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Problem 26

We onsider the abelian group C3 = {e, a, a−1} ∼= Z3.

a) How many (non-equivalent) irreps does C3 have, what are their dimensions and how

often do they appear in the regular rep?

b) Show that

e1 =
1

3
(e + a+ a−1)

is a primitive idempotent, generating the trivial rep.

) Use the ansatz

e2 = xe + ya+ za−1

in order to �nd all primitive idempotents.

d) For eah primitive idempotent �nd out whether it generates a new (non-equivalent)

irrep or an irrep equivalent to one generated by a previous idempotent.

e) Speify all minimal left ideals and onstrut the orresponding irreps of C3. Collet

your results in a table.

Problem 27

For σ ∈ Sn and j = 1, . . . , n let kj(σ) be the number of (disjoint) yles of length j in σ,

e.g. k1(e) = n and kj(e) = 0 ∀ j > 1. Show:

a) The onjugay lass of σ is determined by its yle struture, i.e.

[σ] := {τστ−1 : τ ∈ Sn} = {τ ∈ Sn : kj(τ) = kj(σ), j = 1, . . . , n} .

It's almost trivial using the birdtrak notation (see Setion 1.4)!

Hint: In order to make the yle struture visible onsider the birdtrak diagram

of σ and onnet the �rst line on the left to the �rst line on the right et.; e.g. for

(12), (132) ∈ S3 onsider

and .

b) The number of elements of a lass is given by

|[σ]| =
n!

∏

j≤n

kj!jkj
.



Problem 28

In birdtrak notation we denote symmetrisers and anti-symmetrisers by open and solid

bars, respetively, i.e.

1

n!
s = 1

n!

∑

p∈Sn

p =
.

.

.

.

.

.

and

1

n!
a = 1

n!

∑

p∈Sn

sgn(p) =
.

.

.

.

.

.

.

Note that we inlude a fator of

1

n!
in the de�nition of bars over n lines. For instane,

=
1

2

(

+
)

and

=
1

3!

(

− − − + +

)

.

(∗)

Notie that in birdtrak notation the sign of a permutation, (−1)K , is determined by the

number K of line rossings; if more than two lines ross in a point, one should slightly

perturb the diagram before ounting, e.g.  (K=3).

a) Expand and as in (∗).

We also use the orresponding notation for partial (anti-)symmetrisation over a subset of

lines, e.g.

=
1

2

(

+

)

or

=
1

2

(

−

)

=
1

2

(

−

)

.

It follows diretly from the de�nition of S and A that when intertwining any two lines S

remains invariant and A hanges by a fator of (−1), i.e.

.

.

.

.

.

.

=
.

.

.

.

.

.

and

.

.

.

.

.

.

= −
.

.

.

.

.

.

.

b) Explain why this implies that whenever two (or more) lines onnet a symmetriser

to an anti-symmetrizer the whole expression vanishes, e.g.

= 0 .

Symmetrisers and anti-symmetrisers an be built reursively. To this end notie that on

the r.h.s. of
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.

. =
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we have sorted the terms aording to where the last line is mapped � to the nth, to the

(n−1)th, . . . , to the �rst line line. Multiplying with

.

.

.

.

.

.

from the left and disentangling

lines we obtain the ompat relation

.

.

.

.

.

. =
1

n
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. + (n− 1)
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.



 .

) Derive the orresponding reursion relation for anti-symmetrisers.


