefficients

Suppose that b is constant, i.e. a fixed vector in R™ and that ¢ = 0. We have:
b-Du=0. (3.3)

That is, u is constant along the direction b,

d
(b- Du)(z) = %u(m + tb)|t=0. (3.4)
By changing variables, the PDE is equivalent to:
0
—u(z) =0 = u(r1,22, - ,2y) = u(0, T2, -, Tp). (3.5)
8x1
Let us now consider the boundary value problem:
b-Du=0, inR"
{ U , in R™, (3.6)
u =g, on I,

withbe R, veR", T, ={zeR" |z v =0}

7
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Theorem 3.1. Let b,v € R™\{0}, b-v # 0, g € CY(T"). Then, (3.6) admits a unique solution
ue CHR™).

Remark 3.1. The constraint b-v # 0 is important. To see why, suppose thatn = 2,b = e1,v = es.
Then
(b- Du)(z) = Og,u(z1,22) = 0 = u(z1,22) = u(0, z2) Vo e R™.

This is impossible for g mon-constant, thus there are no solutions. Instead, for g=constant, if u
is a solution, then u(x) + f(x2) with f(0) = 0 is a solution; therefore, there are infinitely many
solutions.

Proof.
u(z) = u(xg + bt) = u(xg) = g(xo).- (3.7)
Let us call ( > ( >
r,  (z,v) (x,v
b= o560 = cosh (b,v)’ (38)
Therefore,

Remark 3.2. The curve xg + tb, where the solution is constant, is an example of characteristic
curve, that we will discuss later in more detail.

Suppose now that ¢ # 0 and b=constant. We shall consider
b- Du(z) = c(z,u(x)). (3.10)

Equivalently, the partial differential equation can be written as
Oy u(z) = c(z, u(x)). (3.11)

This is an ordinary differential equation for the x; variable, parametrized by xs, 3, - x,. We are
interested in finding a C! solution of the equation. Local existence and uniqueness follows from
standard ODEs arguments.

Theorem 3.2. Let U < R™ open, b,y e R™\{0}, b-v # 0, ce C}(R x U;R). Let
I:={zeR"z -v=0} ge CY(I). (3.12)

For each x4 € I' n U there exists w < U open such that x4 € w and

{b - Du(z) = c(u(z),z), inR", (3.13)

u =g, on T,

has a unique solution u € C*(w).

This theorem follows from the following result.
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Theorem 3.3. Let I € R open, f € CY(I x R* x R™;R"), ge CY(R™;R"). Let s, € I, 24 € R™.
Then, Jw < I x R™ open, I 3 (s4,24) and p € CH*(U;R™) such that

050(s,2) = f(s,0(s,2), 2),
{w(s*,z) = g(2). (3.14)

Moreover, let v;(s,z) = 0,,¢(s,z). Then

(3.15)

{asms, 2) = Dy f(s,0(s,2), 2)pi(s,2) + D, f(s, (s, 2), 2)es,
i(55,2) = 0:,9(2).

In order to prove this theorem, we will use the following two well known results in ODEs.

Theorem 3.4 (Picard-Lindelhof). Let I = [a,b] < R be a nonempty, compact interval. Let
fe %I x R*;R™) be Lipschitz in the second variable, i.e.

|f(z,y) = flx, )] < My -]

Then, for all yo € R™ the Cauchy problem

{y’(x) = f(z,y(x)), (3.16)

y(zo) = vo, (zo € 1),
has a unique solution p € C(I;R™).
Theorem 3.5 (Gronwall inequality). Let I = [zg,z1] € R, f € C°(I x R"® x R™;R") such that
|f(@,y,2) = fz,9,2)| < Lly — gl + M|z — 2| (3.17)

for all x,y,z. Consider the Cauchy problems

@) = fop@). o [P0 = o). 5) _
¢(z0) = Yo, @(wo) = Yo,

Then,
lo(z) = @(x)| < [lyo — ol + M|z0 — Zo| (21 — xo)]e™ =70 (3.19)

Now we have all the ingredients to prove Theorem (3.3).

Proof of Theorem (3.3). For simplicity, we shall assume that I is bounded and that f e C'(I x
R™ x R™;R™) is Lipschitz continuous. Also, let us assume that s, = 0. The Picard-Lindelhof
theorem (3.4) implies that Vz € R™ there exists ¢(-,2) € C*(I;R™) such that (3.14) is satisfied.
Moreover, thanks to Gronwall’s theorem (3.5) ¢ is Lipschitz in z. Using again Picard-Lindelhof
theorem we infer that (3.15) has a unique solution ;. We are left with proving that ¢ is C! in z,
and we shall prove this by showing that

0z, = i (3.20)
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To prove this, consider
w(s,z+ he;) — (s, 2)

Pn(s, 2) = . : (3.21)

Using the fact that ¢ is Lipschitz, we get |¢nllcc < M. Moreover

hon(s, z) = (s, z + he;) — ¢(s,
(3.22)
=g(z + he;) — f dt[f(t,o(t, z + he;), z + he;) — f(t, ¢(t,2), 2)].

Let us rewrite the integrand as
flt, otz + he;), z + he) — f(t, (t,2),2) = f(t, 0 + hon, z + he;) — f(t,9(t,2),2) =
=f(t, o+ hon,z + hey) — f(t, ot 2), 2 + he;) + f(t,p(t, 2), 2 + he;) — f(t,o(t,2),2) = (3.23)
=hD, f(t)on + D f(t) - e,
where we used
en=on(t,z),  p=0(t2), (3.24)

and

1

1
D,f(t) = fo dAD, f(t, o + Ao, z + he;), ei- D, f(t) = Jo e+ D, f(t, 0,z + Ahe;)dA. (3.25)

Therefore,

hon(s,z) = o(s,z + he;) —o(s,z2) = g(z + he;) —g(z) + h Ls [D, f(t)on + D, f(t)e;]dt.  (3.26)
The boundedness of ¢}, implies

lin D, (1) = Dyf(t.p.2), I Dof(t) = D.f(t,,2). (327)

Let us now rewrite the equation for ¢; appearing in the statement of the theorem in integral form:

i 2) = Da(e) i+ [ (DUt 2)eatt,) + €5 Dt 2, (3.29)

and the goal is to show that ||on — @i p— 0. We have

oo _9(z+ he;L-) —g(2) . Dola) + JOS dt (Dyfen — Dyfoi+ D.f-e;—D.f-e;) =
_9(z+ he;;) —9() . )+ (3.29)

+ L dt[(Dyfon — Dyfei) ¢n + Dyf(pn — i) + (D.f — D.f) - ei] .

Therefore:
g(z + he;) —g(z
wp fon — gl < LEFIDVZIE) o pyi| o
IxBi(z4) @© (330)

+HI[Dyf = Dy fllooM + ]| Dy fllolon = illo + ]| Dzf = Dz flloo-
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Finally, taking |I| small enough so that

1

11Dy Sl < 5 (331)
we conclude
lim o =@l = 0 (3.32)
O
3.1.2 Non-homogeneous case with non-constant coefficients
Let us start by supposing that b(u(x),z) = b(x). Consider the equation:
b(z) - Du(z) = c(u(z), z) . (3.33)
To solve it, we proceed as follows. We look for a curve v € C1(I;U) such that
Y (t) = b(v(1))- (3.34)
If so, using that
Laulr(0) = /() Duly(1) (335)
the PDE reduces to
{;%u@(t)) = cu(y(1)),7(1)), (3.36)
V() = b(v(t)),

i.e. we reduced the PDE to a system of ODEs.

Example 3.1.1. Let U = R?, b(x) = (—z2,21). For all r > 0, the curve v(¢) we are looking for is
~(t) = (rcost,rsint). Consider the equation

—u(y(t)) = c(u(y(t)),~(t)). (3.37)
Depending on ¢, it may or may not have a global solution.

1. Case ¢ = 0. The solution u is constant along . The curve ~ is called a characteristic curve
of the equation. We have:
d

Laulr(1) = 0 = u(w) = ual). (3.38)
2. Case ¢ = 1. In this case, the equation has no global solution: wu(y(t)) is strictly increasing
and (¢t + 2m) = (). However the solution still exists locally, i.e. for small ¢.

