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1 Introdution

1.1 Why groups? Why representations?

Groups are

. . . ubiquitous,

. . . ome in many di�erent guises.

In this ourse: mainly �nite groups & ompat Lie groups.

(There's muh more, but our seletion is not only interesting in its own right, it's also a

good starting point.)

Representations (reps)

. . . (very roughly) study groups using vetor spaes (linearity!),

. . . onvenient,

. . . in this ourse mostly vetor spaes over C, sometimes over R, probably never over

�nite �elds (again this is a good starting point for everything else),

. . . tell us something about the group in question,

. . . are how groups often show up in appliations, e.g. in physis (quantum mehanis,

atomi energy levels, seletion rules, masses in partile physis,. . . ).

Course plan (very roughly)

. . . develop rather omplete theory for reps of �nite groups (on omplex vetor spaes),

. . . study symmetri groups (and reps) in some details,

. . . see what we an arry over / what is new for (ompat) Lie groups.
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1.2 Basi de�nitions

De�nition: (group)

Let G 6= ∅ be a set and ◦ an operation ◦ : G×G→ G. We all (G, ◦) a group if:

(G1) a, b ∈ G ⇒ a ◦ b ∈ G (losure)

(already implied by ◦ : G×G→ G)

(G2) (a ◦ b) ◦ c = a ◦ (b ◦ c) ∀ a, b, c ∈ G (assoiativity)

(G3) ∃ e ∈ G with a ◦ e = a = e ◦ a ∀ a ∈ G (identity / neutral element)

(G4) for eah a ∈ G ∃ a−1 ∈ G with a ◦ a−1 = e = a−1 ◦ a, with e from (G3) (inverses)

If it is lear from the ontext whih operation we talk about, then we often just write G
instead of (G, ◦).
De�nition: (abelian group)

A group (G, ◦) is alled ommutative or abelian, if in addition we have:

(G5) a ◦ b = b ◦ a ∀ a, b ∈ G (ommutativity)

Remarks:

1. The identity e is unique.

2. For eah a ∈ G the orresponding inverse is unique.

3. Often we all the operation multipliation (or group multipliation) and write

a · b or just ab instead of a ◦ b.
4. If the number of group elements is �nite, we speak of a �nite group, and we all the

number of group elements the order |G| of the group. (otherwise: in�nite group).

5. A �nite group (order n) is ompletely determined by its group table (or multipliation

table) (with n2
elements)

e a b c · · ·
e e a b c · · ·
a a a2 ab ac · · ·
b b ba b2 bc · · ·
c c ca cb c2 · · ·
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Fat: No two elements within one row (or olumn) an be the same. (see exerises)

This implies the rearrangement lemma: If one multiplies all elements of a group

{e, a, b, c, . . .} by one of the elements, one obtains again all elements, in general in a

di�erent order.

In other words: Eah row and eah olumn in the group multipliation table ontains

eah of the group elements exatly one.
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Examples:

1. (Z,+): e = 0, a−1 = −a for a ∈ Z (abelian); analogously (R,+) or (C,+)

2. (R\{0}, ·): e = 1, x−1 = 1
x
for x ∈ R (abelian); analogously (Q\{0}, ·) or (C\{0}, ·)

3. G: set of all symmetry operations (rotations, re�etions, . . . ), whih leave a ertain

objet (atom, moleule, geometrial objet

2

, . . . ) invariant.

◦: subsequent appliation of operations.

G an be �nite (e.g. for a ube) or in�nite (e.g. for a sphere) � in general non-abelian.

De�nition: (subgroup)

Let (G, ◦) be a group. A subset H ⊆ G, whih satis�es (G1)�(G4) (with the same operation

◦), is alled a subgroup of G.

Remarks:

1. Every group has two trivial subgroups: {e} and G.
All other subgroups are alled non-trivial.

2. |G| (if �nite) is divisible by |H|. (will be proved later)

De�nition: (homomorphism)

Given two groups (G, ◦) and (G′, •), a map f : G→ G′
is alled a homomorphism, if

f(a ◦ b) = f(a) • f(b) ∀ a, b ∈ G .

Remarks:

1. A homomorphism f maps the identity to the identity and inverses to inverses, more

preisely f(eG) = eG′
and f(a−1) = f(a)−1 ∀ a ∈ G.

2. The image of the homomorphism f : G→ G′
is

im(f) = f(G) = {f(g) : g ∈ G} ,

the kernel of f is the preimage of the identity of G′
,

ker(f) = {g ∈ G : f(g) = eG′} .

De�nition: (isomorphism)

A bijetive homomorphism f : G→ G′
is alled isomorphism. We then say that G and G′

are isomorphi, and write G ∼= G′
.

Remark:

1. Isomorphi groups have the same group table, i.e. they are idential exept for what

we all their elements (and the group operation). (orrespondingly for in�nite groups)

2

For a mattress (retangle) we obtain the Klein four-group, see e.g. https://opinionator.blogs.

nytimes.om/2010/05/02/group-think/
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1.3 Examples, further properties & outlook

1. A group of the kind {
e, a, a2, . . . , an−1

︸ ︷︷ ︸
pairwise di�erent

}
, an = e ,

is alled yli group Cn
The smallest non-yli group is of order 4.
The smallest non-abelian group is of order 6.

2. A group with two elements: {e, a}
We have: ee = e, ea = a and ae = e.
What about aa? (= a or = e)
Group table:

e a

e e a
a a e

. . . only possibility sine we annot have an element twie in one row or olumn, (see

above)

This is C2. (see example 1)

⇒ Any group of order 2 is isomorphi to C2;

in partiular C2
∼= Z2 := ({0, 1},+ mod 2).

3. Examples for groups isomorphi to Z2:

(a) Consider the following two maps Rn → Rn
,

e : ~x 7→ ~x ,

P : ~x 7→ −~x (parity) .

group operation: omposition of maps

⇒ e ◦ e = e, e ◦ P = P , P ◦ e = P , P ◦ P = e, i.e. isomorphi to Z2. (it has to)

(b) Instead of the two spatial transformations onsider now

operators ating on (real- or omplex-valued) funtions f of ~x:

(Oef)(~x) = f(~x)

(OPf)(~x) = f(−~x)

⇒ O2
e = Oe, OeOP = OP , OPOe = OP , O

2
P = Oe, i.e. isomorphi to Z2.

Remark: These operators are linear, i.e.

O(αf + βg) = αO(f) + βO(g) .
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() Consider operators ating on omplex-valued funtions of two variables

(physis: wave funtion of two partiles)

(OEψ)(~x1, ~x2) = ψ(~x1, ~x2)

(OSψ)(~x1, ~x2) = ψ(~x2, ~x1)

O2
S = OE. . . ⇒ {OE, OS} ∼= Z2

(di�erent names than operators in example 3b in order to emphasise the di�erent

realisations)

When we will have learned about group ations and representations, we an revisit these

examples from a di�erent point of view, not just as homomorphisms.

Z2 looks rather innoent, but many onepts whih we want to disuss in the following an

already by illustrated for Z2.
2019-10-15

4. Consider now example 3b and two funtions fe and fo with

(OPfe)(~x) = fe(~x) �even parity�

(OPfo)(~x) = −fo(~x) �odd parity�

(e.g. ~x =
(
x
y
z

)
∈ R3

, fe(~x) = x2 + yz, fo(~x) = xy sin z)

fe und fo show a speial behaviour under appliation of {Oe, OP}:
• fe is invariant under OP

• fo only hanges the sign under OP

Appliations of group and representation theory in physis take advantage of the invariane

of subspaes formed by even or odd funtions, respetively; similarly for more ompliated

groups, as we will see later.

5. The identity (if integral exists)

∫

Rd

fe(~x) fo(~x) d
dx = 0

is an example for an �orthogonalty relation� between objets with speial symmetry

properties (�seletion rule� in quantum mehanis; more later).

6. Any funtion an be written as a sum of an even and an odd funtion

f = fe + fo with fe =
1

2

(
f(~x) + f(−~x)

)

fo =
1

2

(
f(~x)− f(−~x)

)
.

This illustrates that we an expand �objets� without speial symmetry properties

into linear ombinations of �objets� with speial symmetry properties.

8



1.4 Permutations � the symmetri group

De�nition: (symmetri group)

The symmetri group of degree n, Sn, are the bijetions of {1, 2, . . . , n} to itself under

omposition.

Remarks:

1. Elements of Sn are alled permutations.

2. |Sn| = n!

3. two-line notation: write image of �rst line in seond line, e.g.

S6 ∋ π =

(
1 2 3 4 5 6
6 4 1 2 5 3

)

means π(1) = 6, π(2) = 4, . . .

4. Every permutation an be written as a produt of disjoint yles, e.g.

π =

(
1 2 3 4 5 6
6 4 1 2 5 3

)
= (163)(24)(5) 3-yle, 2-yle, 1-yle

= (163)(24) usually omit 1-yles

• where (163) means π(1) = 6, π(6) = 3, π(3) = 1, and thus

(163) = (631) = (316) but 6= (136) .

• Disjoint yles ommute, e.g. (163)(24) = (24)(163).

• Every ℓ-yle (ℓ > 2) an be written as a produt of 2-yles (transpositions),

e.g.

(163) = (13)(16) ,

where (13)(16) is shorthand for (13) ◦ (16).
5. diagrammati birdtrak notation: for π ∈ Sn draw lines whih end in position 1, . . . , n

on the right and in position π(1), . . . , π(n) on the left, e.g. π, σ ∈ S3,

π = (132) = , σ = (12) = ,

and for omposition we ompose diagrams and twist lines at will (it only matters

where lines end),

πσ = π ◦ σ = = .
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Examples:

1. S2 = {e, (12)} ∼= Z2

2. S3 = {e, (12), (13), (23), (123), (132)}
• group table: see exerises

• S3 is non-abelian (the smallest non-abelian group), as are all Sn with n ≥ 3,
sine e.g.

(12)(13) = (132) 6= (13)(12) = (123) .

• subgroups: {e} and S3 (trivial)

{e, (12)}, {e, (13)}, {e, (23)}, all ∼= Z2

{e, (123), (321)} ∼= C3

Theorem 1. (Cayley)

Every group of order n is isomorphi to a subgroup of Sn.

Proof:

Write in a slightly unorthodox way by expliitly using properties of the group table � just

to keep Problem 1 interesting.

Let (G, ·) be a �nite group, |G| = n. For h ∈ G de�ne

ϕh : G→ G

g 7→ ϕh(g) = h · g .

ϕh permutes the n elements of G (sine it yields a row of the group table). Now

f : g 7→ ϕg

G→ G′ := {ϕg : g ∈ G}

is a homomorphism, beause (i)

(ϕa ◦ ϕb) (g) = ϕa (ϕb(g)) = ϕa(b · g) = a · b · g = ϕa·b(g) ,

and beause (ii) f is injetive (otherwise there would be two equal lines in the group table

of G), i.e. G ∼= G′
.

Further, G′
ontains only permutations of the n elements of G, i.e. G′

is isomorphi to a

subgroup of Sn. �

1.5 Group ations

De�nition: (group ation)

Let G be a group and M a set. A (group) ation of G on M is a map

G×M →M

(g,m) 7→ gm ,

10



whih satis�es

em = m ∀ m ∈M and

g(hm) = (gh)m ∀ g, h ∈ G and ∀ m ∈M .

Remark: Thus, M →M , m 7→ gm, is bijetive for eah (�xed) g ∈ G, sine
gm1 = gm2 ⇒ g−1gm1 = g−1gm2 ⇔ m1 = m2 (injetive) and

m ∈M ⇒ gm′ = m with m′ = g−1m (surjetive).

De�nition: (orbit)

The orbit of the point m ∈M under an ation of a group G on M is de�ned as

Gm = {gm : g ∈ G} .

Remarks:

1. The orbit of a �typial� point ontains n = |G| elements.

2. The orbit of a �speial� point ontains less than n = |G| elements.

Example:

Consider D3, the symmetry group of an equilateral triangle (�D� for dihedral group).

D3
∼= S3 (permutations of the triangle's orners).

Group elements: • identity

• 2 rotations (about 120◦ and 240◦)
• 3 re�etions (axes through eah of the orners)

D3 ats naturally on M , a plane with the origin in the entre of the triangle.

◦

• × • × •
×
•

×
•

×
•

×

speial point

(orbit with 1 element)

typial point

(orbit with 6 elements)

speial points

(orbits with 3 elements)

De�nition: (stabiliser)

Let G×M →M , (g,m) 7→ gm, be an ation of G auf M . The set of group elements that

map a given m ∈M to itself, i.e.

Gm = {g ∈ G : gm = m} ,

is alled stabiliser (or isotropy group or little group) of m.

Remark: Gm is a group (see exerises).
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For the D3-example (see above):

• the stabiliser of × ist {e}
• the stabiliser of ◦ ist D3

• the stabiliser of • ist {I, σ} ∼= Z2, where σ is the re�etion aross the axis though •
Notie that in all three ases |Gm| · |Gm| = |G|. This is true in general for �nite groups

(orbit-stabiliser theorem, see exerises).

1.6 Conjugay lasses and normal subgroups

De�nition: (onjugation)

Let G be a group. We say x ∈ G is onjugate to y ∈ G ⇔
Def.

∃ g ∈ G : y = gxg−1
.

We then write x ∼ y.

Remark:

∼ de�nes an equivalene relation, sine

1. re�exivity: x ∼ x ∀ x ∈ G (with g = e).

2. symmetry: x ∼ y ⇔ y ∼ x (with g ↔ g−1
)

3. transitivity: x ∼ y und y ∼ z ⇒ x ∼ z (y = gxg−1, z = hyh−1 ⇒ z = (hg)x(hg)−1
)

Examples:

1. G = S3: (13) ∼ (12), sine (23)(12) (23)−1

︸ ︷︷ ︸
=(23)

= (13)

2. G = SO(3), group of spatial rotations in 3 dimensions:

R~n(φ) = rotation about axis ~n by angle φ
For arbitrary R ∈ SO(3) we have RR~n(φ)R

−1 = R~n′(φ) with ~n′ = R~n, i.e. rotations
by the same angle but about di�erent axes are onjugate to eah other.

De�nition: (onjugay lass)

For a group G and x ∈ G we all {gxg−1 : g ∈ G} the onjugay lass of x.

Remarks:

1. The lass of e ontains only e, sine geg−1 = e ∀ g.
2. For abelian groups eah element forms a lass of its own, sine gxg−1 = x ∀ g.
3. In general a lass is not a subgroup (f. below).

4. Eah element of G is ontained in exatly one lass, sine it's an equivalene rela-

tion. . . transitivity.

5. |G| is divisible by the number of elements of eah onjugay lass. (orbit-stabiliser

theorem, f. exerises).

6. Later: The number of onjugay lasses is equal to the number of non-equivalent
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irreduible representations of a group.

Example: S3

First lass: {e}.
Now onjugate (12) with all elements of S3,

e(12)e = (12)

(12)(12)(12) = (12)

(13)(12)(13) = (23)

(23)(12)(23) = (13)

(123)(12)(132) = (23)

(132)(12)(123) = (13)

i.e. (12), (13) and (23) form a lass.

For the remaining two elements we have

(12)(123)(12) = (132)

i.e. (123) ∼ (132) and thus ontained in the same lass.

We found 3 lasses:

Ce = {e} , C(12) = {(12), (13), (23)} , C(123) = {(123), (321)} .

Notie: Two elements of S3 are onjugate if they have the same yle struture; this is true

for Sn in general (later).

For D3
∼= S3: C(12) � re�etions , C(123) � rotations

2019-10-17

De�nition: (onjugate subgroups, normal subgroup)

(i) We all a subgroup K ⊆ G onjugate to a subgroup H ⊆ G if ∃ g ∈ G suh that

K = gHg−1 = {ghg−1 : h ∈ H} .

