Groups and Representations

Homework Assignment 8 (due on 11 Dec 2019)

Problem 34

a) Determine the dimensions of all irreps of S_{4} using the methods of Section 5.5 (hook rule).
b) Determine the character table of S_{4} using the methods of Section 5.5 (recursive method).
c) Consider the following product representations of S_{4}, determine which irreps they contain and how many times. Also write their decomposition into irreps in terms of Young diagrams.
(i)

(ii)

\otimes

(iii)

\otimes

(iv)

\otimes

Problem 35
Let $\vec{n} \in S^{2} \hookrightarrow \mathbb{R}^{3}$ be a unit vector in \mathbb{R}^{3} and $\varphi \in \mathbb{R}$. We denote by $\sigma_{j}, j=1,2,3$, the Pauli matrices

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -\mathrm{i} \\
\mathrm{i} & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

and we define

$$
\vec{\sigma}=\left(\begin{array}{lll}
\sigma_{1} & \sigma_{2} & \sigma_{3}
\end{array}\right) .
$$

Show that

$$
\exp \left(-\mathrm{i} \frac{\varphi}{2} \vec{\sigma} \cdot \vec{n}\right)=\mathbb{1} \cos \frac{\varphi}{2}-\mathrm{i} \vec{\sigma} \cdot \vec{n} \sin \frac{\varphi}{2},
$$

and verify that $\exp \left(-\mathrm{i} \frac{\varphi}{2} \vec{\sigma} \cdot \vec{n}\right) \in \mathrm{SU}(2)$.
Hint: First calculate $(\vec{\sigma} \cdot \vec{n})^{2}$.

Problem 36

We define $\mathfrak{s l}(2, \mathbb{C}):=\left\{A \in \mathbb{C}^{2 \times 2}: \operatorname{tr} A=0\right\}$. Then the matrix exponential is a map

$$
\exp : \mathfrak{s l}(2, \mathbb{C}) \rightarrow \mathrm{SL}(2, \mathbb{C})=\left\{B \in \mathbb{C}^{2 \times 2}: \operatorname{det} B=1\right\}
$$

a) Show that the matrix

$$
S_{a}=\left(\begin{array}{cc}
-1 & a \\
0 & -1
\end{array}\right)
$$

is in the image of exp iff $a=0$.
b) Is $\operatorname{SL}(2, \mathbb{C})$ compact?

