Exercises for "Wave Equations of Relativistic Quantum Mechanics"

Sheet 1

Winter Semester 2018/19
Dr. Matthias Lienert

Exercise 1. Probability conservation for the Schrödinger equation.
(a) Show that the Schrödinger equation

$$
\begin{equation*}
i \partial_{t} \psi(t, \mathbf{x})=\left(-\frac{1}{2 m} \nabla^{2}+V(t, \mathbf{x})\right) \psi(t, \mathbf{x}) \tag{1}
\end{equation*}
$$

implies the continuity equation

$$
\begin{equation*}
\partial_{t} \rho(t, \mathbf{x})+\operatorname{div} \mathbf{j}(t, \mathbf{x})=0 \tag{2}
\end{equation*}
$$

for the probability density $\rho(t, \mathbf{x})=|\psi|^{2}(t, \mathbf{x})$ and the probability current $\mathbf{j}(t, \mathbf{x})=\frac{1}{m} \operatorname{Im} \psi^{*}(t, \mathbf{x}) \nabla \psi(t, \mathbf{x})$. (Here, ∇ and div are to be understood with respect to \mathbf{x} only.)
(b) Let ψ be a smooth solution of the Schrödinger equation. Assume in addition that for every t, we have $\max _{\mathbf{x} \in \partial B_{R}(0)} R^{2}|\mathbf{j}(t, \mathbf{x})| \rightarrow 0$ for $R \rightarrow \infty$. Show that (2) implies that the total probability integral

$$
\begin{equation*}
P(t)=\int d^{3} \mathbf{x}|\psi|^{2}(t, \mathbf{x}) \tag{3}
\end{equation*}
$$ is independent of time, i.e., $\frac{d}{d t} P(t)=0$.

Exercise 2. Galilean invariance of the Schrödinger equation.
Consider the Schrödinger equation (1) with $V=0$.
(a) Show that (1) is invariant under translations $(t, \mathbf{x}) \rightarrow\left(t^{\prime}=t+\tau, \mathbf{x}^{\prime}=\mathbf{x}+\mathbf{a}\right)$. To this end, demonstrate that if $\psi^{\prime}(t, \mathbf{x})$ satisfies (11) in t, \mathbf{x}, then $\psi^{\prime}\left(t^{\prime}, \mathbf{x}^{\prime}\right)=$ $\psi\left(t^{\prime}-\tau, \mathbf{x}^{\prime}-\mathbf{a}\right)$ solves (1) in the primed variables.
(b) Next, show that (11) is invariant under rotations $(t, \mathbf{x}) \rightarrow\left(t^{\prime}=t, \mathbf{x}^{\prime}=R \mathbf{x}\right)$ where $R \in O(3)$ is a rotation ($R^{T}=R^{-1}$). To do this, prove that if $\psi(t, \mathbf{x})$ solves (1), then also $\psi^{\prime}\left(t^{\prime}, \mathbf{x}^{\prime}\right)=\psi\left(t, R^{-1} \mathbf{x}^{\prime}\right)$ solves (11) in the primed variables. Use that the Laplacian is rotation invariant.
(c) Finally, consider Galilean boosts $(t, \mathbf{x}) \rightarrow\left(t^{\prime}=t, \mathbf{x}^{\prime}=\mathbf{x}+\mathbf{u} t\right)$. These describe the transition from one frame to another moving with relative velocity $-\mathbf{u}$.
(i) First convince yourself that the transformation rule $\psi^{\prime}\left(t^{\prime}, \mathbf{x}^{\prime}\right)=\psi\left(t, \mathbf{x}^{\prime}-\right.$ $\mathbf{u} t$) does not lead to invariance.
(ii) Now find a function $\Phi\left(t^{\prime}, \mathbf{x}^{\prime}\right)$ such that the transformation rule $\psi^{\prime}\left(t^{\prime}, \mathbf{x}^{\prime}\right)=$ $\Phi_{\mathbf{u}}\left(t^{\prime}, \mathbf{x}^{\prime}\right) \psi\left(t^{\prime}, \mathbf{x}^{\prime}-\mathbf{u} t^{\prime}\right)$ leads to invariance.

Hint: Apply the transformation rule with unknown $\Phi_{\mathbf{u}}$ to a plane wave solution $e^{i \mathbf{k} \cdot \mathbf{x}-\omega(\mathbf{k}) t}$ of (1) and compare it to a boosted plane wave where \mathbf{k} is replaced by $\mathbf{k}+m \mathbf{u}$. Demanding that you exactly obtain a plane wave with wave vector $\mathbf{k}+m \mathbf{u}$ allows you to read off a candidate for $\Phi_{\mathbf{u}}$. It remains to show that this indeed leads to invariance.