Remark 3.3. This example shows that this method of solving PDEs depends strongly on the ge-
ometry of the characteristic curve v(t). If v(t) intersects itself at later times, there might be an
obstruction in defining the solution at the intersection of the characteristics.
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Now, suppose that b depends on the solution u as well. We consider the equation:
b(u(x),z) - Du(x) = c(u(z),x) . (3.39)

We would like to proceed as we did for the previous case. This time, however, to know who 7/(s)
is, we need to know both v(s) and u(y(s)). Thus, we shall look at curves on a larger space. Let
T(s) = (u(y(s)),7v(s)), for v(s) to be determined. We are interested in solutions of the ODE:

d1(g) = 4 To(s) _ c(T(s))
B ds<“*> (“F@>>’ (3.40)

Lemma 3.1. Let U = R™ open, b € CY(R x U;R"), c € CY(R x U), x4 € U, uy € R. Let
I'e CY(—6,5), 6 > 0 be a solution of (3.40), and let uw € C1(U) be a solution of

b(u(x),x) - Du(z) = c(u(x), ), u(T4) = Ugp. (3.41)
Then, u(vy(s)) = To(s) for all s € (—4,9).
Proof. Let ¢(s) := u(v(s)) — To(s). Then, ¢(0) = 0 and

o' =Duory- -~ —col' =
=Duo~y-buo~,y)+Duoy- (b(To,v) —bluc~,v)) —cTo,v) =
——

: (3.42)
= c(uoy,y) —c(To,7) + Duory- (b(To,y) —bluoy,v)) .
Therefore,
Li(s) = G(s, 0(s)),

{; (0) =0, (3.43)

with
G(y) = c(l'o +y,y) — c(l'o,v) + Duoy- (b(To,v) —b(To + y,7)), (3.44)

and
Do) +¢(-) = u(y(-) - (3.45)

Notice that y = 0 is a zero of G(-,y). Therefore, by Picard-Lindelh6f, Theorem 3.4, there exists
d > 0 such that the ODE (3.43) admits a unique solution for s € (—4,d). Since ¢(s) = 0 is a
solution of Eq. (3.43), we proved that u(y(s)) = To(s) for all s € (—4,9). O

We are now in the position to prove the following theorem.

Theorem 3.6. Let U =« R", J < R open, be CH(J x U;R"), ce CY(J x U), x4 € U, g(xy) € J,
bn(g(z4,xx)) # 0. Then, there exists w 3 x4 open such that the initial value problem

{b(u(m),x) - Du(x) = c(u(z),x), inw,

u=g onw n{x, =k}

(3.46)

has a unique solution u € C*(w).
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Remark 3.4. The set {x € R" | x,, = 2%} is what we called T, before (the normal v is now e, ).
The condition by, (g(x«), z4) # 0 is the analog of b-v # 0.

Proof. For z € R"™1 |z| small enough, let I'(:) = I'(z,) € C*(—4,6) be the unique solution of:
gy = (X)) _ (9(@s + (2,0))
ORI G E i) (347
Let v(z, s) := v(T'(s)). Since ¥(z,0) = x4 + z and (d/ds)v(z,0) = b(g(zs + 2), 24 + 2), We get

det Dv(0,0) # 0, (3.48)

thus (z, s) — v(z, s) is invertible in a neighborhood of (0,0). In fact:

1 0 0
pyo,0= |2 1 (3.49)
b b b

with b = b(g(z4),z4) and b, # 0 by assumption. The eigenvalues of the matrix can be read off
from the diagonal, and are all nonzero. Let now 3 = v~ !, and let us define u := I'g o ¢. Then,
since Ty € C! and ¢ € C! (locally) we have u € C*(w), for some w open such that w 3 z,. By
construction, v oy = I'y.

We are left with checking that u solves the original PDE. Let s = y,, and z = (y1,- -+, Yn—1)-
We compute

0su(y(2,8)) = Du(y(z, ) - 0s7(2,8) = Du(v(y)) - b(7(y), To(y)) =

= Du(y(s) - b2 (), ulv () (3:50)
and
dsTo(y, s) = c(v(y),To(y)) = c(y(y), u(r(y))) ; (3.51)
therefore,
Du(y(y)) - b(u(v()), 7)) = c(u(y(),¥()) - (3.52)
[
3.1.3 Burgers equation
Let us consider the following PDE:
Oru+ 0% =0, R x (0,00),
{u(m, 0)=g(z) zeR. (8:53)

The unknown is u = u(z,t), (z,t) € R x (0,00). In order to rewrite the equation as in Eq. (3.39)
and apply the theory developed in the previous section, we set b(u(y),y) = (u(y),1), ¢ = 0. Eq.
(3.53) is equivalent to:

b(u(y),y) - Du(y) = 0. (3.54)



82 CHAPTER 3. QUASI-LINEAR PARTIAL DIFFERENTIAL EQUATIONS

Let us solve the equation using the method of characteristics. The associated ODE is:

—TI'(s) = =|T r) = .
570 = (o)) o) o= (3.55)
The solution is: @) (5)
. _(xzH+glr)s) _ [z(s
Mot =g 2= (T4 = (5) (3.56)
Let us go back to the initial value problem (3.53), for a specific choice of the boundary condition g:
1 for z <0,
glz)y=1—x forze(0,1), (3.57)
0 forr > 1

From the proof of the previous theorem, we know that the solution u(z,t) can be found, locally, as
To(¢(x,t)). We have

u(y(s)) =To(s) =g(z),  v(s) =(x,s) = (z +g(z)s, s). (3.58)
To find the function u(z,t), we consider different values of x.

e Case x < 0. By (3.57) we know that g(z) =1, so
u(z +s,8) = g(z) . (3.59)
Setting y := = + s, u(y, s) = g(y — s) for y — s < 0. That is:
u(y,s) =1 for y < s. (3.60)
e Case z € (0,1). By (3.57), g(z) =1 — 2. Thus,
ulz+(1—z)s,s)=glx)=1—x. (3.61)

Let y := 24 (1 —x)s = (1 — s) + 5. We have z = ¥=2, and hence:

L y—s _1-y . 1—y
u(y,s) =1 T - 1_ s 1f0<71_8<1. (3.62)
e Case z > 1. By (3.57), g(x) = 0, therefore
u(xz,s) =0 for > 1. (3.63)
All in all

1 ife<t
u(z,t) =4 &=t if0< %<1 (3.64)

0 ifx>1.

From Eq. (3.62), we immediately see that the solution is not defined for ¢ > 1. The reason is that
the map (z,s) — v(z, s) is not invertible for s > 1; instead, the characteristic curves intersect at
s = 1. Therefore, the method of characteristics only provides a solution for small times, ¢ < 1.
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3.1.4 Weak solutions for conservation laws

The previous example motivates the introduction of a more general notion of solution. More
generally, we shall consider PDEs of the form:

{Ut +0:F(u) =0 (2,t) €R x (0,0) (3.65)

u(z,0) = g(x reR.
This equation is called a conservation law.
Definition 30. Let F e CY(R), g€ L®(R), ue L*(R x (0,0)). The function u is a weak solution
of the equation (3.65) if, for allve CP(R x [0,0)),
J (ubpv + F o udyv) dadt + j gu(-,0)dz = 0. (3.66)
R x [0,00) R

The function v is called a test function. In order to understand this definition, suppose that u
solves (3.65) is the classical (or strong) sense:

Owu + 0, F(u) = 0. (3.67)
Then, trivially:
f dxdt (Oyu + F(u)y)v =0. (3.68)
Rx[0,00)
Let us now integrate by parts:
0= J dzdt (—udw — F(u)0yv) + J dx uv‘:;o . (3.69)
Rx[0,00) R

Therefore, using the compact support of v:
0= J dxdt (udpv + F(u)ozv)(z,t) + J dzxg(z)v(z,0) . (3.70)
Rx[0,00) R

The advantage of this notion of solution is that Eq. (3.66) makes sense even if u is not in C*.
Remark 3.5. It is easy to see that a weak solution of class C' is a strong solution.

Theorem 3.7. Let u e L*(R x [0,00)) be a weak solution of (3.65), and let w < R x (0,00) open,
U c R x (0,0) open with C' boundary. Suppose there exist two functions uy € C'(w N U) and
ug € CH(w\U) such that u =u; on w N U and u = ug on w\U. Then

(F(ul) - F(UQ)) v=0 on U nw , (3.71)

Uy — Uz

with v the normal of oU .
Let v = (v1,v2). Then, Eq. (3.71) reads:

(u1 — ug)ve + (F(uy) — F(ug))vy =0. (3.72)
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Now, let us represent parametrically the boundary (0U) m w as: {(z,t) | = = s(t)} for some
smooth s(-) : [0,00) — R. Then, the tangent to the boundary is ($(t),1), while the normal is

m(l, —$(t)). Therefore, Eq. (3.72) becomes

F(ul) — F(UQ) = 8(u1 — ’LLQ). (373)
F(uy) — F(usg) is the jump of F(u) across the curve, while u; — ug is the jump of u across the
curve. The ratio between the jumps os equal to the the speed of the curve, s. This is called the

Rankine-Hugoniot condition. Let us now prove Theorem 3.7.