(ii) If ghg−1 ∈ H ∀h ∈ H und ∀ g ∈ G then we all H a normal subgroup (or invariant

subgroup) of G.

Examples:

1. The subgroup K = {e, (13)} ⊂ S3 is onjugate to H = {e, (12)}, sine (23)e(23)−1 =
e und (23)(12)(23)−1 = (13).

2. Every group has two trivial normal subgroups: {e} and G.
3. The only non-trivial normal subgroup of S3 is {e, (123), (132)}.

Remark: A �nite group is alled simple if it has no non-trivial subgroup.

Thus, S3 is not simple.
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1.7 Cosets and quotient groups

De�nition: (oset)

Let G be a group and H ⊆ G a subgroup. For g ∈ G the set

gH := {gh : h ∈ H}
is alled a left oset of H (in G). Similarly we all

Hg := {hg : h ∈ H}
a right oset of H .

Remarks:

1. gH,Hg ⊆ G.

2. If g ∈ H ⇒ gH = Hg = H (rearrangement lemma, f. Problem 1).

3. The number of elements of a oset is equal the order of the subgroup,

shortly |gH| = |H|.
4. In the following we onsider mostly left osets.

5. Two osets g1H and g2H are either idential (⇔ g−1
1 g2 ∈ H)

or disjoint.

Proof: Assume that there is a ommon element, i.e.

∃ h1, h2 ∈ H : g1h1 = g2h2
⇔ g2 = g1h1h

−1
2

⇒ g2H = g1h1h
−1
2 H = g1H �

6. Sine eah g ∈ G is element of exatly one oset, and sine |gH| = |H|, it follows
that H divides |G| (f. 1.2).3

Example:

For S3: Let H1 = {e, (12)} (not normal) and H2 = {e, (123), (132)} (normal).

• Left and right osets of H1:

eH1 = {e, (12)} H1e = {e, (12)}
(12)H1 = {(12), e} H1(12) = {(12), e}
(13)H1 = {(13), (123)} H1(13) = {(13), (132)}
(123)H1 = {(123), (13)} H1(132) = {(132), (13)}
(23)H1 = {(23), (132)} H1(23) = {(23), (123)}
(132)H1 = {(132), (23)} H1(123) = {(123), (23)}

Left and right osets are di�erent, and, e.g.

S3 = H1 ∪ (13)H1 ∪ (23)H1 .
3

Alternatively, we ould de�ne an ation of G on G by left multipliation and then invoke the orbit-

stabiliser theorem.
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• Cosets of H2:

eH2 = {e, (123), (132)} H2e = {e, (123), (132)}
(123)H2 = {(123), (132), e} H2(123) = {(123), (132), e}
(132)H2 = {(132), e, (123)} H2(132) = {(132), e, (123)}
(12)H2 = {(12), (23), (13)} H2(12) = {(12), (13), (23)}
(13)H2 = {(13), (12), (23)} H2(13) = {(13), (23), (12)}
(23)H2 = {(23), (13), (12)} H2(23) = {(23), (12), (13)}

Left and right osets are idential, and, e.g.

S3 = H2 ∪ (12)H2

Generally: If H is a normal subgroup of G then left and right osets are idential, sine

gHg−1 = H ⇔ gH = Hg .

Then the partitioning of G into osets is unique.

If H is normal, then the osets form a group. . .

De�nition: (quotient group)

Let H be a normal subgroup of G. We de�ne the quotient group (G/H, ·) as the set of

osets,

G/H := {gH : g ∈ G} ,
with the group law

(g1H) · (g2H) = (g1g2)H .

Remarks:

1. |G/H| = |G|
|H|

2. (G/H, ·) is atually a group, sine

(G1) g1, g2 ∈ G ⇒ (g1g2)H ∈ G/H ,

(G2) assoiativity of G arries over to G/H ,

(G3) eG/H = H , beause gH ·H = gH = H · gH , and

(G4) the inverse of gH is g−1H , beause gH · g−1H = H = g−1H · gH .

3. Where did we need that H is normal (d.h. gHg−1 = H ∀ g ∈ G)? Otherwise, in

general the group law · isn't a well-de�ned map G/H ×G/H → G/H . Replaing H
by hH with some h ∈ H must not hange the result, but

(g1hH) · (g2H) = (g1hg2)H 6=
in general

(g1g2)H

= (g1g2 g
−1
2 hg2)H

However, if H is normal then g−1
2 hg2 ∈ H und thus (g1g2 g

−1
2 hg2)H = (g1g2)H .
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Examples:

• H2 = {e, (123), (132)} ⊂ S3 is normal. The quotient group S3/H2 has two elements,

{e, (123), (132)} and {(12), (13), (23)}

and is thus isomorphi to Z2.

• H1 = {e, (12)} ⊂ S3 is not normal, e.g. (123)(12)(123)−1 = (23) /∈ H1, and thus · is
not well-de�ned, e.g.

(eH1)((13)H1) = (13)H1 = {(13), (123)}
6= ((12)H1) · ((13)H1) = (12)(13)H1 = (132)H1 = {(132), (23)} .

1.8 Diret produt

De�nition: (diret produt)

For two groups (A, ◦) and (B, •) the diret produt is the Cartesian produt A × B with

group law

(a1, b1) · (a2, b2) = (a1 ◦ a2, b1 • b2) .

Remarks:

1. eA×B = (eA, eB) and (a, b)−1 = (a−1, b−1).

2. For �nite groups |A×B| = |A||B|.
3. G := A× B has a normal subgroup isomorphi to A, namely

(A, eB) := {g ∈ G : g = (a, eB) with a ∈ A} .

�normal� sine for a1 ∈ A and (a2, b2) ∈ G we have

g(a1, eB)g
−1 = (a2, b2)(a1, eB)(a

−1
2 , b−1

2 ) = (a2a1a
−1
2 , b2eBb

−1
2 ) = ( a2a1a

−1
2︸ ︷︷ ︸

∈A

, eB) .

Similarly for B.
Furthermore A ∼= G/B (and vie versa):

4

G/B = {(a, b)B : (a, b) ∈ G} = {(a, B) : a ∈ A} (rearrangement lemma)

Caveat: In general, for a normal subgroup H of G, G 6∼= H×(G/H) (sine in general
G/H isn't a normal subgroup

5

of G).
Example: S3 has subgroups H1 = {e, (12)} and H2 = {e, (123), (132)}.

H2 is normal.

S3/H2
∼= Z2

∼= H1, but S3 6∼= H1 ×H2, sine H1 isn't a normal subgroup,

or, in other words, the elements of H1 und H2 don't ommute.

4

here B is shorthand for (eA, B)
5

In general G/H doesn't even need to be isomorphi to a subgroup of G.
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1.9 Example:

The homomorphism from SL(2,C) to the Lorentz group

• Let M be the Minkowski spae, i.e. M = R4
with the Lorentz metri

6

‖x‖2 = x20 − x21 − x22 − x23 .
We all x = (x0, x1, x2, x3) a four-vetor.

• A (homogeneous) Lorentz transformation Λ is a linear mapM →M , whih preserves

the Lorentz metri, i.e.

‖Λx‖2 = ‖x‖2 ∀ x ∈M .

• The Lorentz group L = O(3, 1) is the group of all (homogeneous) Lorentz transfor-

mations.

• Identify eah x ∈M with a Hermitian 2× 2 matrix:

7

X := f(x) := x01+ x1σ1 + x2σ2 + x3σ3 with

1 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

i.e. X =

(
x0 + x3 x1 − ix2
x1 + ix2 x0 − x3

)

The σj are alled Pauli matries. It follows that

detX = x20 − x21 − x22 − x23 = ‖x‖2 .

• Let now A ∈ GL(2,C) := {B ∈ C2×2 : detB 6= 0} (group under matrix multiplia-

tion). De�ne an ation of GL(2,C) on C2×2
by

C2×2 ∋ X 7→ AXA†

and denote the indued ation on M by

M ∋ x 7→ φ(A)x := f−1(Af(x)A†) .

• We have (AXA†)† = AXA†
, i.e. AXA†

is Hermitian and thus φ(A)x is a (real)

four-vetor. Furthermore,

‖φ(A)x‖2 = det(AXA†) = | detA|2 detX = | detA|2‖x‖2 .

• With A ∈ SL(2,C) := {B ∈ C2×2 : detB = 1} we have
‖φ(A)x‖2 = ‖x‖2 ,

i.e. φ(A) orresponds to Lorentz transformation.

2019-10-22

6

more preisely ‖x‖2 = d(x, x) with the pseudo-Riemannian metri d(x, y) = x0y0−x1y1−x2y2−x3y3.
7

The Hermitian 2× 2 matries form a (real) four-dimensional vetor spae, a basis of whih is given by

1 and the Pauli matries.
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• Furthermore,

φ(A)φ(B)x = φ(A)f−1(Bf(x)B†) = f−1(ABf(x)B†A†) = φ(AB)x ,

i.e. φ : SL(2,C)→ O(3, 1) is a group homomorphism.

• φ is no isomorphism, sine φ(−A) = φ(A) (not injetive).

• Examples (see exerises):

1. For the matrix

Uθ =

(
e−iθ 0
0 eiθ

)

φ(Uθ) is a rotation about the x3-axis by the angle 2θ.

2. For the matrix

Vα =

(
cosα − sinα
sinα cosα

)

φ(Vα) is a rotation about the x2-axis by the angle 2α.

3. For the matrix

Mr =

(
r 0
0 1

r

)

φ(Mr) is a Lorentz boost in x3-diretion with parameter 2 ln(r).
By the way: The boosts alone (in arbitrary diretions) do not form a group.

The homomorphism φ : SL(2,C)→ O(3, 1) isn't surjetive either:

• SL(2,C) is (path-)onneted (without proof).

• O(3, 1) is disonneted (four onneted omponents).

� proper Lorentz transformations: det Λ = +1
improper Lorentz transformations: det Λ = −1

� orthohronous (time diretion preserving) Lorentz transformations: Λ00 ≥ 1
non-orthohronous Lorentz transformations: Λ00 ≤ −1

� only the proper, orthohronous Lorentz transformations are in the same on-

neted omponent as e. They form the subgroup L0
.

• im(φ) = L0
(f. exerises).
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Homomorphism from SU(2) to O(3)

• SU(2) is the group of unitary 2× 2 matries with unit determinant 1, i.e.

SU(2) := {A ∈ C2×2 : AA† = 1 and detA = 1} ⊂ SL(2,C).

• How does A ∈ SU(2) ⊂ SL(2,C) at on e0 = (1, 0, 0, 0)?
E0 := f(e0) = 1 and thus

E0 → AE0A
† = A1A† = 1 = E0 i.e. φ(A)e0 = e0.

• O(3) := {R ∈ R3×3 : RRT = 1} is the group of orthogonal 3× 3 matries.

• For a Lorentz transformation of the form

Λ =

(
1 0
0 R

)
with R ∈ O(3)

we have Λe0 = e0 (and vie versa), i.e. these transformations form a subgroup of

O(3, 1) whih is isomorphi to O(3).8

Thus, φ is also a homomorphism SU(2)→ O(3).

� It is one more 2-to-1, sine φ(A) = φ(−A).
� Similar to the analysis above, A ∈ SU(2) is mapped to suh φ(A) ∈ O(3)
whih lie in the onneted omponent of 1, i.e. those with determinant 1, i.e.

φ(SU(2)) = SO(3).

8

One also says: O(3) is a subgroup of O(3, 1).
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2 Representations

We will rarely, if ever, �x an expliit basis,

but thinking this way makes it easier to

manipulate tensorial objets.

Predrag Cvitanovi¢

2.1 De�nitions

De�nition: (representation)

Let G be a group and V a vetor spae. A representation (rep) Γ of G is a homomorphism

G→ GL(V ), i.e. into the bijetive linear maps V → V , i.e. in partiular

Γ(g)Γ(h) = Γ(gh) ∀ g, h ∈ G

and Γ(e) = 1 (identity matrix/operator). We all dimV the dimension of the representa-

tion, and we will require dimV > 0.

Remarks:

1. A representation is an ation of G on V (in addition: linear).

2. We say that V arries the representation Γ, and we all V the arrier spae (of Γ).

3. Unless otherwise stated we onsider vetor spaes over C (maybe sometimes over R,

probably never over other �elds),

e.g. Cn
or L2(Rd),9

equipped with a salar produt 〈·|·〉 : V × V → C, i.e. with ∀ v, w ∈ V and ∀ α ∈ C:

(i) 〈v|w〉 = 〈w|v〉
(ii) 〈v|αw〉 = α〈v|w〉
(iii) 〈v|v〉 ≥ 0 and = 0 only for v = 0

4. Choosing an orthonormal basis of V (if �nite-dimensional), i.e. {vj : j = 1, . . . , λ =
dimV }, then eah Γ(g) orresponds to a λ× λ matrix with elements

Γ(g)jk = 〈vj |Γ(g)vk〉 ,

and we all Γ a matrix representation.

We say: The vi transform under G in the representation Γ.

5. If V is a �nite-dimensional vetor spae over C, then V ∼= CdimV
and dim V = tr Γ(e).

De�nition: (faithful representation)

We all a representation faithful if the homomorphism Γ : G → GL(V ) is injetive, i.e.
di�erent group elements are represented by di�erent matries.

9

It's best to think of the �nite-dimensional ase for the moment. In the in�nite-dimensional ase we'd

really want separable Hilbert spaes and bounded linear operators Γ(g).
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Remarks:

1. Every group has the trivial representation, with Γ(g) = 1 ∀ g ∈ G; in general not

faithful.

2. If the group G has a non-trivial normal subgroup H , then a representation of the

quotient group G/H also indues a representation of G. This representation is not

faithful. (f. Problem 9)

Idea: Γ̃(g) := Γ(gH) ⇒ (i) Γ̃(g)Γ̃(h) = Γ(gH)Γ(hH) = Γ(ghH) = Γ̃(gh),
(ii) Γ(h) = 1 ∀ h ∈ H .

Conversely: If a non-trivial rep Γ is not faithful, then G has at least one non-trivial

normal subgroup H , suh that Γ indues a faithful representation of the quotient

group G/H . (in the above sense)

De�nition: (unitary representation)

A representation Γ : G → GL(V ) is alled unitary, if Γ(g) is unitary ∀ g ∈ G, i.e.
〈Γ(g)v|Γ(g)w〉 = 〈v|w〉 ∀ v, w ∈ V .
Remarks:

1. If V is �nite-dimensional and if we hoose an orthonormal basis, then suh a repre-

sentation is in terms of unitary matries.

2. Unitary representations are important for appliations in physis, sine it is in terms

of them that symmetries are implemented in quantum mehanis (or quantum �eld

theory).

3. For �nite groups every (�nite dimensional) rep is equivalent to a unitary rep, see

next setion.

2.2 Equivalent Representations

De�nition: (equivalent representations)

We say that two representations Γ : G → GL(V ) and Γ̃ : G → GL(W ) are equivalent, if
there exists an invertible linear map S : V →W suh that

Γ(g) = S−1 Γ̃(g)S ∀ g ∈ G .

Remarks:

1. If the linear map is even unitary, i.e. (writing U instead of S) U : V → W with

〈Uφ|Uψ〉W = 〈φ|ψ〉V then we say that the representations are unitarily equivalent.

For �nite-dimensional representations we have V ∼= W ∼= CdimV
, and by hoosing

orthonormal bases U beomes a unitary matrix.

