Groups and Representations

Homework Assignment 1 (due on 23 Oct 2019)

Problem 1

For the group table of a finite group prove that no two elements within one row (or column) can be the same.

Problem 2

List all possible groups (up to isomorphy) of order 3 and 4 by explicitly constructing their group tables.

Problem 3

Let (G, \circ) and (G', \bullet) be groups and let $f: G \to G'$ be a homomorphism. Show that f maps the identity in G to the identity in G', i.e. $f(e_G) = e_{G'}$.

Problem 4

Show that the map $\exp: (\mathbb{R}, +) \to (\mathbb{C} \setminus \{0\}, \cdot), t \mapsto e^{2\pi i t}$ is a group homomorphism. Determine kernel and image of exp, and check whether these are subgroups of $(\mathbb{R}, +)$ and $(\mathbb{C} \setminus \{0\}, \cdot)$, respectively.

Problem 5

Let

$$\mathcal{B} = \{ f : \mathbb{R} \to \mathbb{R} | f \text{ bijective} \}$$
 and $\mathcal{A} = \{ f : \mathbb{R} \to \mathbb{R} | \exists a, b \in \mathbb{R}, a \neq 0 : f(x) = ax + b \}$.

Show that (\mathcal{B}, \circ) , with \circ the composition of functions, is a group and that \mathcal{A} is a subgroup of \mathcal{B} . Is \mathcal{B} or \mathcal{A} abelian?

www.tinyurl.com/ws1920-grar