Proof. By definition of weak solution,
o0 o0
0= f j dxdt uvy + F(u)v, (3.74)
0 J-wo
with v a test function with support in w. Then

f dzdtuwvy + F(u)vg + f dxdt uvy + F(u)vy = 0. (3.75)
wnU w\U

By Gauss-Green theorem, we get:
f uvy + F(u)v, = f (—0ruv — 0, F (u)v) + J (F(u),u) -vv =
wnU wnU

dwnl (3.76)
= f (F(u),u) - vv,
JwnlU

where we used that dyu + 0, F'(u) = 0 in w n U. Similarly,
J (uht + F(u)hy) = fj (F(u),u)-vh. (3.77)
w\U ownU
All in all, we get
f wv - (F(un) — Flus), w1 — us) = 0. (3.78)
ownlU
By the arbitrariness of v, v- (F(u1) — F(uz2), u1 —ug2) = 0 on dw nU, which concludes the proof. [

Thus, the Rankine-Hugoniot condition gives a necessary condition for a function u to be a weak
solution. The next theorem shows that this condition is also sufficient.

Theorem 3.8. Let F e C'(R), g€ L*(R), ue€ L*(Rx (0,0)). Suppose that there exists countably

many open sets U; in R? with C* boundary and functions u; € C*(U;), such that R x [0,00) < |, Ui,

u=1u; onU;, u; =g on U; n (R x {0}). Then, u is a weak solution of Eq. (3.65) if and only if
O+ 0 F(u) =0 on all U; (3.79)

and the Rankine-Hugoniot condition holds true on all 0U;.
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Example 3.1.2. Consider again the Burgers equation

diu+ 0% =0, in R x (0,00), (3.80)
u=g, on R x {t = 0}
with
1, z <0,
gl)=<1—=, =ze€]l0,1], (3.81)
0, x> 1.
We would like to extend for all times the solution found in Section 3.1.3. Recall:
, r<t0<t<l,
u(r,t) = =2 t<r<1,0<t <1, (3.82)
0, r>1,0<t <1
We define a continuation of the above solution, using the RH condition:
1 t
() = 41 TSy (3.83)
0, [f(t) <=,
where f is the characteristic function
1+t
flit) = — (3.84)

This function naturally extends Eq. (3.82) to all times, and satisfies the RH condition. It defines
a weak solution of the Burgers equation.

As the next example will show, weak solutions are, in general, not unique.

Example 3.1.3. Consider again the Burgers equation (3.53), this time with initial condition

o) = {(j Ty (3.55)
Using the method of characteristics, we get:
u(z,t) =1, x—t>0, (3.86)
and
u(z,t) =0, z < 0. (3.87)

However, the method of characteristics cannot be used to determine the solution for ¢t > x > 0. Let
us use the RH condition to continue the solution in this region. We define

0, z<£,
w(z,t) = {1 .o i (3.88)
L.

)
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One immediately checks that:

- (u1 — ul) = F(ul) — F(Ug) . (389)
—_———

Therefore, u defines a weak solution of the Burgers equation. However, we could have proceeded
differently. We define:

1, x>t
i(z,t) =13 %, 0<z<t, (3.90)
0, =<0,

that continuously interpolates between 0 and 1 in the wedge ¢ > x > 0. In this last case, the
solution is continuous at « = ¢t and 2 = 0 (while the derivative is not). It is easy to check that the
solution satisfies the Burgers equation, away from x = ¢ and x = 0. Also, it trivially satisfies the
RH condition on x = ¢t and x = 0. Thus u defines a weak solution of the Burgers equation. It takes
the name of rarefaction wave.
Presumably, uniqueness holds true in a subclass of weak solutions, that satisfy some extra

conditions motivated by Physics. Remember the ODE satisfied by the characteristics:

d d

- <at’((§)>> = (FOI(S)> . To(s) = 0= i(s) = To(s) = u(a(s).s) - (3.91)
The quantity z(s) takes the name of speed of the solution. In the case of the Burgers equation, it
is equal to the solution itself: “taller” waves move faster than “shorter” waves. In particular, for
u = 0 the speed is zero. Recall now the first solution, Eq. (3.88). There, at the disontinuity z = ¢/2
the wave u = 0 and the wave u = 1 move with the same speed, which is unphysical. Instead, for
the second solution Eq. (3.90), the wave u = 0 does not move, as it should. In general, we only
allow to discontinuities if the leftmost part of the wave at the discontinuity is moving faster than
the rightmost part of the wave. Consider a general conservation law d;u + F'(u), = 0. Calling u_
and uy the left and right part of the wave at the discontinuity, we require that:

Fllul) > F'(uy) . (3.92)

This is equivalent to the requirement that discontinuities might only form in the future. This con-
dition takes the name of entropy condition. A discontinuity curve satisfying the entropy condition
and the RH condition is called a shock curve. The corresponding weak solution is called an entropy
solution. It is easy to see that in Example (3.1.3) the entropy condition is violated:

u_ =0, uy=1 F(u)=0, Fluy)=1=F(u_)<F'(uy). (3.93)
Thus, the physical solution of the Burgers equation is .

Finally, let us quickly mention some important results about conservation laws. It turns out that
if F is smooth and uniformly convex, F” > 6 > 0. In this case, F’ is increasing and in particular

Ful)>F(uy) s u_ >uy. (3.94)

For this class of PDEs it is possible to prove that there is at most one entropy solution, up to a set
of measure zero (that is, if there are two solutions u and @, then u = @ a.e.).



Chapter 4

Second order elliptic PDEs

In this section we shall introduce a general class of second order partial differential equations. More
precisely, we shall consider boundary value problems of the form:

Lu=f, inU, (41)
u =0, on 0U,

with U < R™ and f given. The unknown is v = u(x). Lu denotes the action of a linear map L on
u, which we assume of the form:

Lu=-— Z a ()ug,0; + Zlbi(;c)um,; + c(z)u(x), (4.2)

for given functions a%(z), b*(x), c(x). We shall be mostly interested in the situation in which the
PDE is elliptic.

Definition 31 (Elliptic PDE). The PDE operator L is (uniformly) elliptic if there exists 6 > 0
such that

Yal(@)eig; = 0l¢)%, (4.3)
i

almost everywhere in x and V€ € R™.

Remark 4.1. If a¥ = §;;, Eq. (4.2) reduces to the action of the Laplace operator on u, that is Eq.
(4.1) reduces to Laplace’s problem.

In general, it might be hopeless to find explicit formulas for solutions of the boundary value
problem (4.1). As for the conservation laws discussed in the previous chapter, in order to develop
a theory of solutions of Eq. (4.1) we will need to weaken the notion of solution. The “right” spaces
where to look for weak solutions of the boundary value problem (4.1) are provided by Sobolev spaces,
discussed in the next section.

4.1 Sobolev spaces

In this section we give a brief introduction to Sobolev spaces. The reader is encouraged to check
[Lieb-Loss| and [Evans] for more details. We start with the following definition.

87
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Definition 32. We define the space LT (U) as:

loc

LP

loc

U)={u:U—->R|ueLP(V) forallVcc U}. (4.4)

Definition 33 (Weak derivative). Suppose u,v € L} (U) and let « = (as, ..., ay) be a multi-index.

loc

We say that v e Lj, (U) is the a—th weak derivative of u, written D%u = v, if:

fU wD®¢dz — (—1) L v dz, (4.5)

for all test functions ¢ € CP(U).

Remark 4.2. If u € C*(U) then v € C(U) is the usual a-th derivative of w. (integrate by parts,
and use the arbitrariness of ¢).

Lemma 4.1. The weak a-th partial derivative of u, if it exists, it is uniquely defined up to a set of
measure zero.

Proof. Let we L{ _(U). Suppose that v,9 € L{ (U) satisfy

loc

L uD"¢ — (fl)af v — (—1)° JU L YeeCR(U). (4.6)

U

Then:
J(v —0)p=0 Vo e CEU) . (4.7)

Thus, v = ¥ up to a set of measure zero. O

Example 4.1.1. Let n =1, U = (0,2) and

u(z) = {x, 0<x<1, (4.8)

1, 1<z<2.

The function is not differentiable in the classical sense. Nevertheless, it admits a weak derivative.