2. For �nite groups every representation is equivalent to a unitary representation. . .

Theorem 2. Let G be a �nite group, Γ : G→ GL(V ) a representations and 〈·|·〉 a salar

produt on V . Then Γ is equivalent to a unitary representation.
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Proof:

(v, w) :=
∑

g∈G
〈Γ(g)v|Γ(g)w〉 (∗)

is also a salar produt sine

(i) (v, w) =
∑
g∈G
〈Γ(g)v|Γ(g)w〉 = ∑

g∈G
〈Γ(g)w|Γ(g)v〉 = ∑

g∈G
〈Γ(g)w|Γ(g)v〉 = (v, w),

(ii) (v, αw) =
∑
g∈G
〈Γ(g)v|Γ(g)αw〉 = α

∑
g∈G
〈Γ(g)v|Γ(g)w〉 = α(v, w),

(iii) (v, v) =
∑
g∈G
〈Γ(g)v|Γ(g)v〉︸ ︷︷ ︸

≥0

≥ 〈Γ(e)v|Γ(e)v〉 = 〈v|v〉 ≥ 0 , = 0 only, if v = 0.

Let {vj} be an orthonormal basis (ONB) with respet to 〈·|·〉 and {wj} an ONB with

respet to (·, ·). Then there exists an invertible map S : V → V with Swj = vj (hange of
basis). Hene

(v, w) = 〈Sv|Sw〉 , (+)

sine with v =
∑
j

αjwj and w =
∑
j

βjwj we see that

〈Sv|Sw〉 = 〈S∑
j

αjwj|S
∑
k

βkwk〉 =
∑
j,k

αjβk 〈vj|vk〉︸ ︷︷ ︸
=δjk=(wj ,wk)

= (
∑
j

αjwj,
∑
k

βkwk) = (v, w) .

Now Γ̃ with

Γ̃(g) := SΓ(g)S−1

is equivalent to Γ and unitary, sine

〈Γ̃(g)v|Γ̃(g)w〉 = 〈SΓ(g)S−1v|SΓ(g)S−1w〉
=

(+,∗)

∑

g′∈G
〈Γ(g′)Γ(g)︸ ︷︷ ︸

Γ(g′g)

S−1v|Γ(g′)Γ(g)S−1w〉 , g′g =: h

=
∑

h∈G
〈Γ(h)S−1v|Γ(h)S−1w〉 (rearrangement lemma)

=
(∗)

(S−1v, S−1w)

=
(+)
〈v|w〉

�

Remark: Finiteness of G was neessary in order to be able to write

∑
g∈G. Later we will

see, that for some in�nite groups (namely ompat groups, like e.g. SO(n) or U(n)) we
an replae the sum by a suitable integral. The theorem then still holds for ontinuous

representations.
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2.3 Beispiele und Invariante Unterräume

� setion skipped in WS 19/20 �

Wir führen einige wihtige Konzepte zusammen mit einigen Sprehweisen aus der physikalis-

hen Literatur anhand eines einfahen Beispiels ein.

• Betrahte wieder {I, P} ∼= Z2,

I : Rd ∋ ~x 7→ ~x , P : Rd ∋ ~x 7→ −~x

sowie {OI , OP} ∼= Z2 (vgl. Beispiel 3b aus Abshnitt 1.3).

10

(OIf)(~x) = f(~x) , (OPf)(~x) = f(−~x) .

Wähle eine Funktion f1 ohne spezielle Symmetrieeigenshaften unter {OI , OP} und
de�niere

f2(~x) := (OPf1)(~x) = f1(−~x) .
Weiter sei

S := span(f1, f2) ,

dimS = 2 (Das war mit �ohne spezielle Symmetrieeigenshaften� gemeint.)

• Man sagt S ist invariant unter {OI , OP}, d.h.

f ∈ S ⇒ OIf, OPf ∈ S .

Klar, da

OPf = OP (α1f1 + α2f2) = α1OPf1 + α2OPf2 = α2f1 + α1f2 ∈ S .

Dies de�niert eine 2-dimensionale Darstellung von Z2 (oder irgendeiner zu Z2 iso-

morphen Gruppe) auf S. In der Basis {f1, f2} gilt

Γ 3©(I) =

(
1 0
0 1

)
, Γ 3©(P ) =

(
0 1
1 0

)
.

• De�niere nun eine neue Basis,

f̄1 := f1 + f2 , f̄2 := f1 − f2 , S = span(f̄1, f̄2) .

⇒ OP f̄1 = f̄1 (gerade) , OP f̄2 = −f̄2 (ungerade) .

10{OI , OP } ist auh eine Darstellung von Z2 auf einem geeigneten Funktionen-Raum � jetzt wollen wir

aber auf etwas anderes hinaus. . .
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Man sagt f̄1 und f̄2 haben feste Parität.

Darstellung von Z2 auf S in der neuen Basis:

Γ 4©(I) =

(
1 0
0 1

)
, Γ 4©(P ) =

(
1 0
0 −1

)

Γ 4©
ist äquivalent zu Γ 3©

, sogar unitär äquivalent, denn

Γ 4© = U †Γ 3©U mit U =
1√
2

(
1 1
1 −1

)

(Hier klar, denn gerade durh diesen Basiswehsel hatten wir Γ 4©
ja erhalten � in

anderen Fällen weiÿ man das aber vielleiht gerade niht!)

• S hat jedoh noh kleinere invariante Unterräume, es gilt nämlih

S = S̄1 ⊕ S̄2 , (direkte Summe)

wobei die S̄j := span(f̄j) einzeln invariant unter {OI , OP} sind,

OP (αf̄1) = αf̄1 ∈ S̄1
OP (αf̄2) = −αf̄2 ∈ S̄2

Man sagt S ist reduzibel (bzgl. {OI , OP}).
S̄1 und S̄2 sind irreduzibel, d.h. sie können niht in kleinere invariante Räume zerlegt

werden (hier weil sie 1-dimensional sind).

• Auf den invarianten Unterräumen sind jeweils eindimensionale Darstellungen de�niert:

Γ 1©(I) = 1 , Γ 1©(P ) = 1 , auf S̄1 und

Γ 2©(I) = 1 , Γ 2©(P ) = −1, auf S̄2 .

Jede Funktion mit gerader (ungerader) Parität transformiert sih unter {OI , OP} in
der Darstellung Γ 1©

(Γ 2©
).

• Wie S (s.o.) heiÿt nun auh die Darstellung Γ 3©
reduzibel

11

und man shreibt

Γ 3© = Γ 1© ⊕ Γ 2© .

• Weiteres Beispiel: Betrahte

h1(~x) := x2 + y + z , h2(~x) := (OPh1)(~x) = x2 − y − z , Sh := span(h1, h2) ,

g1(~x) := e−xyz , g2(~x) := (OPg1)(~x) = exyz , Sg := span(g1, g2) .

11

wird später noh rihtig de�niert
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Das Tensor-Produkt Sh⊗Sg wird durh die vier Produkte h1g1, h1g2, h2g1, h2g2 aufges-
pannt und ist invariant unter {OI , OP}, denn f ∈ Sh ⊗ Sg ⇒

OPf = OP (ah1g1 + bh1g2 + ch2g1 + dh2g2)

= dh1g1 + ch1g2 + bh2g1 + ah2g2 ∈ Sh ⊗ Sg

Dies de�niert eine 4-dimensionale Darstellung von Z2 auf Sh ⊗ Sg:

Γ 5©(I) = 1 , Γ 5©(P ) =




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0




• Invariante Unterräume:

h1g1 und h2g2 = OP (h1g1) spannen einen invarianten Unterraum Sω auf,

analog Sδ := span(h1g2, h2g1). O�ensihtlih:

Sh ⊗ Sg = Sω ⊕ Sδ

jeweils mit einer Darstellung äquivalent zu Γ 3©
. Reduziere Sω und Sδ jeweils weiter

durh Einführen von Basisfunktionen gerader und ungerader Parität. Für die Darstel-

lungen gilt dann

Γ 5© = Γ 3© ⊗ Γ 3© = Γ 1© ⊕ Γ 1© ⊕ Γ 2© ⊕ Γ 2©

Man shreibt auh (Dimensionen)

2⊗ 2 = 1⊕ 1⊕ 1⊕ 1

Sieht etwas lustig aus und ist hier natürlih niht besonders tiefsinnig � aber wenn

wir ähnlihe Rehungen später z.B. für Darstellungen von SU(n) durhführen können,
haben wir einiges gelernt. . .

� end of skipped part �
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2.4 Irreduible Representations

This basis way of thinking about X ⊗ Y is useful;

the abstrat de�nition is useful in showing that

the onstrution is not basis dependent.

Barry Simon

Reminder: (diret sum & tensor produt)

Let V and W be vetor spaes, dimV = n, dimW = m, with bases {v1, . . . , vn} and

{w1, . . . , wm}, respetively. Then
(i) {v1, . . . , vn, w1, . . . , wm} is a basis for the diret sum V ⊕W

with dimV ⊕W = dim V + dimW and

(ii) {vj ⊗ wk}j=1,...,n,k=1,...,m is a basis for the tensor produt V ⊗W
with dimV ⊗W = dim V · dimW .

Remarks:

1. For linear maps A : V → V and B : W → W we de�ne A⊕ B as the linear map

A⊕ B : V ⊕W → V ⊕W
(v, w) 7→ (Av,Bw) ,

in matrix notation (
A 0
0 B

)(
v
w

)
=

(
Av
Bw

)
.

2. Given two representations Γ : G → GL(V ) and Γ̃ : G → GL(W ) we an de�ne the

representation Γ ⊕ Γ̃ : G → GL(V ⊕W ), by (Γ⊕ Γ̃)(g) = Γ(g)⊕ Γ̃(g). (diret sum
of representations)

Produt representations Γ⊗ Γ̃ will be de�ned similarly later.

In the following we ask ourselves whether a given representation is a diret sum of �smaller�

representations. . .

2019-10-24

De�nition: (invariant subspae)

Let Γ : G→ GL(V ) be a representation and U ⊆ V a subspae of V . U is alled invariant

subspae (with respet to Γ), if Γ(g)v ∈ U ∀ v ∈ U and ∀ g ∈ G.
Remark: Every arrier spae has two trivial invariant subspaes, namely V and {0}. All
other invariant subspae (if there are any) are alled non-trivial.

De�nition: (irreduible representation & omplete reduibility)

We all a representation Γ : G→ GL(V )

(i) irreduible, if V possesses no non-trivial invariant subspae. Then we also all V
irreduible with respet to Γ.

(ii) reduible, if V possesses a non-trivial invariant subspae U .
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(iii) ompletely reduible, if V an be written as a diret sum of irreduible invariant

subspaes.

Abbreviation for �irreduible representation�: irrep

Beispiele:

In Abshnitt 2.3 waren Γ 3©
, Γ 4©

und Γ 5©
reduzibel, Γ 1©

und Γ 2©
dagegen irreduzibel.

Theorem 3. Let Γ : G → GL(V ) be a unitary representation and U ⊆ V an invariant

subspae. Then:

(i) U⊥ = {v ∈ V : 〈u|v〉 = 0 ∀ u ∈ U} is also invariant,

(ii) the restritions Γ|U and Γ|U⊥ de�ne representations Γ1
and Γ2

, and

(iii) Γ ist equivalent to Γ1 ⊕ Γ2
; we simply write Γ = Γ1 ⊕ Γ2

.

Corollary: (Mashke's Theorem)

We an write every (�nite-dimensional) unitary representation as a diret sum of irreduible

representations.

Combined with Theorem 2 this implies that for �nite groups every (�nite-dimensional)

representation is ompletely reduible.

We an �nd a basis of V suh that in matrix notation

Γ(g) =




Γ1(g) 0
Γ2(g)

Γ3(g)

0
.

.

.


 ,

where the Γj are irreduible (nj × nj bloks with nj = dimΓj).

Here an irreduible representation an appear more than one, (relabel)

Γ = Γ1 ⊕ · · · ⊕ Γ1

︸ ︷︷ ︸
a1 times

⊕ Γ2 ⊕ · · · ⊕ Γ2

︸ ︷︷ ︸
a2 times

⊕ · · · =
⊕

j

ajΓ
j ,

i.e. in Γ the irreduible representation Γj is ontained aj times.

Beispiele: In Abshnitt 2.3 lag die reduzible Darstellung Γ 4©
bereits in reduzierter Form

(d.h. blokdiagonal) vor, Γ 3©
und Γ 5©

können durh einen Basiswehsel in diese Form

gebraht werden. In Γ 5©
kamen die Irreps Γ 1©

und Γ 2©
je zweimal vor.

Proof: Essentially, we have to show (i), then (ii) and (iii) follow immediately.

(i) Let v ∈ U⊥
, u ∈ U and g ∈ G. Then we have

〈Γ(g)v|u〉 = 〈v|Γ(g)†u〉 = 〈v|Γ(g)−1u〉 = 〈v|Γ(g−1)u〉 = 0 .

(ii) Γ1 := Γ|U , u ∈ U ⇒
Γ1(g)Γ1(h)u = Γ1(g)Γ(h)u = Γ(g)Γ(h)u = Γ(gh)u = Γ1(gh)u

�

27



2.4.1 Example: OA operators for the group D3

• D3 = symmetry group of an equilateral triangle

∼= S3

• •

•

L1

L2 L3

x

y

~x1 = (x1, y1)

~x2 = (x2, y2)~x3 = (x3, y3)

• group elements:

e = identity

C = rotation by 120

◦
, lokwise about the entre =̂ (123)

C̄ = rotation by 120

◦
, anti-lokwise about the entre =̂ (132)

σ1, σ2, σ3 = re�etions aross L1, L2, L3 =̂ (23), (13), (12)

group table: see exerises

• Now onsider invertible linear maps A : R2 → R2, ~x 7→ A~x. (The 6 elements of D3

are examples for maps of this kind.)

• For eah map A de�ne an operator OA, ating on funtions f : R2 → C (or R) as

(OAf)(~x) = f(A−1~x) .

• The 6 operators OA, A ∈ D3, form the group D̄3, isomorphi to D3, sine

((OAOB)f)(~x) = (OA(OBf))(~x) = (OBf)(A
−1~x) = f(B−1A−1~x)

= f((AB)−1~x) = (OABf)(~x) .

• We now let these operators at on some funtions, thereby generating representations

of D̄3
∼= D3

∼= S3.

First

φ1(~x) := e−|~x−~x1|2 = e−(x−x1)2−(y−y1)2 .

What is OCφ1?

φ2(~x) := (OCφ1)(~x) = φ1(C
−1~x)

= exp(−|C−1~x− ~x1|2)
= exp(−|C−1(~x− C~x1)|2)
= exp(−|~x− C~x1|2) (rotations onserve lengths)

= exp(−|~x− ~x2|2)
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Similarly:

φ3(~x) := (OC̄φ1)(~x) = e−|~x−~x3|2

For the re�etions we have

(Oσ1φ1)(~x) = φ1(σ
−1
1 ~x)

= exp(−|σ−1
1 ~x− ~x1|2)

= exp(−|σ−1
1 (~x− σ1~x1)|2)

= exp(−|~x− σ1~x1|2) (re�etions onserve lengths)

= exp(−|~x− ~x1|2) (sine ~x1 lies on the L1-axis)

= φ1(~x) ,

and also

(Oσ2φ1)(~x) = φ1(σ
−1
2 ~x) = exp(−|~x− σ2~x1|2) = exp(−|~x− ~x3|2)

= φ3(~x)

(Oσ3φ1)(~x) = φ1(σ
−1
3 ~x) = exp(−|~x− σ3~x1|2) = exp(−|~x− ~x2|2)

= φ2(~x) .

Similarly we �nd out how the Os at on φ2 and φ3,

φ1 φ2 φ3

Oe φ1 φ2 φ3

OC φ2 φ3 φ1

OC̄ φ3 φ1 φ2

Oσ1 φ1 φ3 φ2

Oσ2 φ3 φ2 φ1

Oσ3 φ2 φ1 φ3

,

i.e. S := span(φ1, φ2, φ3) is invariant under D̄3, and the funtions φ1, φ2, φ3 transform

in a three-dimensional representation of the group D3 (
∼= D̄3

∼= S3), namely

Γ1(e) =



1 0 0
0 1 0
0 0 1


 , Γ1(C) =



0 0 1
1 0 0
0 1 0


 , Γ1(C̄) =



0 1 0
0 0 1
1 0 0


 ,

Γ1(σ1) =



1 0 0
0 0 1
0 1 0


 , Γ1(σ2) =



0 0 1
0 1 0
1 0 0


 , Γ1(σ3) =



0 1 0
1 0 0
0 0 1


 .

