Exercises for "Wave Equations of Relativistic Quantum Mechanics"

Sheet 1

Winter Semester 2018/19 Dr. Matthias Lienert

Exercise 1. Probability conservation for the Schrödinger equation.

(a) Show that the Schrödinger equation

$$i\partial_t \psi(t, \mathbf{x}) = \left(-\frac{1}{2m}\nabla^2 + V(t, \mathbf{x})\right)\psi(t, \mathbf{x})$$
(1)

implies the continuity equation

$$\partial_t \rho(t, \mathbf{x}) + \operatorname{div} \mathbf{j}(t, \mathbf{x}) = 0 \tag{2}$$

for the probability density $\rho(t, \mathbf{x}) = |\psi|^2(t, \mathbf{x})$ and the probability current $\mathbf{j}(t, \mathbf{x}) = \frac{1}{m} \operatorname{Im} \psi^*(t, \mathbf{x}) \nabla \psi(t, \mathbf{x})$. (Here, ∇ and div are to be understood with respect to \mathbf{x} only.)

(b) Let ψ be a smooth solution of the Schrödinger equation. Assume in addition that for every t, we have $\max_{\mathbf{x}\in\partial B_R(0)} R^2 |\mathbf{j}(t,\mathbf{x})| \to 0$ for $R \to \infty$. Show that (2) implies that the total probability integral

$$P(t) = \int d^3 \mathbf{x} \, |\psi|^2(t, \mathbf{x}). \tag{3}$$

is independent of time, i.e., $\frac{d}{dt}P(t) = 0$.

Exercise 2. Galilean invariance of the Schrödinger equation. Consider the Schrödinger equation (1) with V = 0.

- (a) Show that (1) is invariant under translations $(t, \mathbf{x}) \to (t' = t + \tau, \mathbf{x}' = \mathbf{x} + \mathbf{a})$. To this end, demonstrate that if $\psi'(t, \mathbf{x})$ satisfies (1) in t, \mathbf{x} , then $\psi'(t', \mathbf{x}') = \psi(t' - \tau, \mathbf{x}' - \mathbf{a})$ solves (1) in the primed variables.
- (b) Next, show that (1) is invariant under rotations $(t, \mathbf{x}) \to (t' = t, \mathbf{x}' = R\mathbf{x})$ where $R \in O(3)$ is a rotation $(R^T = R^{-1})$. To do this, prove that if $\psi(t, \mathbf{x})$ solves (1), then also $\psi'(t', \mathbf{x}') = \psi(t, R^{-1}\mathbf{x}')$ solves (1) in the primed variables. Use that the Laplacian is rotation invariant.
- (c) Finally, consider Galilean boosts $(t, \mathbf{x}) \to (t' = t, \mathbf{x}' = \mathbf{x} + \mathbf{u}t)$. These describe the transition from one frame to another moving with relative velocity $-\mathbf{u}$.
 - (i) First convince yourself that the transformation rule $\psi'(t', \mathbf{x}') = \psi(t, \mathbf{x}' \mathbf{u}t)$ does not lead to invariance.

(ii) Now find a function $\Phi(t', \mathbf{x}')$ such that the transformation rule $\psi'(t', \mathbf{x}') = \Phi_{\mathbf{u}}(t', \mathbf{x}') \psi(t', \mathbf{x}' - \mathbf{u}t')$ leads to invariance.

Hint: Apply the transformation rule with unknown $\Phi_{\mathbf{u}}$ to a plane wave solution $e^{i\mathbf{k}\cdot\mathbf{x}-\omega(\mathbf{k})t}$ of (1) and compare it to a boosted plane wave where \mathbf{k} is replaced by $\mathbf{k} + m\mathbf{u}$. Demanding that you exactly obtain a plane wave with wave vector $\mathbf{k} + m\mathbf{u}$ allows you to read off a candidate for $\Phi_{\mathbf{u}}$. It remains to show that this indeed leads to invariance.