Let
1, O0<z<l1
N B ’ 4.9
v(@) {0, l<z<?2. (49)

We claim that v’ = v in the weak sense. Let ¢ € C(U). We want to show that

JQ ug'dr = — fQ vodr . (4.10)

0 0

By explicitly computing the integral:

f: ug'dr = Ll x¢’dx+£2 ¢dr = — Ll ddz+ (1) + d(2) — (1) = — Ll pdr = — Lz vopdr , (4.11)

where we used ¢(2) = 0 since ¢ € CP((0,2)). This proves the claim.
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Example 4.1.2. Let n =1, U = (0,2) and

r, O0<ax<l1
" ’ 412
u(@) {2 l<z<2 (4.12)

)

We claim that v’ does not exist in the weak sense: there exists no function v € L{ _(U) such that

2 2
J u¢'dr = ff vodx VpeCP . (4.13)
0

0

Suppose that (4.13) is true for some v and for all ¢. Then

2 2 1 2
- f vodr = J ud'dr = J x¢ dx + 2 qb’dx
0 (4.14)

f(bdx—i-(b (1) + 2¢(2) — 2¢(1 Jq&dm—

where we only used ¢(2) = 0. Choose now a sequence of functions {¢;,}2_;, ¢m € CP(U) such
that
0< ¢ <1, dm(1) =1, dm(z) >0 V£l (4.15)

Then

2 1 2 1
—J VOdr = —f Gmdr — ¢ (1) = 1 = lim ¢,,(1) = lim (J VO, ff gi)m) =0 (4.16)
0 0 m—0o0 m—0o0 0 0
since ¢p,(x) — 0 for all « # 1, which is a contradiction.
Now we are ready to define Sobolev spaces.

Definition 34 (Sobolev space). The Sobolev space W*P(U) consists of all functions u € L} (U)
such that for all o, |a| < k, D*u exists in the weak sense and D*u e LP(U):

WEP(U) ;= {u:U — R | D% exists in the weak sense, D%ue LP(U), for all |a| <k} (4.17)

Remark 4.3. 1. Ifp = 2, we write H*(U) = Wk2(U). The notation is motivated by the fact
that H* is a Hilbert space.

2. As for LP spaces, functions in W*P are identified if they coincide almost everywhere.

Next, we list some straightforward properties of weak derivatives and of Sobolev spaces.
Proposition 10. Let u,v € WFP(U), |a| < k. Then

1. D e Wk-lelr(U), D (D*u) = D*(DPu) = D**Pu, Yo, B such that |a| + |8 < k
YA\, peR, Au+ pve WEP(U) and D*(Au + pv) = AD%u + pDv, for all |a| < k
Let V. c U, V open. Then ue WEP(V).

N

Let ¢ € C*(U). Then Cu € WFP(U) and D*(Cu) = Y<a (g)DBCDO‘_Bu where (§) =

B
WLB)! (Leibniz rule).
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Proof. Left to the reader. O

As we shall see, Sobolev spaces are Banach spaces. In order to prove this, we need to introduce
a norm in W+»,

Definition 35 (Sobolev norm). Let u € W*P(U). We define the Sobolev norm | - |we.o(ry as

1/p
(Sjajer S ID2ulPdz) ™, 1< p <o,
lulws.rw) = i<k U (4.18)
laj<k €58 supy|Dul, p = .
Remark 4.4. 1. One can check that | - |lyx.» () satisfies all the properties a norm must have:

o Palwro) = Mlulwroq) for all A€ R,
o |ulwrrqy =0 < u=0in WEr(U),
o |lu+vl|wrrwy < |ullwerwy + [vlwer @)

2. The Sobolev norm is expressed in terms of the LP norms of the weak derivatives D®u. As for
LP spaces, if we did not identify functions differing on sets of measure zero, |- |w.» @y would
only define a seminorm.

Example 4.1.3. Let U = B(0,1) the unit ball in R™. Define u(z) := |z|~%, for x € U,z # 0. Let
us find the values of a > 0, k,p for which u belongs to W1P(U). We compute

ax;

uxl(.r) = _W, X 7é 0 . (419)
This implies:
a
‘DU(.CL')‘ = W7 X 75 0 (420)

Thus, u is only differentiable in B(0,1)\{0}. Let us check that the function u admits a weak
derivative in B(0,1). Let ¢ € CP(U), € > 0. Then

J Uy, dr = —J Ug, @ + f ugv’, (4.21)
U\B(0,¢) U\B(0,¢) 8B(0,¢)

where v is the inward normal of dB(0,¢). Suppose that a + 1 < n. Then, |Du(z)| € L'(U), which
implies:

‘J uqbl/ids) < H(ngof € s < Ce" 17— 0. (4.22)
0B(0,¢) 0B(0,¢) >0
Therefore, since both u and Du are in L'(U) we have:

j Upy,dr = lim Uy, dx = —f Uy, Pdx, Ve CFWU), 0<a<n—1. (4.23)

U =0 Ju\B(0,¢) U
This proves that wu,, is the weak derivative of u in U. Moreover, |Du(z)| = et € LP(U) <
(a + 1)p < n. Therefore

weWHP(U) s a< 2L (4.24)
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The next example shows that functions in Sobolev spaces can be rather badly behaved.
Example 4.1.4. Let {rp}ren a countable, dense subset of U = B(0,1). Define

) i ! ! elU (4.25)
x) = —_ rxel. .
— ko —rgle’

By density of {ry}xen in B(0, 1), the function « is unbounded on all open subsets of U. Nevertheless,
we claim that if 0 < a < *2P then ue W'P(U).

As we have seen in the previous example, D

— ‘a e WLP(U). Also, a finite linear combination

of still belongs to W*P. Let us now check that the function u belongs to W*P. We have:

|'*Tk-|

<C,  O<a<™?.
We(U) p

[e0]
e Z%)M - (4.26)

Let us now introduce a notion of convergence in W*?(U).

Definition 36. 1. Let {u,,}%_;, ue W*P(U). We say that u,, converges to u in W*»?(U),

m=1>
Upy — U, in WhP(U) | (4.27)
if
lim [ — ulwrr@) =0 (4.28)

2. We write wy, — u in WoP(U) to mean up, — u in WP (V) for any V cc U.

loc

3. We denote by WEP(U) the closure of CX(U) in W*P(U). That is, u.€ WP (U) if and only
if there exist {Um ymen, Um € CF, such that u,, — u in WEP(U).

Finally, the next theorem shows that W*?(U) is Banach spaces.
Theorem 4.1. Yk e N, 1 < p < o, the space WFP(U) is a Banach space.

Proof. We have to check that W*P(U) is a complete, normed linear space. We already proved
linearity and we introduced a norm. Let us check completeness. Let {u,,}_; be a Cauchy sequence
in W*P(U). Then, V]a| < k, {D%u,,}%_, is a Cauchy sequence in LP(U). By completeness of
LP(U), Juy € LP(U) such that D%, — u, in LP(U) for any |o| < k. In particular, w,, —
U(o,0,-.,0) =t u. We claim that D*u = u, for any |a| < k. This would prove that D®u € LP(U),
and hence that u € W*P(U), which is what we want to show.

Let ¢ € CP(U). Then

f uD%¢ = lim | u,D%. (4.29)
U m—00 U

This identity immediately follows from Hélder inequality:

[(w = um) DGl < Jlu = | e [ D@ La, =1. (4.30)
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Therefore, recalling the definition of weak derivative:

J uD%¢ = lim (-1)“[ Dy, pda = (-1)‘@‘J Ugpd, (4.31)
U U U

m—0o0

where in the last step we used that D%u,, — u, in LP(U). This proves that D*u = u,, as
claimed. O]

It is natural to ask whether Sobolev functions can be approximated with smooth functions, for
which weak derivatives reduce to standard derivatives. In order to show this, recall the definition
of mollifier (Chapter 1, Eq. (1.105)).

We will start by proving an interior approximation theorem, that provides a smooth approxi-
mations for Sobolev functions not uniformly in the distance from the boundary of U.

Theorem 4.2 (Interior approximation by smooth functions). Let u € W*?(U) for some 1 < p < o
and set u¢ = ne *=w in Ue.. Then:

1. uf e C*(U.), Ve > 0,
2. uf —>uin W{Z’cp(U), e — 0.
Proof. 1. Recall that
w(@) = [dynie =), VoeU.
Therefore,

Dua) = [ dy Dl - y)uty), (4.32)

where integral and derivative can be interchanged, thanks to the fact that |Dn.(z — -)| is
bounded uniformly in x and v € L{ (U). This proves the first part of the theorem.

loc

2. To begin, we claim that D*u® = n, * D% in U, V]a| < k. Let us postpone for a moment
the proof of this claim, and let us show how it implies that u¢ — u in Wllf)’f(U ) as € > 0. We
shall use that, for f e L (U):

loc

1 ey < W floowy, VWV ceWea U (4.33)

In fact,

r@i=|], neprea]s | o) ) s

1—-1/p 1/p (4.34)
< (J Ne(x — y)dy> (J ne(x —y)|f (y)l”dy> ,
B(z,¢€) B(z,e€)
where the last step follows from Hoélder’s inequality. Thus
| wr@r <[ ao| dne-wiror s
14 \% B(z,e€) (435)

<[ alswp [aene-n- [ 1rwr.
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which proves Eq. (4.33).

