Groups and Representations

Homework Assignment 5 (due on 20 Nov 2019)

Problem 23

We consider a rotationally invariant Hamiltonian. Let E be an eigenvalue of H with eigenspace V_{E} spanned by the spherical harmonics $Y_{1 m}(\varphi, \vartheta)=\cos \vartheta \mathrm{e}^{\mathrm{i} m \varphi}$ with a fixed radial part R, i.e. $V_{E}=\operatorname{span}\left(\left\{R(r) Y_{1 m}(\varphi, \vartheta): m=-1,0,1\right\}\right) .{ }^{2}$
V_{E} carries a three-dimensional irreducible representation of $\mathrm{O}(3)$, defined by $(\Gamma(U) \psi)(x)=$ $\psi\left(U^{-1} x\right) . \mathrm{O}(3)$ contains the subgroup $D_{3}=\left\{e, C, \bar{C}, \sigma_{1}, \sigma_{2}, \sigma_{3}\right\} \cong S_{3}$, where C and \bar{C} denote rotations about the z-axis (cf. Section 2.4.1).
Study the effect of perturbations that are only invariant under D_{3} or $\mathbb{Z}_{3} \cong\{e, C, \bar{C}\}$. Determine the relevant irreducible representations with their multiplicities and sketch the possible splitting of energy levels.

Problem 24

We consider once more the CO_{2} molecule of Problem 15.
a) How many non-equivalent irreps does the symmetry group V_{4} have, and what are their dimensions?
b) Determine the character table for V_{4}.

In Problem 15 we found a six-dimensional representation of V_{4}.
c) Which irreps are contained in this six-dimensional representation?
d) Decompose the six-dimensional carrier space into irreducible invariant subspaces by applying the generalised projection operators.

Problem 25

$V=\mathbb{C}^{2}$ carries the 2-dimensional irreducible representation of $D_{3} \cong S_{3}$ (cf. Section 2.4.1). On $W=V \otimes V$ we consider the corresponding product representation. Decompose W into irreducible invariant subspaces by applying the generalised projection operators, and determine the Clebsch-Gordan coefficients.

[^0]
[^0]: ${ }^{2}$ We use spherical coordinates

 $$
 \left(\begin{array}{l}
 x \\
 y \\
 z
 \end{array}\right)=\left(\begin{array}{c}
 r \sin \vartheta \cos \varphi \\
 r \sin \vartheta \sin \varphi \\
 r \cos \vartheta
 \end{array}\right)
 $$

