Groups and Representations

Homework Assignment 2 (due on 30 Oct 2019)

Problem 6

Write down the group table for S_{3}.

Problem 7

Let G be a finite group acting on the set M; for $m \in M$ let $G_{m}=\{g \in G: g m=m\}$. Show:
a) For each $m \in M$ the set G_{m} is a subgroup of G.
b) If $n \in G m$ then $G_{n} \cong G_{m}$.
c) $|G m| \cdot\left|G_{m}\right|=|G|$ (orbit-stabiliser theorem).

Problem 8

Let W be the symmetry group of a cube. (We consider only rotations, no reflections.) Determine $|W|$, the order of W, by considering the action of W on corners, edges or faces of the cube and applying the orbit-stabiliser theorem.

Problem 9

Let G be a group. For every $g \in G$ conjugation with g is defined as the map $\hat{g}: G \rightarrow G$, $x \mapsto g x g^{-1}$. Show:
a) Conjugation defines an action, $(g, h) \mapsto \hat{g}(h)$, of G on itself.
b) G is abelian iff every orbit of this action has length one.

Problem 10

Let $\varphi: G \rightarrow H$ be a group homomorphism with kernel K and image B. Show:
a) K is a normal subgroup of G.
b) φ induces an isomorphism $\hat{\varphi}: G / K \rightarrow B$.

Problem 11

Let $\phi: \mathrm{SL}(2, \mathbb{C}) \rightarrow \mathrm{O}(3,1)$ be the homomorphism to the Lorentz group, as introduced in the lectures. Let $\alpha, \beta \in[0,2 \pi], r>0$ and

$$
U=\left(\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right), \quad V=\left(\begin{array}{cc}
\mathrm{e}^{-i \beta} & 0 \\
0 & \mathrm{e}^{i \beta}
\end{array}\right), \quad B=\left(\begin{array}{cc}
r & 0 \\
0 & \frac{1}{r}
\end{array}\right) .
$$

Show:
a) $\phi(U)$ is a rotation about the x_{2}-axis by an angle 2α.
b) $\phi(V)$ is a rotation about the x_{3}-axis by an angle 2β.
c) $\phi(B)$ is a boost in x_{3}-direction, i.e.

$$
\phi(B)=\left(\begin{array}{cccc}
\cosh t & 0 & 0 & \sinh t \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\sinh t & 0 & 0 & \cosh t
\end{array}\right)
$$

for some $t \in \mathbb{R}$.

