Exercises for "Wave Equations of Relativistic Quantum Mechanics"

Sheet 12

Winter Semester 2018/19 Dr. Matthias Lienert

Exercise 1. No-go theorem for potentials in multi-time equations with Laplacians Consider the multi-time system

$$i\partial_{t_1}\psi = (-\Delta_1 + V_1(\mathbf{x}_1, \mathbf{x}_2))\psi,$$

$$i\partial_{t_2}\psi = (-\Delta_2 + V_2(\mathbf{x}_1, \mathbf{x}_2))\psi$$
(1)

for a multi-time wave function $\psi : \mathbb{R}^4 \times \mathbb{R}^4 \to \mathbb{C}$. Here, Δ_i denotes the Laplacian with respect to \mathbf{x}_i , i = 1, 2 and $V_1, V_2 : \mathbb{R}^6 \to \mathbb{R}$ are smooth functions.

- (a) State the appropriate consistency condition for this case.
- (b) Show that this consistency condition is only satisfied if V_1 does not depend on \mathbf{x}_2 and V_2 does not depend on \mathbf{x}_1 .
- (c) What does this result mean physically?

Exercise 2. The current density form ω_i

For every $\mu, \nu = 0, 1, 2, 3$ let

$$j^{\mu\nu} : \mathbb{R}^4 \times \mathbb{R}^4 \to \mathbb{R}, \quad (x_1, x_2) \mapsto j^{\mu\nu}(x_1, x_2)$$
 (2)

be a C^1 -function with compact support in the spatial variables $\mathbf{x}_1, \mathbf{x}_2$.

For N = 2 particles, the *current density form* ω_j is defined to be the differential form (a 6-form on \mathbb{R}^8)

$$\omega_j = \sum_{\mu,\nu=0}^3 (-1)^{\mu+\nu} j^{\mu\nu} (dx_1^0 \wedge \dots \wedge \widehat{dx_1^\mu} \wedge \dots \wedge dx_1^3) \wedge (dx_2^0 \wedge \dots \wedge \widehat{dx_2^\nu} \wedge \dots \wedge dx_2^3)$$
(3)

where $\widehat{(\cdot)}$ denotes omission.

(a) Let $\Sigma \subset \mathbb{M}$ be a spacelike hyperplane with future-pointing unit normal vector field n. Use the identity

$$n_{\mu}d\sigma = (-1)^{\mu} dx^{0} \wedge \dots \wedge \widehat{dx^{\mu}} \wedge \dots \wedge dx^{3}$$
(4)

to show that the integral

$$P(\Sigma) = \int_{\Sigma} d\sigma(x_1) \int_{\Sigma} d\sigma(x_2) n_{\mu}(x_1) n_{\nu}(x_2) j^{\mu\nu}(x_1, x_2)$$
(5)

can be rewritten as

$$P(\Sigma) = \int_{\Sigma \times \Sigma} \omega_j. \tag{6}$$

(b) Assuming that $j^{\mu\nu}$ satisfies the continuity equations

$$\partial_{1,\mu} j^{\mu\nu}(x_1, x_2) = 0, \quad \nu = 0, 1, 2, 3 \text{ and } \partial_{2,\nu} j^{\mu\nu}(x_1, x_2) = 0, \quad \mu = 0, 1, 2, 3,$$
(7)

show that the exterior derivative $d\omega_j$ of ω_j vanishes.

- (c) Given (7), show that $P(\Sigma) = P(\Sigma')$ for all pairs of space-like hyperplanes Σ, Σ' . *Hint:* Use the theorem of Stokes for ω_j together with the result of (b).
- (d) Write down the analog of ω_j for 1+1 spacetime dimensions and convince yourself that the previous points also hold then.
- (e) In 1+1 spacetime dimensions, let

$$\mathscr{S}_1 := \{ (t_1, z_1, t_2, z_2) \in \mathbb{R}^2 \times \mathbb{R}^2 : (t_1 - t_2)^2 - (z_1 - z_2)^2 < 0 \text{ and } z_1 < z_2 \}, (8)$$

i.e., the set of space-like configurations with $z_1 < z_2$. Using Stokes' theorem, extract a condition on the tensor current $j^{\mu\nu}$ such that

$$\int_{(\Sigma \times \Sigma) \cap \mathscr{S}_1} \omega_j = \int_{(\Sigma' \times \Sigma') \cap \mathscr{S}_1} \omega_j \tag{9}$$

holds for all pairs of space-like hyperplanes $\Sigma, \Sigma' \subset \mathbb{R}^2$.

Hint: The condition on $j^{\mu\nu}$ should be a linear condition between the components of j which needs to hold on a subset of the boundary $\partial \mathscr{S}_1$ of \mathscr{S}_1 .

(f) Let $j^{\mu\nu} = \overline{\psi}\gamma_1^{\mu}\gamma_2^{\nu}\psi$ where ψ solves the free multi-time Dirac equations. What is the physical meaning of (9)?