Exercises for "Wave Equations of Relativistic Quantum Mechanics"

Sheet 6
Winter Semester 2018/19
Dr. Matthias Lienert

Exercise 1. Dirac γ-matrices

(a) Find a representation of the Clifford algebra relations

$$
\begin{equation*}
\gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}=2 \eta^{\mu \nu} \mathbb{1}, \quad \mu, \nu=0, \ldots, d \tag{1}
\end{equation*}
$$

for (i) $d=1$ and (ii) $d=2$ using (both times) complex 2×2 matrices.
(b) Check that for $d=3$ the set of γ-matrices

$$
\gamma^{0}=\left(\begin{array}{cc}
\mathbb{1}_{2} & 0 \tag{2}\\
0 & -\mathbb{1}_{2}
\end{array}\right), \quad \gamma^{j}=\left(\begin{array}{cc}
0 & \sigma^{j} \\
-\sigma^{j} & 0
\end{array}\right), j=1,2,3 .
$$

satisfies the relations (11) $\sigma^{j}, j=1,2,3$ are the Pauli matrices (see lecture).
(c) For $d=3$, find a different set of γ-matrices from (2) satisfying the relations (1).

Exercise 2. Energy-momentum tensor of the Dirac equation.
Let $\psi \in C^{1}\left(\mathbb{R}^{4}\right)$ be a solution of the Dirac equation. Show that then

$$
\begin{equation*}
T^{\mu \nu}(x)=\frac{i}{4} \bar{\psi}(x)\left[\gamma^{\mu} \partial^{\nu}+\gamma^{\nu} \partial^{\mu}\right] \psi(x)-\frac{i}{4}\left[\left(\partial^{\nu} \bar{\psi}(x)\right) \gamma^{\mu} \psi(x)+\left(\partial^{\mu} \bar{\psi}(x)\right) \gamma^{\nu} \psi(x)\right] \tag{3}
\end{equation*}
$$

is real-valued, symmetric, i.e. $T^{\mu \nu}=T^{\nu \mu}$, and satisfies the continuity equations

$$
\begin{equation*}
\partial_{\mu} T^{\mu \nu}(x)=0, \quad \nu=0,1,2,3 . \tag{4}
\end{equation*}
$$

Exercise 3. Total probability conservation implies the uniqueness of solutions of the Dirac equation
(a) Let $\psi \in C^{1}\left(\mathbb{R}^{4}, \mathbb{C}^{4}\right)$ be a solution of the Dirac equation with $\psi_{\mid \Sigma} \in L^{2}\left(\Sigma, \mathbb{C}^{4}\right)$. Show that the integral

$$
\begin{equation*}
P(\Sigma)=\int_{\Sigma} d \sigma(x) n_{\mu}(x) \bar{\psi}(x) \gamma^{\mu} \psi(x) \tag{5}
\end{equation*}
$$

is non-negative and independent of the choice of the space-like hyperplane Σ.
(b) Let $\psi_{1}, \psi_{2} \in C^{1}\left(\mathbb{R}^{4}, \mathbb{C}^{4}\right)$ be two solutions of the Dirac equation with $\psi_{1}(t, \cdot), \psi_{2}(t, \cdot) \in$ $L^{2}\left(\mathbb{R}^{3}, \mathbb{C}^{4}\right) \forall t \in \mathbb{R}$. Assume furthermore that both ψ_{1}, ψ_{2} satisfy the initial condition $\psi_{i}(0, \mathbf{x})=\psi_{0}(\mathbf{x})$ for some $\psi_{0} \in C^{1}\left(\mathbb{R}^{4}, \mathbb{C}^{4}\right) \cap L^{2}\left(\mathbb{R}^{3}, \mathbb{C}^{4}\right)$.
Show that $P(\Sigma)=P\left(\Sigma^{\prime}\right)$ for all space-like hyperplanes Σ, Σ^{\prime} implies that $\psi_{1}(t, \cdot)=\psi_{2}(t, \cdot) \forall t \in \mathbb{R}$ and hence $\psi_{1}=\psi_{2}$.
Hint: Consider equal-time hyperplanes Σ_{t} in a particular frame first.

