Exercises for "Wave Equations of Relativistic Quantum Mechanics"

Sheet 3
Winter Semester 2018/19
Dr. Matthias Lienert

Exercise 1. Current of the Salpeter equation

(a) Prove that for solution $\psi \in C^{1}\left(\mathbb{R}^{4}\right)$ with $\psi(t, \cdot), \partial_{t} \psi(t, \cdot) \in L^{2}\left(\mathbb{R}^{3}\right)$ of the Salpeter equation

$$
\begin{equation*}
i \partial_{t} \psi(t, \mathbf{x})=\sqrt{-\Delta+m^{2}} \psi(t, \mathbf{x}) \tag{1}
\end{equation*}
$$

the integral $P(t)=\int d^{3} \mathbf{x}|\psi|^{2}(t, \mathbf{x})$ is conserved (independent of time).
Hint: Relate $\psi(t, \mathbf{x})$ to its Fourier transform $\widetilde{\psi}(t, \mathbf{k})$ and $\int d^{3} \mathbf{x}|\psi|^{2}$ to $\int d^{3} \mathbf{k}|\widetilde{\psi}|(t, \mathbf{k})$.
(b) Determine a spatial current $\mathbf{j}(t, \mathbf{x})$ such that $\rho=|\psi|^{2}$ and \mathbf{j} satisfy the continuity equation. What can you say about the transformation behavior of the combined object $j=(\rho, \mathbf{j})$ under Lorentz transformations?

Exercise 2. Current of the Klein-Gordon equation

(a) Prove that the KG equation implies that the 4-current

$$
\begin{equation*}
j^{\mu}(x)=\operatorname{Im}\left(\psi(x) \partial^{\mu} \psi^{*}(x)\right) \tag{2}
\end{equation*}
$$

satisfies the continuity equation $\partial_{\mu} j^{\mu}(x)=0$.
(b) For $\widetilde{\phi}_{+}(\mathbf{k}) \in L^{2}\left(\mathbb{R}^{3}\right)$, consider a positive energy solution of the $K G$ equation $\left(\omega(\mathbf{k})=\sqrt{\mathbf{k}^{2}+m^{2}}\right)$

$$
\begin{equation*}
\psi(x)=\int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}} e^{i \mathbf{k} \cdot \mathbf{x}-i \omega(\mathbf{k}) x^{0}} \widetilde{\phi}_{+}(\mathbf{k}) \tag{3}
\end{equation*}
$$

Let $\Sigma \subset \mathbb{M}$ be a space-like hyperplane.
(i) Beginning with the $t=0$ hyperplane $\Sigma_{t=0}$ show that

$$
\begin{equation*}
P(\Sigma)=\int_{\Sigma} d \sigma_{\mu}(x) \operatorname{Im}\left(\psi(x) \partial^{\mu} \psi^{*}(x)\right) \tag{4}
\end{equation*}
$$

is a positive number. (You may use the Fourier representation of the δ-function $\delta^{(3)}(\mathbf{k})=\frac{1}{(2 \pi)^{3}} \int d^{3} \mathbf{x} e^{i \mathbf{k} \cdot \mathbf{x}}$ here.)
(ii) Use the result of Exercise 3, Sheet 2, to conclude that $P(\Sigma)$ is equal to the same positive number for all space-like hyperplanes $\Sigma \subset \mathbb{M}$ (given the requirements in that exercise).
(c) Show that the KG current (2) can be space-like even for positive energy solutions. Consider the following example (due to Roderich Tumulka, J. Phys. A: Math. Gen. 35 (2002) 7961-7962, https://arxiv.org/abs/quant-ph/ 0202140):

$$
\begin{equation*}
\psi=c_{1} \psi_{1}+c_{2} \psi_{2}+c_{2} \psi_{3} \tag{5}
\end{equation*}
$$

where each ψ_{j} is a plane wave solution with positive energy and wave vector, i.e.

$$
\begin{equation*}
\psi_{j}(x)=e^{-i k_{\mu}^{(j)} x^{\mu}} \tag{6}
\end{equation*}
$$

with $\left(k_{\mu}^{(1)}\right)=(m, 0,0,0),\left(k_{\mu}^{(2)}\right)=(\sqrt{27} m, \sqrt{26} m, 0,0),\left(k_{\mu}^{(3)}\right)=(\sqrt{27} m, 0, \sqrt{26} m, 0)$
and $c_{1}=3, c_{2}=-1 / \sqrt{3}-i, c_{3}=i$.