• Is this representation reduible?

Yes, sine S is reduible, ie. there exists a hange of basis deomposing S in smaller

29



invariant subspaes :

φ̃1 = φ1 + φ2 + φ3

φ̃2 =
√
3(φ2 − φ3)

φ̃3 = 2φ1 − φ2 − φ3

(Later we will learn how to �nd this hange of basis.)

• φ̃1 is invariant under D̄3, sine the operators OA just permute the terms of the sum,

and in partiular span(φ̄1) is invariant and φ̄1 transforms in the trivial representation

Γ2(g) = 1 ∀g ∈ D3.

• For φ̃2 and φ̃3 we obtain

φ̃2 φ̃3

Oe φ̃2 φ̃3

OC −1
2
φ̃2 −

√
3
2
φ̃3

√
3
2
φ̃2 − 1

2
φ̃3

OC̄ −1
2
φ̃2 +

√
3
2
φ̃3 −

√
3
2
φ̃2 − 1

2
φ̃3

Oσ1 −φ̃2 φ̃3

Oσ2
1
2
φ̃2 −

√
3
2
φ̃3 −

√
3
2
φ̃2 − 1

2
φ̃3

Oσ3
1
2
φ̃2 +

√
3
2
φ̃3

√
3
2
φ̃2 − 1

2
φ̃3

,

i.e. span(φ̃2, φ̃3) is invariant, and φ̃2, φ̃3 transform in the two-dimensional representa-

tion,

Γ3(e) =

(
1 0
0 1

)
, Γ3(C) =

(
−1

2

√
3
2

−
√
3
2
−1

2

)
, Γ3(C̄) =

(
−1

2
−

√
3
2√

3
2
−1

2

)
,

Γ3(σ1) =

(
−1 0
0 1

)
, Γ3(σ2) =

(
1
2
−

√
3
2

−
√
3
2
−1

2

)
, Γ3(σ3) =

(
1
2

√
3
2√

3
2
−1

2

)
.

• Hene, φ̃1, φ̃2, φ̃3 transform under D̄ in the representation

Γ4(g) =



1 0 0
0
0

Γ3(g)


 ∀ g ∈ D3 ,

i.e. Γ4 = Γ2⊕ Γ3
. Moreover, we also write Γ1 = Γ2⊕ Γ3

, sine Γ1
is equivalent to Γ4

,

(even unitarily equivalent)

Γ4(g) = U †Γ1(g)U with U =
1√
6



√
2 0 2√
2
√
3 −1√

2 −
√
3 −1


 ∀g ∈ D3 .

Γ4
is already given in redued form, Γ1

not.

• Remaining question: Is the two-dimensional representation Γ3
reduible?
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2.5 Shur's Lemmas and orthogonality of irreduible representa-

tions

Theorem 4. (Shur's Lemma 1)

Let G be a group, Γ : G → GL(V ) a �nite-dimensional, irreduible representation and

A : V → V a linear map. If A ommutes with Γ, i.e. AΓ(g) = Γ(g)A ∀ g ∈ G, then
A = c1 for some c ∈ C.

Proof:

Let λ be an eigenvalue of A, i.e. ∃ v ∈ V, v 6= 0 : (A− λ)v = 0, then

(A− λ)Γ(g)v = Γ(g)(A− λ)v = 0 ∀ g ∈ G ,
and thus U := {v ∈ V : (A− λ)v = 0} is an invariant subspae. Sine U 6= {0}, and sine

Γ is irreduible, it follows that U = V and hene A = λ1. �

Corollary to Theorem 4

For an abelian group G, every unitary irreduible representation has dimension 1.
Proof: exerises.

Theorem 5. (Shur's Lemma 2)

Let G be a group, Γ : G → GL(V ) and Γ̃ : G → GL(W ) two �nite-dimensional, unitary

irreduible representations and A : V →W a linear map. If

AΓ(g) = Γ̃(g)A ∀ g ∈ G ,
then A = 0 or Γ and Γ̃ are unitarily equivalent.

Proof: Replaing g by g−1
and taking the Hermitian onjugate, we also have

Γ(g)A† = A†Γ̃(g) ∀ g ∈ G .
This yields

A†AΓ(g) = A†Γ̃(g)A = Γ(g)A†A ∀ g ∈ G ,
With Theorem 4 it follows that A†A = c1 (with c real), i.e. either c = 0 and thus A = 0
or U = 1√

c
A is unitary with Γ̃(g) = UΓ(g)U † ∀ g ∈ G. �

Remark: If the representations are not unitary, but if G is �nite, then aording to

Theorem 2: ∃ S and T , suh that Γ′(G) = SΓ(G)S−1
and Γ̃′(G) = TΓ(G)T−1

are unitary.

For A′ := TAS−1
we have

A′Γ′(G) = TAS−1SΓ(G)S−1 = T Γ̃(G)AS−1 = Γ̃′(G)A′ ,

ie. either A′ = 0 and thus A = 0 or ∃ U unitary, suh that

Γ̃′(G) = UΓ′(G)U−1

⇔ T Γ̃(G)T−1 = USΓ(G)S−1U−1

⇔ Γ̃(G) = T−1USΓ(G)S−1U−1T ,

i.e. Γ and Γ̃ are equivalent.

2019-10-29
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Theorem 6. Let G be a �nite group and Γj, j = 1, 2, . . ., non-equivalent unitary irreduible
representations with dimΓj = dj. Then the matrix elements obey the orthogonality relation

1

|G|
∑

g∈G
(Γj(g)µν) Γ

k(g)µ′ν′ =
1

dj
δjkδµµ′δνν′

∀ µ, ν = 1, . . . , dj and ∀ µ′, ν ′ = 1, . . . , dk.

Proof: Let Vj be the arrier spae of Γj , and A : Vj → Vk linear (otherwise arbitrary).

De�ne

Ã :=
1

|G|
∑

g∈G
Γk(g)AΓj(g)−1 . (∗)

For every h ∈ G we have

Γk(h)Ã =
1

|G|
∑

g∈G
Γk(h)Γk(g)AΓj(g)−1

=
1

|G|
∑

g∈G
Γk(hg)AΓj(g)−1

=
1

|G|
∑

g′∈G
Γk(g′)AΓj(h−1g′)−1

=
1

|G|
∑

g′∈G
Γk(g′)AΓj(g′)−1 Γj(h−1)−1

= ÃΓj(h) .

With Shur's lemma (Theorem 5) we onlude that Ã = 0 if j 6= k, and else Ã = c1 with

c =
1

dj
tr Ã =

1

dj
trA ,

i.e.

Ã =
1

dj
trAδjk1 . (+)

Now hoose Aαβ = δαν′δβν (i.e. only one element 6= 0) ⇒ trA = δνν′ . Finally:

Ãµ′µ =
(+)

1

dj
δνν′δjkδµµ′

=
(∗)

1

|G|
∑

g∈G

∑

α,β

Γk(g)µ′αAαβ(Γ
j(g)−1)βµ

=
1

|G|
∑

g∈G
Γk(g)µ′ν′ (Γ

j(g)−1)νµ︸ ︷︷ ︸
= (Γj(g)†)νµ = (Γj(g)µν)

�
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Consequenes of Theorem 6

• For �xed j, µ, ν we ollet the |G| numbers Γj(g)µν, g ∈ G, in a vetor v(jµν) ∈ C|G|
.

• For eah representation Γj there are d2j vetors of this kind (sine µ, ν = 1, . . . , dj).

• Aording to Theorem 6 v(jµν) ⊥ v(kµ
′ν′)

, if j 6= k or µ 6= µ′
or ν 6= ν ′.

• There are at most |G| mutually orthogonal vetors in C|G|

⇒
∑

j

d2j ≤ |G| .

In Setion 2.7 we will show that atually

∑

j

d2j = |G| .

The sum is over all non-equivalent irreduible representations, i.e., in partiular,

a �nite group has only �nitely many non-equivalent �nite-dimensional irreduible

representations.

2.6 Charaters

De�nition: (harater)

For a �nite-dimensional representation Γ : G→ GL(V ) we all χ : G→ C with

χ(g) = tr Γ(g)

the harater of the representation.

Remarks:

1. In terms of matrix elements we have

χ(g) =

dimV∑

µ=1

Γ(g)µµ .

2. If Γ and Γ̃ are equivalent then

χ̃(g) = tr Γ̃(g) = tr(SΓ(g)S−1) = tr(S−1SΓ(g)) = tr Γ(g) = χ(g) .

3. All elements of a onjugay lass have the same harater,

χ(hgh−1) = tr Γ(hgh−1) = tr
(
Γ(h)Γ(g)Γ(h−1)

)
= tr

(
Γ(h−1)Γ(h)Γ(g)

)

= tr
(
Γ(h−1h)Γ(g)

)
= tr Γ(g) = χ(g) .
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Corollary to Theorem 6. Let G be a �nite group and Γj, j = 1, 2, . . ., non-equivalent,
irreduible representations with dimΓj = dj. Then the haraters χj = tr Γj obey the

orthogonality relation

1

|G|
∑

g∈G
χj(g)χk(g) = δjk .

Proof: W.l.o.g. Γj unitary (else similarity transform, f. Theorem 2). In

1

|G|
∑

g∈G
(Γj(g)µν) Γ

k(g)µ′ν′ =
1

dj
δjkδµµ′δνν′

hoose ν = µ and ν ′ = µ′
, and sum over µ and µ′

. �

Remarks:

1. Sine the haraters depend only on the onjugay lass, we an rewrite the orthog-

onality relation as

1

|G|
∑

c

nc χ
j
c χ

k
c = δjk .

Here c labels the lasses and nc is the number of elements in lass c.

2. Let m be the number of di�erent onjugay lasses of G and p the number of non-

equivalent irreduible representations.

For �xed j we ollet the m numbers χjc in a vetor vj ∈ Cm
. The p vetors for

di�erent j are again mutually orthogonal

⇒ p ≤ m.

We will see (exerises) that in fat p = m, i.e. the number of non-equivalent irre-

duible representations is equal to the number of onjugay lasses.

The m × m matrix with entries χjc, j, c = 1, . . . , m, is alled harater table of the

group.

3. For a (in general reduible) representation

Γ =
⊕

j

ajΓ
j , Γj irreduible,

we have

χ(g) =
∑

j

ajχ
j(g) .
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This implies

1

|G|
∑

g∈G
|χ(g)|2 = 1

|G|
∑

j,k

ajak
∑

g∈G
χj(g)χk(g)

︸ ︷︷ ︸
=|G|δik

=
∑

j

a2j .

If Γ is irreduible, then one aj = 1 and all others vanish, and thus

1

|G|
∑

g∈G
|χ(g)|2 = 1 .

If Γ is reduible, then at least one aj > 1 or several aj 6= 0, and thus

1

|G|
∑

g∈G
|χ(g)|2 > 1 .

Hene, we have found an irreduibility riterion for a given representation.

Example: Representations of D3
∼= S3 in Setion 2.4.1

• onjugay lasses: {e}, {C, C̄}, {σ1, σ2, σ3}
• For the two-dimensional representation Γ3

we have

1

|G|
(
|χ3(e)|2 + |χ3(C)|2 · 2 + |χ3(σ1)|2 · 3

)
=

22 + (−1)2 · 2 + 0

6
= 1 ,

i.e. Γ3
is irreduible.

• We have thus found 2 irreduible representations of S3:

The trivial representation, whih from now on I want to denote as Γ1
(it was denoted

Γ2
in Setion 2.4.1), with d1 = 1 as well as Γ3

with d3 = 2. From
∑

j

d2j = |G| (We already know ≤, in Setion 2.7 we will show =.)

we onlude that there has to be another irreduible representation with dimension

d2 = 1 (and no others); it is given by

Γ2(e) = Γ2(C) = Γ2(C̄) = 1 ,

Γ2(σ1) = Γ2(σ2) = Γ2(σ3) = −1
(sign of the orresponding representation).

• Thus the harater table of D3 ≃ S3 reads:

{e} {C, C̄} {σ1, σ2, σ3}
χ1 1 1 1
χ2 1 1 −1
χ3 2 −1 0
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Remark: If we know the haraters of all irreduible representations of a group, then

we an alulate for any given representation (in general reduible) how many times the

di�erent irreduible representations appear in it:

χ(g)
↑

harater of reduible rep

=
∑

j

aj
↑

unknown

χj(g)
↑

known

⇒ 1

|G|
∑

g∈G
χk(g)χ(g) =

1

|G|
∑

j

aj
∑

g∈G
χk(g)χj(g)

︸ ︷︷ ︸
=|G|δjk

= ak

or ak =
1

|G|
∑

c

ncχkc χc

We all aj the multipliity of Γ
j
in Γ.
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Example: reduible three-dimensional representation Γ of D3
∼= S3 (denoted Γ1

in Se-

tion 2.4.1:

χ(e) = 3 , χ(C) = χ(C̄) = 0 , χ(σ1) = χ(σ2) = χ(σ3) = 1 ,

a1 =
1

6
[1 · 1 · 3 + 2 · 1 · 0 + 3 · 1 · 1] = 1 ,

a2 =
1

6
[1 · 1 · 3 + 2 · 1 · 0 + 3 · (−1) · 1] = 0 ,

a3 =
1

6
[1 · 2 · 3 + 2 · (−1) · 0 + 3 · 0 · 1] = 1 ,

harater table

nc

i.e. Γ = Γ1 ⊕ Γ3
as already determined in Setion 2.4.1 (di�erent labelling of irreps).

2.7 The regular representation

De�nition: (group algebra)

For a �nite group G, |G| = n, we de�ne its group algebra A(G) as the vetor spae spanned
by the group elements, i.e. we take (initially formal) linear ombinations

12

A(G) ∋ r =

n∑

j=1

rjgj , rj ∈ C ,

with multipliation rule

(
n∑

j=1

rjgj

)(
n∑

k=1

qkgk

)
=

n∑

j=1

n∑

k=1

rjqk gjgk .

indued by group multipliation.

12

with obvious addition

n∑
j=1

rjgj +
n∑

j=1

qjgj =
n∑

j=1

(rj + qj)gj ; multipliation by salars similarly
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Remarks:

1. Due to gjgk ∈ G the result is in A(G), i.e. the produt is well-de�ned.
2. A matrix representation, say Γ, of G is also a representation of A(G), in the sense

that by de�ning Γ(
∑

j rjgj) =
∑

j rjΓ(gj) we have ∀ q, r ∈ A(G)

Γ(qr) = Γ(q)Γ(r) and

Γ(q + r) = Γ(q) + Γ(r) ,

where on the r.h.s. we have matrix multipliation and addition, respetively.

3. dimA(G) = |G| (as a vetor spae)

4. Group multipliation an be written as

gjgk =

n∑

m=1

gm (∆j)mk ,

where (∆j)mk enodes the group table: For j and k �xed, (∆j)mk = 1 for exatly one
value of m and vanishes for all others.

5. The n× n matries ∆j , j = 1, . . . , n, with elements

(∆j)mk , m, k = 1, . . . , n ,

form a representation of G, alled the regular representation.

(∆j is the representation matrix for gj .)