Now, let f = D%u, f¢ = 5. % D%. Let V cc W cc U, § > 0, g € C(W) such that
| DY — g Lp(wy < 6. Then:

Ine * D% — D%l Lovy < |0e % D = 1ne * gllLovy + [ne * 9 = gllLevy + g — Dull Loy
< 2|D% = glleqwy + Ime + 9 — gl v
< 36, if € is small enough.
(4.36)
Therefore, we just proved that
Ne * D%u " D%y in LY (U). (4.37)
Let V cc U.. Eq. (4.36) implies:
[~y = O ID%ut — Dull, ) — 0. (4.38)
|| <k
which proves 2. To conclude, we are left with showing that
Duf = n. * D%, in U.. (4.39)
Let x € U.. Then
D"u(a) = D* | nle = )uts)dy = | Dinlo—nutwy = (-0 | gl —y)uts)ay.
U U
(4.40)

Now, notice that ¢(y) := n.(z—y) is a test function. Therefore, by definition of weak derivative

j Dne(x — yuly)dy = (~1) Lne@—y)mu(y)dy. (4.41)

Plugging this into Eq. (4.40) we get:

Duf(z) = (=1)!**le] L Ne(x —y)Du(y)dy = (ne * D*u)(z) , (4.42)

which proves the claim, and concludes the proof of the theorem.
O

The next step is to find approximations for functions in W*P?(U) by C*® functions, that holds
true in the W*P(U) rather than VVIIZC”(U) sense. In other words, we are looking for approximations
that are uniform in the distance from the boundary of U. In fact, what we proved so far is that for
all V. < U, V such that V < V, V compact, and for all § > 0 there exists ey = ¢y(V, ) such that
|te — u|pwrryy <6 for any € < €g. The reason for this lack of uniformity is that, a priori, Sobolev
functions might be badly behaved in proximity of their domain U.

The next theorem provides a global approximation result, that holds uniformly in the distance
from oU (but not on oU).
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Theorem 4.3 (Global approximation by smooth functions). Let U open and bounded, u € W+ (U),
1 < p < o0. Then, there exist functions u,, € C*(U) n W*P(U) such that u,, — u in W*P(U).

Proof. Let U; = {x € U | dist(x,0U) > 1/i},i = 1,2,---. Then, U = [J;U;. Also, let V; =
Ui+3\U;11. Notice that V; is an open set, that V; cc U, and that V; n V31 # . Moreover, we
can choose Vj such that Vjy cc U and U = U;’O:o V.

Let us use Theorem 4.2 to find an approximation for w in each V;. To this end, let us introduce
a smooth partition of unity, that is a family of function {(;}, such that:
0<G <1, i€ CP(Vi),
s¢ G € G(¥i) (4.43)

DitoCi=1, inU.

Then, ¢;u € WFP(U) and supp((iu) = V;. Let u® := ., * (¢;u). Notice that the support of u' is

slightly bigger than the support of (ju: for €; small enough, suppu’ = W;, with W; = U\U, 4.
Thanks to Theorem 4.2, for all 6 > 0 and for ¢; small enough,

, , )
[u* = pivllwer iy = u" = piulwrswy < G- (4.44)
Now, write v := Z?O_O u’. Notice that, YV cc U, there exists only finitely many i’s such that

u # 0 in V. Therefore, D%y = >, Dut, and hence v € C*(U). Thus, for all V cc U:

(2

i 1
lv = ullwras vy < 2 Ju’ = Gullwenry <5 S = O (4.45)
To conclude, notice that 0 is independent of V. Therefore, taking the supremum over V', we finally
get ||u — v[ykpy < 6, which concludes the proof. O

The previous result does not say anything about the regularity of the approximating function on
the boundary: we do not know whether v € C*(U). In order to prove regularity on the boundary,
one needs extra information on the regularity properties of oU.

Theorem 4.4 (Global approximation up to the boundary). Let U be bounded and with oU of class
C'. Suppose ue WkP(U), 1 < p < 0. Then, there exists {t,}Z_,, Um € C*(U) such that

m=1>
Upy — u, in WHP(U). (4.46)
Proof. See [Evans]. O

Thus, the set of C* functions in W*P(U) is dense in W*P(U). The result can also be extended
to unbounded subsets of R™. The intuitive reason is that any function u € W*?(U), with U possibly
unbounded, can be approximated by (u, with ( € C® defined as:

1 in X,
¢= {0 in Z\X (4.47)

with X < Z < U and X bounded. More precisely,

lu = Cullwrrw) < lulwer@x), (4.48)
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which can be made arbitrarily small by choosing X large enough. Thus, one can repeat the ap-
proximation arguments discussed above for (u; we omit the details.

One first application of these results is about the characterization of Sobolev spaces in terms of
the Fourier transform. In the following, we shall focus on the Sobolev spaces H*(U) := W2(U).
The notation is motivated by the fact that these spaces are Hilbert spaces.

Theorem 4.5. Let k € N. Then the following is true:
1. we L2(R™) belongs to H*(R™) iff (1 + |y|)*a e L?(R™).
2. There exists C > 0 such that

1 N n
Glulms@n <10+ y)*alrz@e) < Clulpr@ny,  Yue HYRT). (4.49)
Proof. Let u € H*(R™). Then, Ya such that |a| < k, D%u € L?(R™). Suppose first that u € C¥.
Then, by the properties of the Fourier transform:
Dew = (iy)™a. (4.50)

For general u € HF(R"), D@y exists by the extension of the Fourier transform to L2 (R™). The
identity (4.50) holds by approximation. Suppose that (4.50) is false, that is 3U < R™ bounded such
that -

HDO‘U — (iy)a’&HLz(U) > 4. (451)

Let u,, € C*(R") n Wk2(R") be an approximating sequence for u. Then

[Dou = (i)l L2y = [D*(u+ um = um) = (iy)* (@ + Gm — @) L2y =

= | D*(u — um) — (iy)* (@ — @m) | 20 (4.52)
< |D*(u — um) | L2®ny + Clu — um| L2 ®n) e 0,

which contradicts (4.51). Therefore, Do = (iy)*4 and in particular (iy)*a € L?(R™). This implies
that
(1+ |y/*)ae L*(R™), (4.53)

and

k
J v P 1ap < € [y s Piar = ¢ [y 1+ (Zzﬁ-) af
J

(4.54)
<0 [ (1 2] = o
J
where we used that oFu = (ikj)*4 and the Plancherel theorem. Therefore, we proved that
ue H*(R™) = (1 + |y|*)a e L*(R™), (4.55)

and in particular that
[+ |y*)il 2@y < Cllyllae ey (4.56)
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Let us now prove the converse result. Let (1 + |y|*)a € L?(R"), and suppose that || < k. Then
[Giy) a2y < CHL+ [yl*)alZs gn). (4.57)
Let ug := ((iy)*a). Using the properties of the Fourier transform we have:

| wropude = [ @iy = [ didy = 0" [ o )

Therefore, recalling the definition of weak derivative, u, = D%u, and in particular D,u € L?(R"),
which implies that u € H*(U). Also, by (4.57)

| Dl 72 @ny < CI(A+ [y*)al72 gy, (4.59)

that is: R
lulFe oy < CIA+ [9lF) ] L2 @y (4.60)
O

The Fourier transform can be used to define fractional Sobolev spaces, as follows.

Definition 37 (Fractional Sobolev spaces). Let 0 < s < o, u € L2(R"). Then, we say that
we H5(R™) if (1 + |y|*)a e L?(R™). For non integer s, we define

lull e @y = 11+ 1y[*) @l L2 @) (4.61)

4.2 Existence and uniqueness for second order elliptic PDEs

4.2.1 Weak solutions

Let U < R™ open and bounded. We consider the boundary value problem:

L — .
vetomb (4.62)
u =0, on oU,
with f: U — R given. Let L be a linear differential operator, having either the form
Lu=— Z (a” (z)ug,)s; + Z b (z)uy, + c(x)u, (4.63)
B,j=1 i=1
or . :
Lu= - Z aij(gc)uwﬂj + Z b’(gc)uxl + c(z)u, (4.64)
i,j=1 i=1

for given a¥, b/, c¢. In the following, we shall suppose that a”/ = a/'. We say that Lu = f is in
divergence form if L is given by (4.63), and it in non-divergence form if it is given by (4.64). If
a¥ e C1(U), the two definitions are equivalent, up to a redefinition of b’(z). We shall consider
elliptic second order PDEs, meaning that there exists 6 > 0 such that:
O ai(a)e; = 0le (4.65)
ij=1

almost everywhere in z, and for all £ € R™.
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Remark 4.5. This means that the symmetric matrix
Ax) = (aij(m))léiéjém (4.66)
is positive definite, i.e. its smallest eigenvalue is greater or equal than 6 > 0.

