Exercises for "Wave Equations of Relativistic Quantum Mechanics"

Preparatory Sheet

Winter Semester 2018/19
Dr. Matthias Lienert

Exercise 1. Index notation.
(a) In four dimensions, calculate $\delta^{\mu}{ }_{\mu}$ and $\eta^{\mu}{ }_{\mu}$.
(b) For 4-vectors $x=\left(x^{0}, x^{1}, x^{2}, x^{3}\right)$ and $a=\left(a^{0}, a^{1}, a^{2}, a^{3}\right)$, calculate the expressions

$$
\begin{equation*}
\partial_{\mu} x^{\nu}, \quad \partial_{\mu} x_{\nu}, \quad \partial^{\nu} x_{\mu}, \quad a^{\mu} \partial_{\mu} x^{\nu}, \quad \partial_{\mu} x^{2}, \quad \partial_{\mu} \sqrt{x^{2}}, \quad \partial_{\mu} \partial^{\mu} x^{2} . \tag{1}
\end{equation*}
$$

(c) Let A, S be two tensors with $A_{\mu \nu}=-A_{\nu \mu}$ and $S_{\mu \nu}=S_{\nu \mu}$. What is the result of the contraction $A_{\mu \nu} S^{\mu \nu}$?
(d) Reformulate the continuity equation

$$
\begin{equation*}
\partial_{t} \rho(t, \mathbf{x})+\operatorname{div} \mathbf{j}(t, \mathbf{x})=0 \tag{2}
\end{equation*}
$$

as an equation for a 4 -vector using index notation. (Here, div is to be understood with respect to the spatial variables only.)

