Groups and Representations

Homework Assignment 6 (due on 27 Nov 2019)

Problem 26

We consider the abelian group $C_{3}=\left\{e, a, a^{-1}\right\} \cong \mathbb{Z}_{3}$.
a) How many (non-equivalent) irreps does C_{3} have, what are their dimensions and how often do they appear in the regular rep?
b) Show that

$$
e_{1}=\frac{1}{3}\left(e+a+a^{-1}\right)
$$

is a primitive idempotent, generating the trivial rep.
c) Use the ansatz

$$
e_{2}=x e+y a+z a^{-1}
$$

in order to find all primitive idempotents.
d) For each primitive idempotent find out whether it generates a new (non-equivalent) irrep or an irrep equivalent to one generated by a previous idempotent.
e) Specify all minimal left ideals and construct the corresponding irreps of C_{3}. Collect your results in a table.

Problem 27

For $\sigma \in S_{n}$ and $j=1, \ldots, n$ let $k_{j}(\sigma)$ be the number of (disjoint) cycles of length j in σ, e.g. $k_{1}(e)=n$ and $k_{j}(e)=0 \forall j>1$. Show:
a) The conjugacy class of σ is determined by its cycle structure, i.e.

$$
[\sigma]:=\left\{\tau \sigma \tau^{-1}: \tau \in S_{n}\right\}=\left\{\tau \in S_{n}: k_{j}(\tau)=k_{j}(\sigma), j=1, \ldots, n\right\} .
$$

It's almost trivial using the birdtrack notation (see Section 1.4)!
Hint: In order to make the cycle structure visible consider the birdtrack diagram of σ and connect the first line on the left to the first line on the right etc.; e.g. for (12), (132) $\in S_{3}$ consider

and

b) The number of elements of a class is given by

$$
|[\sigma]|=\frac{n!}{\prod_{j \leq n} k_{j}!j^{k_{j}}}
$$

Problem 28

In birdtrack notation we denote symmetrisers and anti-symmetrisers by open and solid bars, respectively, i.e.

$$
\frac{1}{n!} s=\frac{1}{n!} \sum_{p \in S_{n}} p=\underset{\square-\square}{\square} \quad \text { and } \quad \frac{1}{n!} a=\frac{1}{n!} \sum_{p \in S_{n}} \operatorname{sgn}(p)=\bar{\square} .
$$

Note that we include a factor of $\frac{1}{n!}$ in the definition of bars over n lines. For instance,

$$
\begin{align*}
& \square==\frac{1}{2}(\bar{\square}+X \text { and } \\
& \square=\frac{1}{3!}(\bar{\square}-\bar{X}-\bar{X}+\cdots+X \tag{*}
\end{align*}
$$

Notice that in birdtrack notation the sign of a permutation, $(-1)^{K}$, is determined by the number K of line crossings; if more than two lines cross in a point, one should slightly perturb the diagram before counting, e.g. $\nsucc \not \not(K=3)$.
a) Expand च— and 二Е as in (*).

We also use the corresponding notation for partial (anti-)symmetrisation over a subset of lines, e.g.

$$
\begin{aligned}
& \bar{\square}=\frac{1}{2}(\square+\cdots) \text { or } \\
& \bar{\infty}=\frac{1}{2}(\square)=\frac{1}{2}(\square-\infty)
\end{aligned}
$$

It follows directly from the definition of S and A that when intertwining any two lines S remains invariant and A changes by a factor of (-1), i.e.

b) Explain why this implies that whenever two (or more) lines connect a symmetriser to an anti-symmetrizer the whole expression vanishes, e.g.

$$
\bar{\square}=0 .
$$

Symmetrisers and anti-symmetrisers can be built recursively. To this end notice that on the r.h.s. of
we have sorted the terms according to where the last line is mapped - to the n th, to the $(n-1)$ th, \ldots, to the first line line. Multiplying with from the left and disentangling lines we obtain the compact relation

$$
\square\left[\square=\frac{1}{n}\left(\frac{-\pi}{\square}+(n-1) \underset{\square}{\square}\right) .\right.
$$

c) Derive the corresponding recursion relation for anti-symmetrisers.