In general, it might be impossible to find solutions for such boundary value problems. Thus, we
shall relax the notion of solvability, and consider weak solutions for Eq. (4.62). At first, suppose
that w is a smooth function, and that u solves Eq. (4.62), with L in divergence form. Then, we
trivially have:

f <Z a (2) g, vz, + Z biug, + cuv) dx = f fudx, (4.67)
U \i,j i=1 U

for any v € C(U). In fact, integrating by parts,

f (Lu — f)vdx =0, (4.68)
U

with no boundary terms thanks to the Dirichlet boundary conditions. We shall say that u solves
Eq. (4.62) is the weak sense if:

J(Lu — fvdz =0, Vv e CL(U). (4.69)

If w e C'P, this reduces to the usual notion of solution. In order to make sure that the integrals
make sense, we shall suppose that a*/, b/, c e L*(U).
Let us define the space:

Hy(U) := {ue H (U) | Httm }men, um € CE(U) n HY(U) s.t. uy, — uin H'(U)} . (4.70)
As we shall see, this is the natural space to look for a weak solution of Eq. (4.62).

Definition 38. 1. The linear form B[-,-] associated with the elliptic operator L in divergence

form is
Blu,v] := J Zn:aijuzivzj + J Zbiuxiv + J cuv, (4.71)
Ui vs U
for u,v e HY(U).
2. We say that we H}(U) is a weak solution of the boundary value problem if
Blu,v] = (f,v), Yve Hy(U), (4.72)

where

(f.v) = J.d:z: F@)o(a). (4.73)

Thus, the problem of proving the existence of a weak solution is equivalent to finding the solution
of a certain integral equation.
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Let us discuss the last definition. Suppose u € C*®(U) is a usual, or strong, solution of the
problem. Then, Eq. (4.69) hold true for all Yo € CX(U). Integrating by parts, and using the
Dirichlet boundary condition, we easily get

Blu,v] = (f,v), Yoe CL(U). (4.74)

More generally, let v be in HE(U) and let v, € C*(U) n HY(U). Then, v,, — v in H*(U) also

implies B[u, V] — Blu,v] and (f,vm) —> (f,v). Thus, the identity Blu,v] = (f,v) is a trivial
m—0 m—00

consequence of u being a solution of Lu = f and of the convergence in H(U).
The space H}(U) is the largest space for which Blu,v] = (f,v) makes sense, for all v e H}(U).
We have:

| Blu, v]| < Zn:Ia”(w)l\uxi(x)l\vzj(fﬂ)\+2 dz|b' () Jug, (2)|[v(@)] + | le(@)lu(z)||v()].
U U U

ij=1 i
(4.75)
By Cauchy-Schwarz inequality,
4.75) < Y o @)ooluallalva, 2 + Y5 16" @) o, 2vl2 + ¢]os [ull2]v]2
ij=1 7 (4.76)

< Clul gy vy oy < o

4.2.2 Lax-Milgram theorem

The next theorem will provide an important tool to prove existence and uniqueness of weak solutions
for elliptic second order PDEs.

Theorem 4.6 (Lax-Milgram). Let H be a Hilbert space. Let B : Hx H — R be a bilinear mapping,
for which there exist a, B > 0 such that

1. |Blu,v]| < a|ulg|v]a Vu,ve H.
2. Blul* < Blu,u] Vue H.
Let f: H — R be a bounded linear functional on H. Then, there exists a unique w € H such that
Blu,v] = (f,v), Vv e H. (4.77)

Coming back to the weak formulation of the boundary value problem (4.62), the Hilbert space
H is H}(U), with U bounded and open, and the bilinear functional is given by (4.71). In this case,
the pairing of f with v, {f,v), is also equal to the inner product (f,v). Thus, to prove existence
and uniqueness of the solution we are left with proving the assumptions of the theorem.

Remark 4.6. Notice that in the case Bl-,-] is symmetric, the statement of the theorem is an
immediate application of Riesz representation principle. In fact, one just notices that Blu,v] defines
an inner product on H. By the Riesz representation theorem, we know that there is an isomorphism
between the inner product defined by B[-,-] and the linear maps acting on H. In other words, for
any bounded linear functional f : H — R there exists a unique u € H such that

Blu,v] = (f,v) = f(v). (4.78)

The significance of the Lax-Milgram theorem is that it does not require the map B to be symmetric.
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Proof. 1. Let w € H. Then v — B|u,v] is a bounded linear functional on H. By Riesy repre-
sentation theorem there exist a unique w € H such that

Blu,v] = (w,v), v e H. (4.79)

Therefore, this defines a mapping

A:H— H, Au = w = Blu,v] = (Au,v). (4.80)

2. We claim that A : H — H is a bounded linear operator. Let A1, A2 € R, uy,us € H. Then,
for all v e H:

(A()\lul + )\211,2),1)) = B[/\lul + AQ’U/Q,'U] = AlB[ul,v] + A2B[’UJ2,’U], (481)

by linearity of B. Then
(4.81) = A (Auq,v) + Ao(Aug,v) = (A1 Aug + AaAug,v) (4.82)
by linearity of the inner product. The equality is true for all v € H. Therefore,
A(Aug + Agug) = A\ Aug + AgAug = A is linear. (4.83)
Moreover, it is bounded:

||Au||? = (Au, Au) = Blu, Au] < allul||Au| = |Au|| < afu| = A is bounded. (4.84)

3. We claim that

(a) A is a one-to-one map,
(b) the range of A, R(A) :={ve H|v = Au for some u € H} is closed in H.

We first prove (a). We need to show that
up # Uy < Auy # Aus. (4.85)
Using point 2), we know that
lA(u1 — u2)| < aflur — s (4.86)

that is Auy # Aus = uy # us. To prove the converse, we compute

Blul® < Blu,u] = (Au,u) < [Aulul = Blur — uz| < [Aus — Aus, (4.87)
that proves (a). Let us now prove (b). Let {v;}jen, v; € R(A), be a convergent sequence in
H:

|v; — v — 0. (4.88)
j—o

We claim that v = Au for some u € H, that is v € R(A). Let u; € H such that v; = Au;. By
Eq. (4.87):

Blug — uyr| < [Auj — Auyr|| = [vj — vy fradt 0, (4.89)
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which proves that u; is a Cauchy series. Being H a Banach space, u; — u in H. We claim
that v = Au. To see this, we use point 2):

| Au; — Au| < afju; —u] — 0, (4.90)
J—00

which implies that v = lim;_, v; = Au.

We now prove that R(A) = H. Suppose that this is false. Then, since R(A) is closed, one
can write the orthogonal decomposition:

H=R(A®RA)" (4.91)
Let w e R (A), w # 0. We have:
6”1'””2 < B[wvw] = (A’U),’U)) = Oa (492)

where the last identity follows from the fact that Aw € R(A) and w € RY(A). This implies
that w = 0, which gives a contradiction. Hence, H = R(A).

By Riesz representation theorem, there exists w € H such that
(f,v) = (w,v), Vv e H. (4.93)

Since the range of A is H, and since A is one-to-one, there exists u € H such that Au = w.
Therefore,
Blu,v] = (Au,v) = (w,v) = (f,v). (4.94)

Hence, there exists u € H such that

Blu,v] = {f,v) Yve H. (4.95)

To conclude, let us prove uniqueness. Let uy, us be two solutions of Eq. (4.95). Then,
Bluy,v] = Blug,v] = (f,v) = Blu; —ug,v] =0 Yve H. (4.96)

Let v = u — %. Then
,6’Hu1 — UQHQ < B[ul — U, U] — ’ILQ] =0, (497)

which gives a contradiction.
O

4.2.3 First existence theorem

Sobolev embeddings and Poincaré inequality

In this section, we shall discuss inequalities that will allow us to prove the assumptions of the
Lax-Milgram theorem, in the PDE context we are interested in.