Proof: Let ga, gb, gc ∈ G with gagb = gc ⇒

gagbgj =
∑

m

gagm (∆b)mj =
∑

k,m

gk (∆a)km (∆b)mj

gcgj =
∑

k

gk (∆c)kj

The l.h.s. are idential, and thus also the r.h.s. Compare oe�ients:

(∆c)kj =
∑

m

(∆a)km(∆b)mj = (∆a∆b)kj

⇔ ∆c = ∆a∆b

�

Theorem 7. (with the above de�nitions) The regular representation of G ontains all

irreduible representations of G, and the multipliity of the irreduible representation Γk is
given by its dimension dk,

∆ =

p⊕

k=1

dk Γ
k

(
p = number of non-equivalent

irreduible representations

)
, (∗)
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i.e. ∃S regular, suh that

S−1∆j S =




1
Γ2(gj)

.

.

.

Γ2(gj)
.

.

.

Γm(gj)
.

.

.

Γm(gj)




.

︸ ︷︷ ︸
d2 bloks

. . . ︸ ︷︷ ︸
dm bloks

Proof: The haraters of the regular representation are

χR(gj) =
∑

k

(∆j)kk .

For the identity we have (obviously!)

egj =

n∑

m=1

gm(∆e)mj ⇒ (∆e)mj = δmj ⇒ χR(e) = n .

For gk 6= e gilt

gkgj =

n∑

m=1

gm(∆k)mj 6= gj ⇒ (∆k)jj = 0 ⇒ χR(gk) = 0 .

With the formula from Setion 2.6 we �nd

(ak: multipliity of the k
th
irreduible representation)

ak =
1

n

n∑

j=1

χk(gj)χ
R(gj) =

1

n
χk(e)n = dk

�

Corollary to Theorem 7. We have

∑

k

d2k = n .

Here dk is the dimension of the kth irreduible representation and n = |G|.
Remark: In Setion 2.5 we only showed ≤.
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Proof: In (∗) hoose gj = e,

∆e =
⊕

k

dk Γ
k(e) ,

and take the trae,

χR(e) = tr∆e = n =
∑

k

d2k .

�

2.8 Produt representations and Clebsh-Gordan oe�ients

In physis appliations one often onsiders vetor spaes that are tensor produts, where

eah fator arries a representation of the same group.

Example: Coupling of angular momenta, e.g. orbital angular momentum and spin of an

eletron, or spins of several partiles � eah fator arries a representation of SU(2).

Let U and V be vetor spaes with bases {ui} and {vj}, respetively, and let W = U ⊗ V
with basis {wk}, where wk = ui ⊗ vj (f. Setion 2.4). Further let A : U → U and

B : V → V be linear maps. Then D := A⊗ B is the linear map W →W with

Dwk = Aui ⊗Bvj , where k = (i, j) ,

and extended by linearity to arbitrary w ∈ W , i.e. for w =
∑

k αkwk we have

Dw =
∑

i,j

αij Aui ⊗ Bvj .

In matrix omponents:

Aui =
∑

i′

ui′Ai′i , Bvj =
∑

j′

vj′Bj′j and

Dwk =
∑

k′

wk′Dk′k =
∑

i′j′

(ui′ ⊗ vj)Ai′iBj′j ,

i.e. Dk′k ≡ Di′j′ij = Ai′iBj′j. If everything is �nite-dimensional then

trD =
∑

k

Dkk =
∑

i,j

AiiBjj = trA · trB = tr(A⊗ B) .

Salar produts on U and V indue a salar produt on W by

〈wk|wk′〉 := 〈ui|ui′〉U 〈vj |vj′〉V ,

again extended by (sesqui-)linearity.

If {ui} and {vj} are ONB with respet to 〈 | 〉U and 〈 | 〉V , then {wk} is also orthonormal,

〈wk|wk′〉 = δii′δjj′ = δkk′ .
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De�nition: (produt representation)

For representations Γµ : G → GL(U) and Γν : G → GL(V ) we de�ne the produt repre-

sentation Γµ⊗ν : G→ GL(U ⊗ V ) by

Γµ⊗ν(g) = Γµ(g)⊗ Γν(g) ∀ g ∈ G .

Remarks:

1. Γµ⊗ν is a representation sine

Γµ⊗ν(gh)wk = Γµ(gh)ui ⊗ Γν(gh)vj

= Γµ(g)Γµ(h)ui ⊗ Γν(g)Γν(h)vj

= Γµ⊗ν(g)
(
Γµ(h)ui ⊗ Γν(h)vj

)

= Γµ⊗ν(g)Γµ⊗ν(h) (ui ⊗ vj)︸ ︷︷ ︸
=wk

.

2. For the haraters we have

χµ⊗ν(g) = tr Γµ⊗ν(g) = tr
(
Γµ(g)⊗ Γν(g)

)
= tr Γµ(g) tr Γν(g) = χµ(g)χν(g) .

3. Even for irreduible Γµ and Γν the produt representation is in general reduible,

Γµ ⊗ Γν =
⊕

λ

aλΓ
λ

with

∑

λ

aλdλ = dµdν ,

where dλ is the dimension of Γλ. Aording to Setion 2.6 the multipliities are

aλ =
1

|G|
∑

c

nc χλc χ
µ
cχ

ν
c ,

Example: (f. Setion 1.3)

Z2 = {e, P}, two one-dimensional irreps, harater table:

e P
χ1 = Γ1 1 1
χ2 = Γ2 1 −1

Another rep (reduible)

Γ3(e) =

(
1 0
0 1

)
, Γ3(P ) =

(
0 1
1 0

)
.

De�ne Γ4 := Γ3 ⊗ Γ3 ⇒ χ4(e) = 2 · 2 = 4, χ4(P ) = 0. Thus,

a1 =
1

2
(4 · 1 + 0 · 1) = 2 and

a2 =
1

2
(4 · 1 + 0 · (−1)) = 2 ,
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i.e. Γ3 ⊗ Γ3 = 2Γ1 ⊕ 2Γ2
as one also easily �nds expliitly, by diagonalising

Γ4(e) = 14 and Γ4(P ) =




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0




2019-11-05

4. In general we an deompose W = U ⊗ V into a diret sum of (under G) invariant
irreduible subspaesW λ

α , with dim(W λ
α ) = dλ. The index α = 1, . . . , aλ distinguishes

di�erent subspaes arrying the same irreduible representation, i.e. ∃ U , suh that

U−1 Γµ⊗ν U =




Γ1

.

.

.

Γ1

.

.

.

Γλ

.

.

.

Γλ

.

.

.




.

︸ ︷︷ ︸
a1 bloks

. . . ︸ ︷︷ ︸
aλ bloks

Thus U provides the hange of basis from the {wk} to some new basis {wλαℓ} in whih
the representation matries are blok-diagonal. Here ℓ = 1, . . . , dλ numbers the absis
vetors of W λ

α .

By hoosing ONBs on both sides U beomes unitary.

Remark: In general U is highly non-unique.

The rest is essentially notation � somewhat nasty, but widely used, and sometimes

even useful.

With k = (i, j) and in so-alled Dira notation, one writes

|wλαℓ〉 =
∑

ij

|wij〉 〈i, j(µ, ν)α, λ, ℓ〉︸ ︷︷ ︸
Clebsh-Gordan oe�ients

. (∗)

The Clebsh-Gordan oe�ients are matrix elements of U , with

(i, j): row index (old basis),
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(α, λ, ℓ): olumn index (new basis),

(µ, ν): �x. (Tells us whih produt is deomposed.)

The inverse of (∗) is

|wij〉 =
∑

αλℓ

|wλαℓ〉〈α, λ, ℓ(µ, ν)i, j〉 ,

(this de�nes 〈α, λ, ℓ(µ, ν)i, j〉)
and with U unitary we have 〈α, λ, ℓ(µ, ν)i, j〉 = 〈i, j(µ, ν)α, λ, ℓ〉

• The CG oe�ients satisfy �orthonormality and ompleteness relations�

∑

αλℓ

〈i′, j′(µ, ν)α, λ, ℓ〉〈α, λ, ℓ(µ, ν)i, j〉 = δi′iδj′j and

∑

ij

〈α′, λ′, ℓ′(µ, ν)i, j〉〈i, j(µ, ν)α, λ, ℓ〉 = δα′αδλ′λδℓ′ℓ ,

in matrix notation U †U = 1 = UU †
.

• simpli�ed notation

� |i, j〉 := |wij〉 and |α, λ, ℓ〉 := |wλαℓ〉
� Einstein summation onvention (sum over repeated indies)

� 〈i, j(µ, ν)α, λ, ℓ〉 = 〈i, j|α, λ, ℓ〉

Then we an write

Γµ⊗ν(g)|i, j〉 = |i′, j′〉Γµ(g)i′iΓν(g)j′j and

Γµ⊗ν(g)|α, λ, ℓ〉 = |α, λ, ℓ′〉Γλ(g)ℓ′ℓ ,

and onlude

〈α′, λ′, ℓ′|Γµ⊗ν(g)|α, λ, ℓ〉 = 〈α′, λ′, ℓ′|α, λ, ℓ′′〉Γλ(g)ℓ′′ℓ = δα′αδλ′λδℓ′ℓ′′Γ
λ(g)ℓ′′ℓ

= δα′αδλ′λΓ
λ(g)ℓ′ℓ

=
(∗)
〈α′, λ′, ℓ′|Γµ⊗ν(g)|i, j〉〈i, j|α, λ, ℓ〉

= 〈α′, λ′, ℓ′|i′, j′〉Γµ(g)i′iΓν(g)j′j〈i, j|α, λ, ℓ〉 .

(relation between elements of the representation matries in the old and the new

basis)
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Example:

In quantum mehanis (the spin degree of freedom of) a spin-

1
2
partile is desribed by a

vetor in C2
. The basis vetors

|↑〉 :=
(
1
0

)
and |↓〉 :=

(
0
1

)

transform in a two-dimensional representation of SU(2), namely Γ2(g) = g ∀ g ∈ SU(2).
Consider two spin-

1
2
partiles: C2 ⊗ C2 ∼= C4

, spanned by the produt basis

|↑↑〉 := |↑〉 ⊗ |↑〉 , |↑↓〉 := |↑〉 ⊗ |↓〉 , |↓↑〉 := |↓〉 ⊗ |↑〉 , |↓↓〉 := |↓〉 ⊗ |↓〉 ,

transforms in Γ2⊗2
. De�ne a new basis,

|0, 0〉 := |↑↓〉 − |↓↑〉√
2

, |1, 1〉 := |↑↑〉 , |1, 0〉 := |↑↓〉+ |↓↑〉√
2

, |1,−1〉 := |↓↓〉 .

In the exerises we show:

• |0, 0〉 transforms in the spin-0 representation of SU(2) (one-dimensional � trivial

representation), and

• |1, m〉, m = −1, 0, 1, transform in the spin-1 representation (three-dimensional) of

SU(2).

Clebsh-Gordan oe�ients:

|↑↑〉 |↑↓〉 |↓↑〉 |↓↓〉
〈0, 0| 0 1√

2
− 1√

2
0

〈1, 1| 1 0 0 0

〈1, 0| 0 1√
2

1√
2

0

〈1,−1| 0 0 0 1

i.e. e.g. 〈1, 0|↑↓〉 = 1√
2
.

In general one labels the unitary irreduible representations of SU(2) by their so-alled

spin quantum number s ∈ 1
2
N0; the orrespong representation has dimension 2s+ 1.
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3 Appliations in quantum mehanis

In the following we explore the onsequenes of the orthogonality relations for irreduible

representations (Theorem 6) for degeneraies of quatum mehanial energy levels.

3.1 Expansion in irreduible basis funtions and seletions rules

In quantum mehanis one onsiders vetor spaes (Hilbert spaes) like V = L2(Rd)⊗Cn
,

i.e. Cn
-valued square-integrable funtions in d variables, e.g. d = 3 and n = 2s + 1 for a

partile with spin s, moving in three-dimensional spae (~x ∈ R3
: position of the partile).

ψ, ϕ ∈ L2(Rd)⊗ Cn
, salar produt

〈ψ|ϕ〉 =
n∑

m=1

∫

Rd

ψm(x)ϕm(x) d
dx .

An operator A : V → V is alled unitary, if it leaves salar produts invariant, i.e.

〈Aψ|Aϕ〉 = 〈ψ|ϕ〉 ∀ ψ, ϕ ∈ V .

Lemma 8. Let G be a (�nite) group of linear, unitary operators, A ∈ G,13 and let

ψν1 , . . . , ψ
ν
dν

be funtions that transform in the unitary irreduible representation Γν (with

dim(Γν) = dν), i.e.

Aψνα =

dν∑

β=1

ψνβ Γ
ν(A)βα . (∗)

Then ∃Cν ∈ C suh that

〈ψνα|ψµβ〉 = Cν δνµ δαβ . (+)

Remark: We say that the ψνα have speial symmetry properties with respet to G. If

ν 6= µ, then ψνα and ψµα′ have di�erent symmetry properties. The lemma states that

funtions with di�erent symmetry properties are orthogonal to eah other.

13

Alternatively, view the operators A as unitary representation of a group G on V .
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Proof:

〈ψνα|ψµβ〉 =
1

|G|
∑

A∈G
〈Aψνα|Aψµβ〉

=
(∗)

1

|G|
∑

A∈G

〈 dν∑

γ=1

ψνγ Γ
ν(A)γα

∣∣∣∣
dµ∑

γ′=1

ψµγ′ Γ
µ(A)γ′β

〉

=
∑

γ,γ′

1

|G|
∑

A∈G
(Γν(A)γα) Γ

µ(A)γ′β

︸ ︷︷ ︸
= 1

dν
δνµδγγ′ δαβ (Theorem 6)

〈ψνγ |ψµγ′〉

= δνµδαβ
1

dν

∑

γ

〈ψνγ |ψνγ〉
︸ ︷︷ ︸

=Cν

�

Remarks:

1. By normalising the ψνα, 〈ψνα|ψνα〉 = 1, we get Cν = 1 ∀ ν.
2. Now we an express an arbitrary funtion ψ ∈ V as linear ombination of funtions

with speial symmetry properties (= invariant basis funtions) as follows:

(i) Consider the subspae spanned by the images of ψ under appliation of all

A ∈ G

U = span({Aψ : A ∈ G}) .

U is invariant under G, and ψ ∈ U .
(ii) Deompose U into irreduible invariant subspaes (whih arry irreduible rep-

resentations of G), and expand ψ in bases of the invariant subspaes.

Whih irreduible representations, and thus whih basis funtions, appear in this

expansion depends on ψ.

3. Equations like (+) are also alled seletion rules. (Later: A seletion rule determines

whih transitions annot happen sine the transition matrix element vanishes due to

symmetries.)

3.2 Invariane of the Hamiltonian and degeneraies

A speial role is played by the Hamiltonian H : V → V (a linear self-adjoint operator) of

a quantum mehanial system. In partiular, its eigenvalues are the possible energy levels

in whih we an �nd the system.
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• Let H be the Hamiltonian of a quantum mehanial system and A a unitary operator.

If

AH = HA ,

then we say A ommutes with the Hamiltonian or A leaves H invariant.

• The set of all symmetry operations (realised by unitary operators Aj) whih leave H
invariant (i.e. AjH = HAj), forms a group G, the symmetry group of H , sine

A1H = HA1 , A2H = HA2

⇒ (A1A2)H = A1A2H = A1HA2 = HA1A2 = H(A1A2) .

• Let A ∈ G and |ψ〉 an eigenstate of H with energy E

H|ψ〉 = E|ψ〉
⇒ H(A|ψ〉) = AH|ψ〉 = E(A|ψ〉) (∗)

i.e. A|ψ〉 is also eigenstate of H with the same energy E.

• If E is not degenerate then A|ψ〉 ∝ |ψ〉.
If E ism-fold degenerate, then A|ψ〉 is a linear ombination of the states |ψ1〉, . . . , |ψm〉
with energy E. (The previous ase was just the speial ase m = 1.)

In any ase the spae S = span(|ψ1〉, . . . , |ψm〉) is invariant under the symmetry

group of H .

