Groups and Representations

Homework Assignment 3 (due on 6 Nov 2019)

Problem 12

Let $(\mathbb{R} \setminus \{0\}, \cdot)$ be the multiplicative group of real numbers, and

$$\Gamma(x) = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}, \quad x \in \mathbb{R} \setminus \{0\},$$

a representation on \mathbb{C}^2 . Find all invariant subspaces. Is Γ completely reducible?

Problem 13

Let $\varphi:G\to \mathrm{U}(n)$ be a unitary irreducible representation of a group. Show: If G is abelian then n=1.

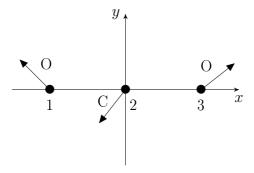
Problem 14

Let G be a finite group and $\Gamma: G \to \operatorname{GL}(V)$ a finite dimensional representation. Prove that $|\det \Gamma(g)| = 1 \ \forall g \in G$.

Problem 15

 CO_2 is a linear molecule; in its ground state the carbon atom sits in the middle between the two oxygen atoms. The symmetry group of this system is isomorphic to the Klein four group $V_4 \cong \mathbb{Z}_2 \times \mathbb{Z}_2$ and has the following elements: the identity (e), reflections (σ_x) and σ_y across the x- and y-axis, respectively, and a rotation (R) by 180° about the origin.

A coplanar vibration entails displacements of the 3 atoms in a fixed plane. It can be characterised by a vector $(x_1, y_1, x_2, y_2, x_3, y_3) \in \mathbb{R}^6$.



Determine the action of the symmetry group on the canonical basis of \mathbb{R}^6 . Write down the resulting six dimensional representation of V_4 . Is this representation irreducible?

Problem 16

Let D_4 be the symmetry group of a square. We denote by R the rotation by $\frac{\pi}{2}$ and by σ the reflection across the diagonal through the lower left and upper right corner. We write all group elements as $R^k \sigma^{\ell}$ for some k and ℓ . (Why is this possible and which values do k and ℓ take?)

- a) Find all conjugacy classes. HINT: Determine $\sigma R \sigma$ first, this simplifies calculations a lot.
- b) Determine all normal subgroups and the isomorphism types of the corresponding quotient groups (i.e. name known groups to which they are isomorphic).
- c) Is D_4 isomorphic to a direct product of non-trivial subgrous?

Problem 17 (Continuation of Problem 11)

Let $\Lambda \in \mathcal{O}(3,1)$ be time orientation preserving, i.e. $d(e_0, \Lambda e_0) > 0$. Show that there exist $U, V \in \mathcal{O}(3)$ and a boost B in x_3 -direction, such that

$$\Lambda = UBV$$
.

HINT: First consider Λe_0 and find U and B such that $B^{-1}U^{-1}\Lambda e_0 = e_0$.