Groups and Representations

Homework Assignment 2 (due on 30 Oct 2019)

Problem 6

Write down the group table for S_3 .

Problem 7

Let G be a finite group acting on the set M; for $m \in M$ let $G_m = \{g \in G : gm = m\}$. Show:

- a) For each $m \in M$ the set G_m is a subgroup of G.
- b) If $n \in Gm$ then $G_n \cong G_m$.
- c) $|Gm| \cdot |G_m| = |G|$ (orbit-stabiliser theorem).

Problem 8

Let W be the symmetry group of a cube. (We consider only rotations, no reflections.) Determine |W|, the order of W, by considering the action of W on corners, edges or faces of the cube and applying the orbit-stabiliser theorem.

Problem 9

Let G be a group. For every $g \in G$ conjugation with g is defined as the map $\hat{g}: G \to G$, $x \mapsto gxg^{-1}$. Show:

- a) Conjugation defines an action, $(g,h) \mapsto \hat{g}(h)$, of G on itself.
- b) G is abelian iff every orbit of this action has length one.

Problem 10

Let $\varphi: G \to H$ be a group homomorphism with kernel K and image B. Show:

- a) K is a normal subgroup of G.
- b) φ induces an isomorphism $\hat{\varphi}: G/K \to B$.

Problem 11

Let $\phi: \mathrm{SL}(2,\mathbb{C}) \to \mathrm{O}(3,1)$ be the homomorphism to the Lorentz group, as introduced in the lectures. Let $\alpha, \beta \in [0,2\pi], r > 0$ and

$$U = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}, \qquad V = \begin{pmatrix} e^{-i\beta} & 0 \\ 0 & e^{i\beta} \end{pmatrix}, \qquad B = \begin{pmatrix} r & 0 \\ 0 & \frac{1}{r} \end{pmatrix}.$$

Show:

- a) $\phi(U)$ is a rotation about the x_2 -axis by an angle 2α .
- b) $\phi(V)$ is a rotation about the x_3 -axis by an angle 2β .
- c) $\phi(B)$ is a boost in x_3 -direction, i.e.

$$\phi(B) = \begin{pmatrix} \cosh t & 0 & 0 & \sinh t \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \sinh t & 0 & 0 & \cosh t \end{pmatrix}$$

for some $t \in \mathbb{R}$.