⇒ The degenerate states |ψ1〉, . . . , |ψm〉 transform in a representation of G,

A|ψj〉 =
m∑

k=1

Γ(A)kj|ψk〉 , A ∈ G . (+)

In priniple this representation an by reduible or irreduible; typially it is irre-

duible.

(i) All states transforming in the same irreduible representation of G, must have
the same energy:

H|ψj〉 = Ej |ψj〉
⇒
(∗)

H(A|ψj〉) = Ej(A|ψj〉)

⇒
(+)

H(A|ψj〉) =
∑

k

Γ(A)kjH|ψk〉︸ ︷︷ ︸
=Ek|ψk〉

=
∑

k

Γ(A)kjEj|ψk〉= Ej(A|ψj〉)
(with Γ irreduible)

⇒ EkΓ(A)kj = Γ(A)kjEj (no sums over j or k)
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Now de�ne an m × m diagonal matrix E = diag(E1, . . . , Em). Then the last

equation reads

E Γ(A) = Γ(A)E ∀A ∈ G ,

i.e. aording to Shur's Lemma (Theorem 4) E is proportional to 1m ⇒ all Ej
are idential.

(ii) If Γ is reduible and if |ψj〉 and |ψk〉 transform in di�erent irreduible represen-

tations,




( )
0

0

( )




← j

← k
,

then Γ(A)ki = 0 for all A (Shur's Lemma, Theorem 5) and in general(!) Ek 6=
Ej , i.e. there is at least no reason why |ψj〉 and |ψk〉 should be degenerate.

(iii) If states transforming in di�erent irreduible representations still have the same

energy, we speak about �aidental degeneray�. Possible reasons:

1. ��ne-tuning� of or several parameters in H (rather unlikely).

2. We haven't orretly identi�ed the full symmetry group, i.e. we have over-

looked some symmetry.

• Conlusions

� Degenerate states to a given energy typially transform in an irreduible repre-

sentation of the symmetry group of H . (i.e. they an be lassi�ed by irreduible

representations).

� number of degenerate states = dimension of the irreduible representations

Example: Hydrogen atom

First we neglet spin (i.e. in partiular no spin-orbit oupling), Hilbert spae L2(R3),

H = − ~2

2m
∆− e2

r
,

where r = |~x|, ~x ∈ R3
.

• Eigenstates are labelled by so-alled quantum numbers

n = 1, 2, . . . (prinipal quantum number),

ℓ = 0, . . . , n−1 (angular/orbital/azimuthal quantum number) and

m = −ℓ, . . . , ℓ (magneti quantum number),
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ψ(~x) = Rnℓ(r)Yℓm(θ, φ) .

• The Hamiltonian for any entral fore problem, (i.e. H as above, but with −e2/r
replaed by an arbitrary funtion of r) in 3 dimensions is invariant under O(3). States
for �xed n and ℓ transform in a (2ℓ+1)-dimensional irreduible representation of O(3)
(whih we will lassify later), i.e. the energy does not depend on m ⇒ (2ℓ + 1)-fold
degeneray.

• Observation (for hydrogen): The energy also doesn't depend on ℓ (�aidental degen-
eray�)

⇒ n2
-fold degeneray, sine

n−1∑
ℓ=0

(2ℓ+ 1) = n2
.

Explanation: The symmetry group is larger than assumed so far. The Hamiltonian of

the hydrogen atom is even invariant under O(4) (H ommutes also with the Runge-

Lenz vetor) ⇒ energy does not depend on ℓ, and the n2
-fold degeneray an be

understood in terms of the dimensions of the irreduible representations of O(4).

3.3 Perturbation theory and lifting of degeneraies

• typial propblem:

H = H0 +H ′ ,

with H0 �integrable� and H
′
�small perturbation�

• Let G be the symmetry group of H0. Two possibilities:

1. H ′
is also invariant under G.

2. H ′
is only invariant under a subgroup B ⊂ G.

• In ase 1 the perturbation H ′
does not lead to a splitting of levels (it does not lift

the degeneray of the spetrum of H0).

• Case 2 leads to a splitting of levels (we � partially � lift degeneraies):

� The exat eigenstates of H transform in irreduible representations of B.

� The degenerate eigenstates of H0 transform in irreduible representations of G.

� For the latter representation, the matries orresponding to the elements of B,
form a representation, say Γ, of B, in general reduible, i.e.

Γ =
r⊕

j=1

ajΓ
j

with dim(Γj) = dj .
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� States transforming in an irreduible representation of B, are still degenerate.
States transforming in di�erent irreduible representations of B, in general have
di�erent energies, i.e. (some of the) so-far degenerate levels split:

⇒ ∑
j aj new energy levels

a1 of these eah d1-fold degenerate,

a2 of these eah d2-fold degenerate, et.

Examples:

1. Hydrogen atom as in Setion 3.2

Adding a small radially symmetri potential V (r) (but not

1
r
) breaks the O(4)-

symmetry to O(3) and eah energy level splits into n levels with di�erent ℓ.

n = 1
1

n = 2
4

n = 3
9

1

ℓ = 0

1

ℓ = 0

3

ℓ = 1

1

ℓ = 0

3

ℓ = 1

5

ℓ = 2

Eah new level is still (2ℓ+1)-fold degenerate, sine H ′
is still invariant under O(3).

2. Fine struture of hydrogen

• Take eletron spin into aount: instead of L2(R3) now onsider L2(R3)⊗ C2
.

• Intermediate step: Consider the same Hamiltonian as before (more preisely

H → H ⊗ 12). States whih so far transformed in the representation Γ2ℓ+1

of O(3), now transform

14

in Γ2ℓ+1 ⊗ Γ2
but energies are unhanged, only the

degeneray is doubled.

• Now add the perturbation H ′
, ontaining i.a. spin-dependent terms (spin-orbit

oupling), but still invariant under O(3). With

Γ2ℓ+1 ⊗ Γ2 = Γ2ℓ ⊕ Γ2ℓ+2

we obtain states transforming in one of the two irreduible representations. One

alls j = ℓ± 1
2
the total angular momentum quantum number,

2j + 1 = 2(ℓ± 1
2
) + 1 =

{
2ℓ+ 2
2ℓ

.

14

I'm rather skethy here. Before, we spoke about irreps of SU(2) when disussing spin. Here we �rst

spoke about an O(3)-symmetry. Later we will see that there is an intimate relation between SU(2) and
SO(3) (and their irreps) � let's just say by slightly adjusting the perspetive it's legitimate to think of

Γ2ℓ+1
and Γ2

as irreps of the same group.
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Example: n = 2, ℓ = 0, 1:

Γ1 ⊗ Γ2

︸ ︷︷ ︸
s-Orbital, ℓ=0

⊕ Γ3 ⊗ Γ2

︸ ︷︷ ︸
p-Orbital, ℓ=1

= Γ2 ⊕ Γ2

︸ ︷︷ ︸
still aidentally degenerate,

symmetry group still

larger than O(3)

⊕ Γ4

n = 2; ℓ = 0, 1; s = 1
2

2S1/2,
2P1/2,

2P3/2 2P3/2

2S1/2,
2P1/2

�ne struture

(i.a. spin-orbit oupling)
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4 Expansion into irreduible basis vetors

4.1 Projetion operators onto irreduible bases

We take up Remark 2 after Lemma 8: Let U be a representation (e.g. by unitary operators)

on V and let eν1, . . . , e
ν
dν
∈ V be funtions/vetors that transform in the unitary irreduible

representation Γν (with dim(Γν) = dν). Aording to Remark 2 after Lemma 8 we an

expand every ψ ∈ V into suh basis vetors, i.e.

ψ =
∑

µ

dµ∑

β=1

cµβ e
µ
β ,

with expansion oe�ients cµβ ∈ C. We thus have

U(g)ψ =
∑

µ

∑

α,β

cµβ e
µ
α Γ

µ(g)αβ ,

and with Theorem 6 it follows that

dµ′

|G|
∑

g∈G
Γµ′(g)α′β′ U(g)ψ =

∑

µ

∑

α,β

cµβ e
µ
α

dµ′

|G|
∑

g∈G
Γµ′(g)α′β′ Γµ(g)αβ

︸ ︷︷ ︸
=δµµ′ δαα′δββ′

= cµ
′

β′e
µ′

α′ .

Fix µ′
and β ′

, and onseutively apply

dµ′

|G|
∑

g∈G
Γµ′(g)α′β′ U(g) , α′ = 1, . . . , dµ′ ,

to ψ: Either the result is always zero (if cµ
′

β′ = 0) or we obtain dµ′ basis vetors, whih

transform in Γµ
′
(if cµ

′

β′ 6= 0).

This motivates the following de�nition:

De�nition: (generalised projetion operators)

Let G be a group, U a representation, Γµ an irreduible representation, dimΓµ = dµ. We

all

P µ
jk =

dµ
|G|

∑

g∈G
[Γµ(g)−1]jk U(g)

generalised projetion operator.

Remark: In the following Γ will always be unitary, i.e.

[Γµ(g)−1]jk = [Γµ(g)†]jk = Γµ(g)kj (f. above).

2019-11-12
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Theorem 9. (Properties of P
µ
jk) With above de�nitions we have:

(i) For �xed ψ ∈ V and for �xed µ and j the dµ vetors P µ
jkψ, k = 1, . . . , dµ, either all

vanish or they transform in the irreduible representation Γµ.

In short: U(g)P µ
jk =

∑

ℓ

P µ
jℓ Γ

ν(g)ℓk.

(ii) P µ
jiP

ν
ℓk = δµνδjkP

µ
ℓi.

(iii) P µ
j := P µ

jj is a projetion operator.

(iv) P µ :=
∑

j P
µ
j is a projetion operator onto the invariant subspae Uµ

ontaining

all vetors transforming in the irreduible representation Γµ.
(Uµ =

⊕aµ
α=1 U

µ
α , U

µ
α : irreduible invariant subspaes,

α = 1, . . . , aµ, aµ: multipliity of Γµ in U)

(v)

∑
µ P

µ = 1 if V ompletely reduible. (here always assumed)

(vi) U(g) =
∑

µ

∑

j,k

Γµ(g)kjP
µ
jk. (inversion of de�nition)

Proof:

(i) see above

(ii) First: ation of generalised projetion operators on irreduible basis,

P µ
ji e

ν
k =

dµ
|G|

∑

g∈G
Γµ(g)ij U(g) e

ν
k =

∑

ℓ

dµ
|G|

∑

g∈G
Γµ(g)ij Γ

ν(g)ℓk

︸ ︷︷ ︸
=δµνδiℓδjk

eνℓ

= δµνδjk e
µ
i .

(∗)

For ψ ∈ V arbitrary, we have due to (i): the vetors ϕνk := P ν
ℓkψ transform in Γν

⇒ P µ
jiP

ν
ℓkψ = P µ

ji ϕ
ν
k =
(∗)
δµνδjk ϕ

µ
i = δµνδjk ϕ

µ
i = δµνδjk P

ν
ℓiψ .

(iii) P µ
j P

ν
k = P µ

jjP
ν
kk =

(ii)
δµνδjk P

µ
jj = δµνδjk P

µ
j .

(iv)

P µP ν =
∑

j,k

P µ
j P

ν
k =

(iii)

∑

j,k

δµνδjk P
µ
j = δµν

∑

j

P µ
j = δµν P

µ

(v) First: ation on irreduible basis,

∑

µ

P µ eνk =
∑

µ

∑

j

P µ
jj e

ν
k =

∑

µ

∑

j

δµνδjk e
µ
j = eνk ;

write ψ ∈ V as linear ombination of irreduible basis vetors ⇒ ∑
µ P

µ = 1.
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(vi) For ψ ∈ V arbitrary we have due to (i): The vetors ϕµk := P µ
jkψ transform in Γµ

⇒
∑

µ

∑

j,k

Γµ(g)kjP
µ
jk ψ =

∑

µ

∑

j,k

Γµ(g)kj ϕ
µ
k =

∑

µ

∑

j

U(g)ϕµj

= U(g)
∑

µ

∑

j

P µ
jj ψ =

(v)
U(g)ψ

�

Examples:

1. Redution of S = span(φ1, φ2, φ3) from Setion 2.4.1 (invariant under D3
∼= S3)

• S3 has two 1-dimensional and one 2-dimensional irreduible representation (Γ1,Γ2,Γ3
).

• The generalised projetion operators are

P 1
11 =

1

6
(OI +OC +OC̄ +Oσ1 +Oσ2 +Oσ3) ,

P 2
11 =

1

6
(OI +OC +OC̄ − Oσ1 − Oσ2 −Oσ3) ,

P 3
11 =

1

3

(
OI −

1

2
OC −

1

2
OC̄ − Oσ1 +

1

2
Oσ2 +

1

2
Oσ3

)
,

P 3
12 =

1

3

(
−
√
3

2
OC +

√
3

2
OC̄ −

√
3

2
Oσ2 +

√
3

2
Oσ3

)
,

P 3
21 =

1

3

(√
3

2
OC −

√
3

2
OC̄ −

√
3

2
Oσ2 +

√
3

2
Oσ3

)
and

P 3
22 =

1

3

(
OI −

1

2
OC −

1

2
OC̄ +Oσ1 −

1

2
Oσ2 −

1

2
Oσ3

)
.

• Applied to a vetor in S, e.g. φ1 (see Setion 2.4.1 for the ation of the OA-

operators on φ1):

� µ = 1 :

P 1
11φ1 =

1

6
(φ1 + φ2 + φ3 + φ1 + φ3 + φ2) =

1

3
(φ1 + φ2 + φ3) ,

invariant under D3 and transforms in the trivial representation Γ1
.

� µ = 2 :

P 2
11φ1 =

1

6
(φ1 + φ2 + φ3 − φ1 − φ3 − φ2) = 0 ,

had to be zero, sine Γ2
is not ontained in the 3-dimensional representation

ating on S.
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� µ = 3 : �rst j = 1,

P 3
11φ1 =

1

3

(
φ1 −

1

2
φ2 −

1

2
φ3 − φ1 +

1

2
φ3 +

1

2
φ2

)
= 0 ,

P 3
12φ1 =

√
3

6
(−φ2 + φ3 − φ3 + φ2) = 0 (if one vanishes, then also the other one)

now j = 2,

P 3
21φ1 =

√
3

6
(φ2 − φ3 − φ3 + φ2) ∝ φ2 − φ3 ,

P 3
22φ1 =

1

3

(
φ1 −

1

2
φ2 −

1

2
φ3 + φ1 −

1

2
φ3 −

1

2
φ2

)
∝ 2φ1 − φ2 − φ3 .

The last two funtions transform in Γ3
.

This is the hange of basis from Setion 2.4.1.

2. Reduing a produt representation

• Let Γµ⊗ν be a produt representation of G on Vµ⊗Vν , in general Γµ⊗ν =
⊕
λ

aλΓ
λ
.

How do we �nd the irreduible invariant subspaes of Vµ ⊗ Vν?
• Start with a produt basis |k, ℓ〉 = |eµk〉⊗|eνℓ 〉 and apply the generalised projetion
operators P λ

ji.

• For �xed λ, j, k, ℓ the dλ vetors

P λ
ji|k, ℓ〉 , i = 1, . . . , dλ ,

either all vanish or they span an irreduible invariant subspae.

• By varying λ, j, k, ℓ we an �nd all irreduible invariant subspaes.

• Exerises: Redution of Γ3⊗3
, where Γ3 : S3 → GL(C2).

Summary:

• Deompose the spae V into irreduible invariant subspaes,

V =
⊕

µ,α

V µ
α ,

where µ labels inequivalent irreps and α numbers opies of irrep µ.