The difficult part is the lower bound, 8|u|? < B[u,u]. We are looking for an inequality that

allows to bound from below LP norms of Du with LY norms of u. As we shall see, this cannot



4.2. EXISTENCE AND UNIQUENESS FOR SECOND ORDER ELLIPTIC PDES 101

be true for all p,q. Let u € CP(R™), u # 0, ux(x) := u(Az). Suppose that there exists C > 0,
independent of X\, such that:
luxlze@n) < ClDux|Le@ny - (4.98)

By a change of variables,

1

é 1 % 1 q
sty = ([astir@ir) = (Fela@lr) " = (55) Iolusceor
A
(M) ”DUHLP(R") .

|l La@ny < C’Al_%Jr%HDUHLv(Rny (4.100)

(4.99)

Y
Dl = ([astDir@r)” = (il

Therefore, Eq. (4.98) implies:

Thus, if 1 — % + % # 0, by taking either [ — 0 or [ — o0, Eq. (4.100) would imply |ul|zr@n) <0,
that is u = 0, which is a contradiction.
Therefore, we might only hope to prove Eq. (4.98) for:

1 1 1
1+ 2" g2 2 (4.101)
q p g p n

Let 1 < p < n. We define the Sobolev conjugate of p as the number ¢ = p* for which Eq. (4.101)
holds true: n
pri= 12 (4.102)
n—p

Notice that p* > p.

Theorem 4.7 (Gagliardo-Nirenberg-Sobolev inequality). Let 1 < p < n. There exists C = C(n,p)
such that
[ull Lo (gny < Cl D] Lo (), Yu e CH(R™). (4.103)

The proof will be based on the generalized Holder inequality:

J |Huz}d$ HHUiHLm(U), i

i=1

1
— (4.104)
1 Pi

Remark 4.7. The proof crucially relies on the fact that u is compactly supported: the inequality is

trivially false if w = 1. However, the constant C' does not depend on the support of u.

Proof. Let us start with the case p = 1. Using the compact support of u,

u(z) :J dyitie, (T1,  Tim1, Yis Tig1, "+ Tn) (4.105)
—o0
thus
a0
—a0
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For p = 1 the Sobolev conjugate of p is p* =

n o0 n—1
ol < [T ([ anlputer e onl) (1107)
i=1 =0
We have:
0 " o0 n 0 ﬁ
J- dxy|u(z)|»=T <J dxln(J dyi|Du(zy, - -- ,yz’)|> =
—w — i1 \J—0
- ') =

dyl‘D’u’ T1, aylv"')|

Q0 0 n—1
[ ([ dy1|Du<y1,--->|)
—o0
n
<f dy1|Du(ya, - ) J dzy H
Let us now apply the generalized Holder inequality, with p; = n — 1. We have

o0 . o0 L n 0 =
J dzyfu(z)[ 7T < (‘[ dleu(yl,"'N) I (J dz1dy;|Du(zy, - - 7yi7"')> .
—0o0 —00 i=2 —0Q0

(w
([

(4.109)
Next, let us integrate over xo. We get:
© n
f dxydxs|u(x)| "1
—00
0 T 1 n 0 nil
<fd1?2 (J dyl‘DU Y1, > H (J dxldy”Du(xl’... 7y“)>
. %11 . . (4.110)
= (J dxldyzDU($1,y2"')|) dxo <J dleU(y1,332,"‘)|> :
o »
n 0 ﬁ
n(f dz1dy;|Du(wy, w2, - - - 7y17)|> :
i=3 W=

Using again the generalized Holder inequality for the zo integration, choosing p; = n — 1, we have

£ =
(4.110) < <J d:cldx2|Du(x1,x2...)|) .

—0

(4.111)
n o0 o0 n—1
H <J dfﬂzf drydy; | Du(zy, -y, ,T/n)>
i=3 \W—® —0
Iterating the same procedure n times (i.e. integrating again over dzs, - - - ,dx,) we finally get

Jdml +dn|u(z)| 7 (Jdm‘l - dzy| Du(zr, - xn)> (4.112)
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which proves the inequality for p = 1.

Let us now consider 1 < p < n. Let v := |u|?, v > 1 to be chosen later. By Eq. (4.112), we have

<J|u|v?4”1dx> "< f\D|u|’*|dx _ 7f|u|w—1|pu|dx <~ (f|u(71)pp1dx) ’ (f|Du|p>p,

(4.113)

where in the last step we used the Holder with ¢ = p/(p — 1). Now let us choose 7 such that

2= (y—1);2;. That s,

7<ni1_p£1>——pfl ﬁv((n_pl)_(;_l))——pfl, (4.114)

i.e. y=p(n—1)/(n —p) > 1. Plugging this choice into Eq. (4.113) we get:
v =p( )/(n—p) gging q g

<J|u|—)_ (f|ur?l‘1>_ppl <~ (J|Du|p>;, (4.115)

with 1 1 1 1 1
n—1 p-— :p(n— )—n(p— ):n_pzi*, (4.116)
n p np np p
and hence n on
= =p*. 4.117
e S 4 (4.117)
We conclude that: .
e P
(J dx|u|p*> "< ~y (fdm|Du|p) ) l<p<mn, (4.118)
which is what we wanted to prove. [

This inequality can be used to prove that, in some cases, Sobolev spaces are embedded in L4
spaces.

Theorem 4.8. Let U  R™ open and bounded. Let ue Wy (U), 1 <p <n. Then
lulLa@wy < ClDulpewy,  VYqe[l,p*], (4.119)
with C' = C(p,q,U).
Remark 4.8. 1. In particular, for q = p is allowed, since p* > p. We have:
|ullLe ) < ClDul Loy, (4.120)
which takes the name of Poincaré inequality.

2. The Poincaré inequality allows us to prove that on WOI’I’(U), the norms |Dul Ly and
H“HW&*P(U) are equivalent. In fact, one trivially has:

”DUHLP(U) < HUHWOLP(U) (4.121)
and, by Poincaré inequality:

1
P

ez @y < (a0 + 1D 0)) < ClDulLsw) - (4.122)
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3. Theorem 4.8 is telling us that
we WyP(U) =ue LY(U),  Yqe[l,p*]. (4.123)

We stress that the smallest such LY1(U) space is Lp*(U). Indeed, by Holder:

1

Jull, = (L dx|u(x)|q) "< (L dx|u(x)|qp>“1p (L dm)pl < Clul», (4.124)

where 1% + % =1andp= % > 1. We say that the space Wy P(U) is embedded in L (U),
pf=-L 1<p<n.
n—p
Proof. Let u € WyP(U). Then, there exists {tm }men, tm € CP(U) such that wu, — u in WHP(U).
Let us extend u,, to R™, setting u,, = 0 on R™\U. By the GNS inequality,

[tm — wi]px < C|D(Um —wi)|p o 0. (4.125)

,l—00

Thus, {um} is a Cauchy sequence in LP" (U), and hence u,, — @ in LP*(U). Being U bounded,
we L1U), Yq:1 < q < p*. In particular, & € LP(U), which shows that « = @, and therefore that
u e L7 for all ¢ € [1, p*].

By the GNS inequality:

”umHLp*(U) < C|Dum| vy - (4.126)
Then, by convergence in W1P(U):
[Dum | Loy = | D(wm — v+ )| 1o @) o [ Dul ey (4.127)
Also,
Hum”Lp* () = CHumHLQ(U)7 V1<qg< p*, (4.128)
and
H“mHL‘?(U) = |um —u + uHLq(U) . HUHLQ(U)v (4.129)

by convergence in LP* (U). All in all:
g
HUHLQ(U) < CHDUHLP(U)7 (4.130)

for some C = C(U,n,p). O

Proof of existence and uniqueness of the solution

We are now in the position to apply the Lax-Milgram theorem to the weak formulation of the
problem (4.62). Let H = Hg(U) and

Blu,v] = JU ( i a" (2)ug, vz, + i Vi (x)ug,v + c(ac)u(m)v)dx, (4.131)

i,j=1

where u,v € H}(U), a,b,c € L*(U).
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Theorem 4.9. There exist o, 8 > 0 and v = 0 such that

|Blu, v]| < alluf gz ) |v]#20)

and
Bllulsy ) < Blu,ul + 1l o),

Yu,ve H(U).
Proof. 1. By Cauchy-Schwarz:
| Blu, v]| < Clulgaw)lvlmw) -
2. Recall the uniform ellipticity condition:

Da(@)§E = 0/, VEeR™, 60>0.
‘hj

Then: "
f Z aij(x)uxiuzj > 0[ dx|Dul?.
U’i,jZl U
and also:
‘J Z a" (2)ug,ug,; | < Blu,u] + Z 157 o0 f | Dul|uldx + || o Ju2dx .
Ui,j=1 [

Using that, for all € > 0, ab < ea® + ﬁbz, we get:
2, 1 2
[Dullul < e[ |[Dul”+ — | |ul".
U U 4e
Choosing € small enough, Eqgs. (4.135), (4.136) imply:
0
3 de|Du\2 < Blu,u] + C’Jquas,
for some C > 0. Furthermore, by Poincaré inequality:

0
3 | dslDuP = 0 (Jultay + 1Dultay)

for some C’ > 0. Thus, Eqgs. (4.138), (4.139) imply that there exists 8 > 0 such that:

Bllulyy ry < Bluyul +|ul3.