• For the basis |α, µ, i〉, i = 1, . . . , dµ, of V we have

P µ|α, ν, k〉 = |α, µ, k〉δµν ,
P µ
i |α, ν, k〉 = |α, µ, i〉δµνδik and

P µ
ij |α, ν, k〉 = |α, µ, i〉δµνδjk .
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4.2 Irreduible operators and the Wigner-Ekart Theorem

De�nition: (irreduible operators)

Let G be a group, U a representation and Γµ a unitary irreduible representation, dimΓµ =
dµ. A set of linear operators, {Oµ

i : i = 1, . . . , dµ}, whih transform under G as follows,

U(g)Oµ
i U(g)

−1 =

dµ∑

j=1

Oµ
j Γ

µ(g)ji ,

is alled a set of irreduible operators orresponding to the representation Γµ. (The Oµ
i are

also alled irreduible tensors or irreduible tensor operators).

Remarks:

1. The de�nition makes sense, sine

U(gh)Oµ
i U(gh)

−1 = U(g)U(h)Oµ
i U(h)

−1U(g)−1 = U(g)
∑

j

Oµ
j Γ

µ(h)jiU(g)
−1

=
∑

j,k

Oµ
kΓ

µ(g)kjΓ
µ(h)ji =

∑

k

Oµ
kΓ

µ(gh)ki .

2. Speial ase: If Γµ is the trivial representation then the operator Oµ
(no index i,

sine dµ = 1) ommutes with U(g) ∀ g ∈ G, f. Setion 3.2.

3. If Oµ
i , i = 1, . . . , dµ, are irreduible operators and |eνj 〉, j = 1, . . . , dν, irreduible basis

vetors, then the vetors Oµ
i |eνj 〉 transform in the produt representation Γµ⊗ν :

U(g)Oµ
i |eνj 〉 = U(g)Oµ

i U(g)
−1U(g)|eνj 〉

=
∑

k,ℓ

Oµ
k |eνℓ 〉Γµ(g)kiΓν(g)ℓj .

We an redue this produt representation (f. Setion 2.8) and expand the vetors

Oµ
i |eνj 〉 in the irreduible basis {|wλαℓ〉},

Oµ
i |eνj 〉 =

∑

αλℓ

|wλαℓ〉〈α, λ, ℓ(µ, ν)i, j〉 . (∗)

This leads to the. . .

Theorem 10. (Wigner-Ekart)

Let Oµ
i be irreduible operators and |eνj 〉 irreduible vetors, then

〈eλℓ |Oµ
i |eνj 〉 =

∑

α

〈α, λ, ℓ(µ, ν)i, j〉 〈λ‖Oµ‖ν〉α

with the so-alled redued matrix element (whih isn't a matrix element. . . )

〈λ‖Oµ‖ν〉α :=
1

dλ

∑

k

〈eλk |wλαk〉 .

2019-11-14

55



Proof:

〈eλℓ |Oµ
i |eνj 〉 =

(∗)

∑

α,ρ,m

〈eλℓ |wραm〉 〈α, ρ,m(µ, ν)i, j〉

In the proof of Lemma 8 (Setion 3.1) we showed that

〈eλℓ |wραm〉 = δρλδmℓ
1

dλ

∑

k

〈eλk|wλαk〉 ,

and thus

〈eλℓ |Oµ
i |eνj 〉 =

∑

α

1

dλ

∑

k

〈eλk|wλαk〉
︸ ︷︷ ︸

=〈λ‖Oµ‖ν〉α

〈α, λ, ℓ(µ, ν)i, j〉 .

�

Remarks:

1. The redued matrix element does not depend on i, j or ℓ. It seems to also not depend

on the operators O, and the reps µ and ν, but the wλαk depend on O, µ and ν, sine

span({wλαk}) = span({Oµ
i e

ν
j})

2. Important in appliations, sine many matrix elements (ME) on the l.h.s. are deter-

mined by few redued MEs on the r.h.s. The latter ontain the omplete information

about the physis. Everything else (CG oe�ients) is representation theory, i.e. is

already �xed by the symmetries of the problem.

3. In order to determine the redued MEs alulate as many (suitable) MEs (l.h.s) as

there are redued MEs. Then the Wigner-Ekart Theorem provides us with a system

of linear equations for the redued MEs.

Example: Time-dependent perturbation theory

• Consider an Atom in the state ψ with energy Eψ under the in�uene of the (time-

dependent) perturbation O (e.g. eletromagneti wave). The probability for a tran-

sition to state ϕ (with energy Eϕ) is proportional to

|〈ϕ|O|ψ〉|2 .

Thereby, radiation with frequeny |Eψ−Eϕ|/h is absorbed or emitted. In experiments

one observes the intensity of this radiation, whih is proportional to |〈ϕ|O|ψ〉|2.
• The unperturbed system is rotationally invariant: ψ and ϕ are elements of bases

transforming in irreduible representations of SO(3): Γ2ℓ+1
, Γ2ℓ′+1

.

• The perturbation is also rotationally invariant: O is element of a set of irreduible

operators, transforms, e.g., in Γ3
(angular momentum 1, dipole radiation).

• Hene, onsider 〈ℓ′, m′|O3
m′′|ℓ,m〉 (further quantum numbers suppressed),

m = −ℓ, . . . , ℓ, m′ = −ℓ′, . . . , ℓ′, m′′ = −1, 0, 1.
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• Later we will see: Γ3⊗(2ℓ+1) = Γ2ℓ−1 ⊕ Γ2ℓ+1 ⊕ Γ2ℓ+3
, i.e.

� transitions only possible if ℓ′ − ℓ = −1, 0, 1  seletion rule,

� no α-sum, only one redued ME,

〈ℓ′, m′|O3
m′′ |ℓ,m〉 = 〈ℓ′, m′(3, 2ℓ+ 1)m′′, m〉 〈ℓ′‖O3‖ℓ〉 .

For �xed ℓ, ℓ′ the relative intensities of the (2ℓ+1)(2ℓ′+1) theoretially possible
transitions are already �xed by the CG oe�ients � some vanish  seletion

rule.

(Problem slightly simpli�ed here, f. Wu-Ki Tung, Group Theory and Physis, World Si-

enti�, 1985, Setions 4.3, 8.7 & 11.4.)

4.3 Left ideals and idempotents

The generalised projetion operators allow us to deompose reduible reps into sums of

irreps. To this end we already have to know the irreps. Remaining question: How to

onstrut the irreps?

Redue the regular representation (see Setion 2.7), as it ontains all irreduible represen-

tations Γµ (with multipliities dµ = dim(Γµ)).

Reall:

• Carrier spae is the group algebra (or Frobenius-Algebra)

A(G) = span(g1, . . . , gn), n = |G| (group elements numbered again).

• A(G) ∋ r =∑i rigi, analogously q ∈ A(G):

rq =
∑

i,j

riqj gigj =
∑

i,j,k

ri gk(∆i)kjqj .

De�nition: (left ideal)

A subspae L ⊆ A(G) that is invariant under left multipliation is alled left ideal, i.e.

r ∈ L and q ∈ A(G) ⇒ qr ∈ L .

A left ideal L is alled minimal if it does not ontain any non-trivial left ideal K ⊂ L.

Remarks:

1. Similarly one de�nes right ideals and two-sided ideals. (Here we only use left ideals.)

2. L is a left ideal ⇔ L is an invariant subspae, sine

�⇒� o.k., sine G ⊂ A(G)
�⇐� with r ∈ L and q =

∑
j qjgj ∈ A(G) we have

qr =
∑

j

qj gjr︸︷︷︸
∈L (inv. subspae)

∈ L (linear ombination of elements ∈ L).
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3. Similarly: L is minimal left ideal ⇔ L irreduible invariant subspae

Idea: Find the minimal left ideals and onstrut the irreps whih they arry (by applying

the group elements to bases for the left ideals).

In the following we denote by P µ
α the projetion operator onto the minimal left ideal Lµα,

i.e. P µ
αA(G) = Lµα. (As before µ labels the non-equivalent irreps, and α = 1, . . . , dµ.)

Properties of P µ
α
:

(i) P µ
α r ∈ Lµα ∀ r ∈ A(G)

(ii) if q ∈ Lµα then P µ
α q = q

(iii) P µ
αP

ν
β = δµνδαβP

µ
α ,

and it follows that

(iv) P µ
α q = qP µ

α ∀ q ∈ A(G)
Proof: Deompose r ∈ A(G) as r =∑

ν,β

rνβ with rνβ ∈ Lνβ. Then

qP µ
α r = qP µ

α

∑

ν,β

rνβ = qrµα and

P µ
α qr = P µ

α q
∑

ν,β

rνβ = P µ
α

∑

ν,β

qrνβ︸︷︷︸
∈Lν

β

= qrµα . �

Now de�ne Lµ :=
⊕
α

Lµα and �rst onstrut the projetion operator P µ
onto Lµ:

For eah q ∈ A(G) exists a unique deomposition

q =
∑

µ

qµ with qµ ∈ Lµ ,

in partiular for the identity,

e =
∑

µ

eµ , eµ ∈ Lµ .

Thus,

q = qe = q
∑

µ

eµ =
∑

µ

qeµ︸︷︷︸
∈Lµ

(sine eµ ∈ Lµ
)

,

i.e. qµ = qeµ, and we have found:

Lemma 11.

P µ
is given by right multipliation with eµ, i.e. P

µq = qeµ ∀ q ∈ A(G).

Remarks:

1. P µ
is linear.
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2. From

eµ︸︷︷︸
∈Lµ

= eµe = eµ
∑

ν

eν =
∑

ν

eµeν︸︷︷︸
∈Lν

it follows that eµeν = δµνeµ � f. property (iii).

3. With e =
∑
µ,α

eµα this also works for projetions to minimal left ideals, de�ned by

P µ
α q := qeµα .

De�nition: (idempotents)

An element eµ ∈ A(G) that satis�es e2µ = eµ is alled (an) idempotent. If e2µ = ξµeµ for

some non-zero ξµ ∈ C then we all eµ essentially idempotent.

Remarks:

1. We say the idempotent eµ generates the left ideal Lµ, i.e.

Lµ = {qeµ : q ∈ A(G)} .
2. An idempotent is alled primitive, if it generates a minimal left ideal. Otherwise it

an be written as a sum e1 + e2 of two non-zero idempotents with e1e2 = 0 = e2e1.

Theorem 12.

The idempotent eµ is primitive. ⇔ For every q ∈ A(G) ∃λq ∈ C s.t. eµqeµ = λqeµ.

Proof:

�⇒�: Let L be the left ideal generated by eµ.
For q ∈ A(G) de�ne the linear map Q : A(G)→ A(G) by

Qr = reµqeµ for r ∈ A(G) .

Then Qsr = sreµqeµ = sQr ∀s, r ∈ A(G), and in partiular ∀r ∈ L and ∀s ∈ G, i.e.
Q ommutes with the representation of G arried by L.
If eµ is primitive, then L is minimal and aording to Shur's Lemma (Theorem 4)

Q is a multiple of the identity on L. The latter is given by right multipliation with

eµ, i.e. ∃ λq ∈ C: eµqeµ = λqeµ.

�⇐�: Let eµ = e1 + e2 with non-zero idempotents e1e2 = 0 = e2e1. Then on the one hand

eµe1eµ = (e1 + e2)e1(e1 + e2) = e1 ,

and on the other hand ∃λ ∈ C s.t.

eµe1eµ = λeµ .

Thus,

λeµ = e1 = e21 = λ2e2µ = λ2eµ ⇔ λ2 = λ ,

but λ = 0 	 e1 6= 0 and λ = 1⇒ eµ = e1 ⇒ e2 = 0 	 e2 6= 0.
�

2019-11-19
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Theorem 13.

The left ideals generated by two primitive idempotents, e1 and e2, arry equivalent irre-

duible representations Γ1
and Γ2

i� e1qe2 6= 0 for at least one q ∈ A(G).

Proof:

�⇐�: Let e1qe2 = s 6= 0 for one q ∈ A(G).
De�ne the linear map S : A(G)→ A(G) by Sr = rs.
Apparently, S : L1 → L2

, and sine Se1 = s 6= 0 we have S|L1 6= 0.
It follows that Srp = rps = rSp ∀r, p ∈ A(G), and in partiular ∀r ∈ G and ∀p ∈ L1

,

i.e. SΓ1(r) = Γ2(r)S. Hene, aording to Shur's Lemma (Theorem 5) Γ1
and Γ2

are equivalent.

�⇒�: If Γ1
and Γ2

are equivalent, then there exists a non-trivial linear map S : L1 → L2

with SΓ1(r) = Γ2(r)S ∀r ∈ G, i.e. Srp = rSp ∀r ∈ G and ∀p ∈ L1
;

by linearity this is also true ∀r ∈ A(G).
De�ne s := Se1 ∈ L2 ⇒ s = se2.
Then s = Se1 = Se1e1 = e1Se1 = e1s = e1se2.

�

Remark:

The primitive idempotent

e1 =
1

|G|

|G|∑

i=1

gi

generates the one-dimensional left ideal L1
, whih arries the trivial representation.

Proof: L1 = {re1 : r ∈ A(G)}. With

re1 =
(∑

j

rjgj

)( 1

|G|
∑

i

gi

)
=
∑

j

rj
1

|G|
∑

i

gjgi

=
∑

j

rj
1

|G|
∑

k

gk (rearrangement lemma)

= c e1 , where c =
∑

j
rj ,

we �nd L1 = span(e1), dimL1 = 1, and thus minimal. Moreover,

g · c e1 =
c

|G|
∑

i

ggi =
c

n

∑

k

gk = c e1

i.e. L1
arries the trivial representation. �
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Summary:

• The group algebra A(G) an be deomposed into left ideals Lµ (µ labels the non-

equivalent irreps of the group).

• The Lµ are generated by right multipliation with idempotents eµ, where

eµeν = δµνeµ and

∑

µ

eµ = e .

• Eah Lµ an be deomposed into dµ minimal left ideals Lµα, α = 1, . . . , nµ.

• The Lµα are generated by right multipliation with primitive idempotents eµα.

• Having found all primitive idempotents, one an straightforwardly onstrut all irreps

of the group.

• Exerises: Redution of the regular rep of C3.

• In Setion 5 we will use this method in order to onstrut all irreps of Sn.

4.3.1 Dimensions and haraters of the irreduible representations

Theorem 14. Let G be a group with group algebra A(G), and let

eµ =
∑

g∈G
ag g (ag ∈ C , linear ombination

of group elements

)

be a primitive idempotent with orresponding left ideal Lµ = A(G)eµ, arrying the irre-

duible representation Γµ, dimΓµ = dµ. Then ∀h ∈ G

χµ(h) = tr Γµ(h) =
|G|
nc

∑

g∈c
ag

where c is the onjugay lass of h with nc elements.

Remark: dµ = χµ(e) = |G|ae.
Proof:

De�ne the linear map

Ah : A(G) ∋ r 7→ h−1reµ .

(i) The trae of Ah is the harater of h
−1
:

Choose a basis {r1, . . . , r|G|} of A(G) s.t. {r1, . . . , rdµ} is a basis of Lµ. Then

Ahrj = h−1rjeµ

ontains no terms proportional to rk with k > dµ, i.e. now j ≤ dµ,

Ahrj = h−1rjeµ = h−1rj =

dµ∑

k=1

rkΓ
µ(h−1)kj
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and thus

trAh = χµ(h−1) = χ(h)

(w.l.o.g. hoose Γµ unitary, all others equivalent).

(ii) Now hoose the group elements g ∈ G as basis for A(G). Then

Ahg = h−1geµ =
∑

g′∈G
ag′ h

−1gg′︸ ︷︷ ︸
?
=g ⇔ g′=g−1hg

= ag−1hg g + terms not proportional to g ,

and thus

trAh =
∑

g∈G
ag−1hg =

∑

g′∈c
ag′ |Gg′| =

|G|
nc

∑

g′∈c
ag′ ,

where Gg′ is the stabiliser of g
′
, and aording the orbit-stabiliser theorem (see Prob-

lem 7) we have nc · |Gg′| = |G|.
Combining (i) and (ii) proves the theorem. �
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5 Representations of the symmetri group

and Young diagrams

The representation theory of Sn is fundamental in several ways:

• Finite groups of order n are isomorphi to subgroups of Sn (Theorem 1).