105

(4.132)

(4.133)

(4.134)

(4.135)

(4.136)

(4.137)

(4.138)

(4.139)

(4.140)

O

Theorem 4.10 (1st Existence Theorem). There exists v = 0 such that Yu = v and ¥f € L*(U)

there exists a unique weak solution u e H(U) of

Lu+pu=f, inU,
u =0, on oU.

(4.141)
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Proof. 1. Let v as in Theorem 4.9, and let u > v. We define:
B,[u,v] = Blu,v] + p(u,v). (4.142)
By Theorem 4.9, B,,[u,v] satisfies the hypothesis of the LM theorem.

2. Let f e L*(U). Then, (f,v) = (f,v)r2() defines a bounded linear functional in L?, hence in
H}(U) =« L?*(U). By LM theorem, there exists a unique u € H}(U) such that

B [u,v] = (f,v), Vv e Hy(U). (4.143)

This concludes the proof.
O

Remark 4.9. The value of v depends on the specific equation. Suppose for instance that b = 0,
c>=0. Then

Blu,u] = ZJdma” (T)ug,ug; = 9f|Du\2 = 0Cul| gy (v (4.144)
,J

where the second inequality follows from uniform ellipticity and the last from Poincaré inequality.
This shows that we can choose v = 0, and hence the assumptions of the LM theorem are fulfilled
for Bolu,v] = Blu,v].



Appendix A

Elements of the theory of
distributions

In this appendix we shall give a quick introduction to the theory of distributions. We refer the
reader to, e.g., [Lieb-Loss| for a more details. A distribution is a continuous linear functional on
the space of test functions. That is,

T:C*(U) - C, (A.1)
such that
T(pr + ¢2) = T(¢1) + T(¢2), T(Ag) = AT (o). (A.2)
To define continuity, we need a topology. We say that {¢,}nen, ¢n € CF(U) converges to ¢ €
C*(U), ¢ — ¢, if supp(¢, — ¢) € K = U where K is compact, and
sup | D%@p (z) — DY¢(x)] — 0. (A.3)
zeK m—
We shall denote by D(U) the space of test functions endowed with the above topology. The space of
distributions is the dual of D(U), denoted by D’(U). It turns out that LP(U), and more generally
WkP(U) spaces, can be viewed as spaces of distributions. Given u € W¥*P(U), we define the
associated distribution as

T(¢) := J updx. (A4)

U
Notice that not all the distributions are of this form. A notable example is the Dirac delta function:
02(9) == p(x) - (A.5)

It is not difficult to realize that the delta function cannot be written as in Eq. (A.4). Nevertheless,
one formally writes:

5.(6) = L 5y — 2)d(y)dy. (A.6)

We say that a sequence of distributions 7% € D'(U), k = 1,2, ..., converges in D'(U) to T, T* — T,
if T%(¢) — T(¢) for all ¢ € D(U). Also, if T and T” have the form Eq. (A.4), then T = T" if and
only if u = u' almost everywhere. We say that D*T is the distributional derivative of T if:

(D)T(¢) = (-1)l*IT(D*¢), Vo e D). (A7)
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If T has the form (A.4), this reproduces the definition of weak derivative.

Therefore, Sobolev spaces can also be thought as spaces of distributions. If T has the form
(A.4) for some u, one often uses the notation T' = u. One says that u, g are equal in the sense of
distributions if

Ju¢ - fg(ﬁ, Yo € D(U). (A.8)

In particular, T' = 4, in the sense of distributions means that

f u(y)bly) = j dys(z — y)ély) = d(z),  Voe D(U). (A.9)

It turns out that the Green function G of the Laplacian —A defines a distribution, which solves the

equation:
—AG; =0, , (A.10)

with G, (y) = G(z — y).



Appendix B

Elements of the theory of Hilbert
spaces

In this appendix we recall some basic notions of the theory of Hilbert spaces.

Definition 39 (Hilbert space). Let H be a real linear space. We say that H is a Hilbert space if
it is a Banach space endowed with an inner product, that generates the norm.

An inner product (-,-) : H x H — R is a mapping with the following properties:

1. (u,v) = (v,u), Yu,v e H.

2. u— (u,v) is linear.

3. (u,u) =20, Vue H.

4. (u,u) =0<u=0.
The norm associated with the inner product is

ul = (u,u)* (B.1)

Example B.0.1. 1. L*(U) is a Hilbert space, with inner product (f,g) = §,; fg.

2. H*(U) is a Hilbert space, with inner product (f,g) = Zlalﬁk §y D fD*gdz.

Definition 40 (Orthogonal complement). Let H be a Hilbert space and K < H a closed subspace
of H. The orthogonal complement of K is defined as

Kt :={ueH|(u,v)=0 YveK}. (B.2)
Proposition 11. The orthogonal complement K+ of K — H is a closed subspace of H.
Proof. Let {u;} € K+ such that |uj — u| o 0. Let v € K, then
—0

[, 0)] = [(,0) = (g, 0)] < s — o] — 0, (B3)
where we used the orthogonality between uy and v and the Cauchy-Schwarz inequality. O
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Theorem B.1 (Orthogonal decomposition). Let K < H be a closed subspace of H. Then, every
u € H can be uniquely represented as
u=0+w, (B.4)

withve K and we K+
Remark B.1. e One also writes H = K ® K+.
o This decomposition induces the linear mappings:
Px:H - K, Pru =,

B.5
Pyi:H— K+ (B:5)

PKLU/Z’LU.

The linear operators Pk,Pkl are called orthogonal projections on K, K.

Proof. If ue K, then u = v,w = 0. If u ¢ K we proceed as follows. Let {vy}xen, vr € K such that
— — inf [Ju — v|?. B.6
o=l — inf Ju—o| (B.6)

We write:
Ju—ol? = F(u) + |ul?,  F(v) = [v]* = 2(u,v). (B.7)
Therefore, F(uvy) o infyere F(v) = a. We would like to prove that vy, — v. To prove this, we

—0

write

F(og) + F(v) = ok = 2(u, o) + o] = 2(u, v) =

1
5(\\% +urll® + vk — vil?) = 2(u, vp + vp) =

Vg + vy |2 VL + U 1 B.8
2 - () + Gl B

=2
2

—oF <“’“ ;”l> 4 Slok— vl > 20+ 2 o — .
But since F(vx), F(v;) KT O e have v — vy A 0 = {vy} is a Cauchy sequence, meaning
that vy, — v in K. Our goal is to prove that v is such that u — v e K+. Let o € K. Then

f(t) := F(v+t0) = F(v), VieR= 0= f'(0)=2(v—u,0), YoeK, (B.9)
where we used
2(v,0) — 2(u,0) = 2(v — u, V). (B.10)

d d _ -
%f(t)h:(): %Hv + t0]| — 2(u,v + tv)|t=O:

Therefore, (v — u,¥) = 0 for any 9 € K = v —u € K*. We are left with proving that the
decomposition is unique. Suppose it is not. Then:

U= v +wy = vy + wo, v; € K, wieKL, 1=1,2. (B.11)
Thus, Vo € K:
(u,) = (v1,0) = (V2,0) = 0 = (v] —v2,0) YweK =uv —vye K+ (B.12)

But K is a linear space, hence v; — vs € K. Since K n K+ = {0}, v; — vy = 0. O
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Definition 41 (Orthonormal basis). A family {wi}}"_,, wi € H, is called an orthonormal basis of
H if

1. (wg,w) =0 Vk #1.
2. (wr,wg) = |we|? =1
3ou= Zil(uawi)wi Yue H

In particular,

Jul = > (u, wy)?. (B.13)

k

Definition 42 (Dual space). We denote by H* the set of all bounded linear functionals on H.

Remark B.2. Recall that T : H — R is a linear functional if T (Au + pv) = XT'(u) + pT'(v). We
say that T is bounded if

7] = sup{|T(w)| | ue H,Ju] <1} <. (B.14)

H* is the set of all such maps T. One also uses the notation (T, u) to denote the real number T(u).
(-,+) is called the pairing of H and H*.

Theorem B.2 (Riesz representation theorem). For each T € H* there exists a unique u € H such
that

(T,v) = (u,v) Vv e H. (B.15)

The mapping T — w is a linear isomorphism of H* onto H.
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