• Primitive idempotents in A(Sn) also play a role in the onstrution of irreps of

lassial Lie groups, as U(m), O(m) or SU(m).

• When onsidering quantum systems of idential partiles Sn is always a �fator� of

the symmetry group of the Hamiltonian H , i.e. the eigenstates of H transform in

irreps of Sn.

5.1 One-dimensional irreduible representations

and assoiate representations of Sn

The alternating group An is the group of even permutations of {1, 2, . . . , n} (i.e. eah

element is the produt of an even number of transpositions). An is a normal subgroup of

Sn, with quotient group Sn/An ∼= Z2.

⇒ Sn has two one-dimensional representations, indued by the by the representations of

Z2 (f. Problems 10 & 16):

Γs(p) = 1 ∀ p ∈ Sn (trivial representation) and

Γa(p) = sgn(p) :=

{
1 for p even
−1 for p odd

.

sgn(p) is alled sign or parity of the permutation p.

Later: There are no other one-dimensional representations of Sn (see Setion 5.5).

Alternatively, we obtain Γs
and Γa

from. . .

Lemma 15. The symmetriser s =
∑
p∈Sn

p and the anti-symmetriser a =
∑
p∈Sn

sgn(p)p are

essentially idempotent and primitive.

Proof: For s see remark after Theorem 13.

a2 =
∑

p,q

sgn(p)p sgn(q)q =
∑

p

∑

q

sgn(pq)pq

︸ ︷︷ ︸
=a (rearrangement lemma)

= n! a ,

i.e. a is also essentially idempotent.
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Representations: For all q ∈ Sn we have

q ps = s = ps and

q pa =
∑

r

sgn(r)qpr = sgn(qp)
∑

r

sgn(qpr)qpr

︸ ︷︷ ︸
=a

= sgn(q) sgn(p)a = sgn(q)pa .

⇒ Both representations are one-dimensional, with matrix elements 1 and sgn(q), respe-
tively.

Remark: Non-equivalene an also be shown as follows: For all p ∈ Sn we have

spa =
↑

rearrangement lemma: sp = s

sa =
∑

q,r

sgn(r)qr =
∑

q

sgn(q)
∑

r

sgn(qr)qr

︸ ︷︷ ︸
= a (rearrangement lemma)

= a
∑

q

sgn(q) = 0 .

⇒ s and a generate non-equivalent irreduible representations of Sn with basis vetors

{ps} and {pa} (p ∈ Sn), respetively.
De�nition: (assoiate representations)

For a representation Γλ of Sn with dimension dλ, we all Γ
λ
and Γ̃λ := Γλ ⊗ Γa

assoiate

representations.

Remarks:

1. dim( Γ̃λ ) = dλ

2. Γ̃λ is irreduible ⇔ Γλ is irreduible, sine

Γ̃λ(p) = sgn(p)Γλ(p) ⇒
∑

p

|χ̃λ(p)|2 =
∑

p

|χλ(p)|2

(= n! if irreduible).

3. If χλ(p) = 0 for all odd p, then Γ̃λ is equivalent to Γλ (sine then all haraters

are idential, f. Setion 2.6), and Γλ is alled self-assoiate. Otherwise they are

non-equivalent.

4. Γs
and Γa

are assoiate to eah other.

The following theorem is relevant for systems of bosons or fermions.

Theorem 16. Let Γλ and Γµ be irreduible representations of Sn. Then

(i) Γλ ⊗ Γµ ontains Γs
exatly one (not at all),

if Γλ and Γµ are equivalent (non-equivalent).

(ii) Γλ ⊗ Γµ ontains Γa
exatly one (not at all),

if Γλ and Γµ are assoiate (not assoiate).
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Proof:

First: Consider only unitary representations of Sn
(all others are equivalent to unitary reps, f. Theorem 2)

⇒ Charaters of irreduible representations are real, sine

p−1
is in the same onjugay lass as p ⇒ χ(p) = χ(p−1) =

↑
rep is unitary

χ(p)
.

(i) Let as be the multipliity of Γ
s
in Γλ⊗µ.

as =
1

n!

∑

p

χs(p)︸ ︷︷ ︸
=1

χλ⊗µ(p) =
1

n!

∑

p

χλ(p)︸ ︷︷ ︸
=χλ(p)

χµ(p) =

{
1 if Γλ and Γµ are equivalent

0 otherwise

.

(ii) Let aa be the multipliity of Γ
a
in Γλ⊗µ.

aa =
1

n!

∑

p

χa(p)︸ ︷︷ ︸
=sgn(p)

χλ⊗µ(p) =
1

n!

∑

p

sgn(p)χλ(p)︸ ︷︷ ︸
=χ̃λ(p)=χ̃λ(p)

χµ(p)

=

{
1 if Γ̃λ and Γµ equivalent, i.e. if Γλ and Γµ assoiate

0 otherwise

.

�

5.2 Young diagrams and Young tableaux

De�nition: (partition, Young diagram)

A partition λ = (λ1, λ2, . . . , λr) of a natural number n is a (�nite) sequene of positive

integers with

r∑

i=1

λi = n and λi ≥ λi+1 .

Let λ and µ be two partitions for the same n.

(i) We say that λ and µ are equal, if λi = µi ∀ i.
(ii) We say λ > µ if the �rst non-vanishing term of the sequene λi − µi is positive.

Graphially a partition an be represented as a Young diagram:

• n boxes, arranged in r rows, left-aligned,

• where the ith row onsists of λi boxes.
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Examples:

1. For n = 3 there are 3 di�erent partitions:

(3) (2, 1) (1, 1, 1)

2. For n = 4 there are 5 di�erent partitions:

(4) (3, 1) (2, 2) (2, 1, 1) (1, 1, 1, 1)

2019-11-21

Remark: Eah partition orresponds to a onjugay lass of Sn and vie versa:

• A onjugay lass is haraterised by its yle struture (see Problem 27).

• We read the ith row of the diagram as a λi-yle.

• Eah of the numbers 1, 2, . . . , n appears in exatly one yle ⇒ ∑
i λi = n.

⇒ In partiular, the number of Young diagrams for n is equal to the number of onjugay

lasses of Sn, and thus equal to the number of non-equivalent irreduible representations
of Sn.

Example: For S3 we have

{e} : 3 1-yles, i.e (1, 1, 1)

{(12), (13), (23)} : 1 2-yle, 1 1-yle, i.e. (2, 1)

{(123), (132)} : 1 3-yle, i.e. (3)

Further de�nitions:

• A Young tableau is a Young diagram, where eah of the numbers 1, . . . , n has been

written into one of the boxes.

Examples:

3 4 1
2

or

2 4
3 1

• In a normal Young tableau the numbers appear in inreasing order, beginning in the

�rst row from left to right, ontinuing in the seond row et.

Examples:

1 2 3
4

or

1 2
3 4

For eah Young diagram there is exatly one normal Young tableau.
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• In a standard Young tableau the numbers inrease in every row and every olumn

(but not neessarily in strit order).

Examples:

1 2 4
3

or

1 3
2 4

• The normal Young tableau orresponding to the partition λ we denote by Θλ.

• We obtain an arbitrary tableau from Θλ by a permutation p of the n numbers in the

boxes:

Θp
λ = pΘλ .

This implies qΘp
λ = Θqp

λ .

Example:

Θ
(23)
(2,2) =

1 3
2 4

Remark: The naming onventions in the literature vary, e.g. Young diagramm, Young

graph, Young tableau, or Young frame.

5.3 Young operators

We will see that with eah Young tableau we an assoiate a primitive idempotent gener-

ating a minimal left ideal in A(Sn) und thus an irrep of Sn.

De�nitions: Let Θp
λ be a Young tableau.

A horizontal permutation hpλ permutes only numbers within rows of Θp
λ.

A vertial permutation vpλ permutes only numbers within olumns of Θp
λ.

Furthermore, we de�ne

the (row-)symmetriser spλ =
∑

{hp
λ
}

hpλ ,

the (olumn-)anti-symmetriser apλ =
∑

{vpλ}

sgn(vpλ) v
p
λ and

the Young operator

(or irreduible symmetriser)

epλ = spλ a
p
λ =

∑

{hp
λ
}

∑

{vp
λ
}

sgn(vpλ) h
p
λ v

p
λ .

(Some books de�ne e = as instead of e = sa. This is only a matter of onvention but leads

to di�erent intermediate results!)

Example: standard tableaux for S3

• Θ1 := Θ(3) = 1 2 3 : all p are horizontal: s1 =
∑

p p = s (symmetriser for S3)

only e is vertial: a1 = e
e1 = se = s
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• Θ2 := Θ(2,1) =
1 2
3

: e and (12) are horizontal: s2 = e+ (12)
e und (13) are vertial: a2 = e− (13)
e2 = s2a2 = e + (12)− (13)− (132)

• Θ3 := Θ(1,1,1) =
1
2
3

: only e is horizontal: s3 = e
all p are vertial: a3 =

∑
p sgn(p)p = a (anti-symmetriser for S3)

e3 = ea = a

• Θ
(23)
2 = 1 3

2
: e and (13) are horizontal: s

(23)
2 = e+ (13)

e and (12) are vertial: a
(23)
2 = e− (12)

e
(23)
2 = s

(23)
2 a

(23)
2 = e− (12) + (13)− (123)

In birdtraks: (f. Setion 1.4 and Problem 28)

e1 = 3! , e3 = 3! , e2 = 4 , e
(23)
2 = 4 .

Reall (see Problem 28) that open and solid bars over ℓ lines ome with a normalisation

fator of 1/ℓ!.

Observations:

Most of the general features (for Sn with n arbitrary) are already present in this example.

(In the following we suppress the upper index p whenever that is unambiguous.)

1. For eah tableau Θλ the horizontal and the vertial permutations, {hλ} and {vλ},
form subgroups of Sn, with {hλ} ∩ {vλ} = {e}.
We obtain the subgroups for Θp

λ from those for Θλ by onjugation with p (whih

has the same e�et as permuting the the numbers in the tableau); onsequently

epλ = peλp
−1
. (In the birdtrak diagrams above we see this by intertwining the last

two lines of e2 on the left and on the right.)

2. sλ and aλ are (total) symmetriser and anti-symmetriser of the orresponding sub-

group, in the sense that

sλhλ = hλsλ = sλ and aλvλ = vλaλ = sgn(vλ)aλ .

3. sλ and aλ are essentially idempotent, but in general not primitive.

The eλ are essentially idempotent and primitive (Exerises).

4. e1 = s and e3 = a generate the two one-dimensional irreps of S3 (f. Setion 5.1).
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e2 generates a two-dimensional left ideal L2 of A(S3) (by right multipliation),

ee2 = e2 ,

(12)e2 = (12) + e− (132)− (13) = e2 ,

(23)e2 = (23) + (132)− (123)− (12) =: r2 ,

(13)e2 = (13) + (123)− e− (23) = −e2 − r2 ,
(123)e2 = (123) + (13)− (23)− e = −e2 − r2 ,
(132)e2 = (132) + (23)− (12)− (123) = r2 ,

i.e. L2 = span(e2, r2). Sine e2 is primitive, L2 is minimal.

⇒ The Young operators of the normal Young tableaux generate all irreduible rep-

resentations of S3.

5. e
(23)
2 also generates an irreduible representation. It has to be equivalent to the irrep

generated by e2, sine there are no more two-dimensional irreps of S3.

The left ideal generated by e
(23)
2 is L

(23)
2 = span(e

(23)
2 , r

(23)
2 ) with

r
(23)
2 = (123)− (13) + (23)− (132) .

It is linearly independent from the other left ideals L1 = span(e1), L3 = span(e3),
and L2.

6. A(S3) is the diret sum of these four minial left ideals.

The identity an be deomposed as

e =
1

6
e1 +

1

3
e2 +

1

3
e
(23)
2 +

1

6
e3 ,

i.e., the regular representation of S3 is ompletely redued by the Young operators

orresponding to the standard Young tableaux.

5.4 Irreduible representations of Sn

Most observations about the Young operators for S3 made in Setion 5.3 arry over to Sn
for arbitrary n. (The exeption is Observation 6, whih is only true for n ≤ 4; it an be

reestablished for n ≥ 5 by modifying the Young operators.)

Theorem 17. Let λ 6= µ be a partitions of n ∈ N.

(i) The Young operators epλ are essentially idempotent, i.e. (epλ)
2 = ηλe

p
λ with ηλ 6= 0 and

(ii) the

1
ηλ
epλ are primitive idempotents.

(iii) The irreduible representations generated by eλ and eµ are not equivalent.

(iv) The irreduible representations generated by eλ and epλ are equivalent.
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Remark: The Young operators eλ of the normal Young tableaux thus generate all non-

equivalent irreps of Sn. . . . sine there are as many irreps as there are onjugay lasses

and the onjugay lasses are labelled by partitions or Young diagrams.

Proof: First notie that no two terms in

eλ =
∑

{hλ}

∑

{vλ}
sgn(vλ)hλvλ

are the same, sine

hλvλ = h′λv
′
λ ⇔ (h′λ)

−1hλ︸ ︷︷ ︸
horizontal

= v′λ(vλ)
−1

︸ ︷︷ ︸
vertial

⇔ hλ = h′λ and vλ = v′λ

as {hλ} ∩ {vλ} = {e}; in partiular eλ 6= 0 and

eλ = e+ terms proportional to p ∈ Sn\{e} .
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In birdtraks we have

epλ =

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
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.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. (∗)

• Within the grey boxes the lines are onneted in some way (de�ned by the Young

tableau Θp
λ).

• We also draw one-box (anti-)symmetrisers,

= = ,

i.e. eah line in the middle is attahed to exatly one symmetriser and one anti-

symmetriser.

• The number of symmetrisers (anti-symmetrisers) is given by the number of rows

(olumns) of Θλ.

• The number of lines attahed to a symmetriser (anti-symmetriser) is given by the

number of boxes of the orresponding row (olumn).

Now all proofs will boil down to the question whether we an �nd a non-zero onnetion

in the middle of diagrams like (∗).
(iii) We show eλqeµ = 0 ∀ q ∈ A(Sn) (f. Theorem 13): First observe that

eλqeµ = 0 ∀ q ∈ A(Sn) ⇔ eλpeµ = 0 ∀ p ∈ Sn .
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Sine eλpeµ = sλaλpsµaµ we have a linear ombination of terms of the form sλpaλ, p ∈ Sn
whih in birdtraks look like the diagram in (∗), but with the symmetrisers of eλ on the

left and the anti-symmetrisers of eµ on the right. W.l.o.g. let λ > µ.

The �rst (longest) symmetriser goes over λ1 lines. For sλpaλ to be non-zero we have to

onnet eah of these lines to a di�erent anti-symmetriser, of whih there are µ1 many. If

λ1 > µ1 then at least two lines have to be onneted to the same anti-symmetriser and the

term vanishes.

If λ1 = µ1 we ontinue with the seond symmetriser: λ2 lines whih have to be onneted

to anti-symmetrisers that go over at least two lines � there are µ2 many of these. If λ2 > µ2

we get zero.

If λ2 = µ2 we ontinue with the next symmetriser, but eventually we reah the �rst j s.t.
λj > µj.

(i) (epλ)
2 = spλa

p
λs
p
λa

p
λ is a linear ombination of terms of the form spλqa

p
λ, q ∈ Sn. We already

know that spλqa
p
λ 6= 0 for q = e (sine that's just epλ). Varying q we get, by inspeting (∗),

• the same result, if q interhanges only lines whih are attahed to the same sym-

metriser,

• at most a sign if q interhanges only lines whih are attahed to the same anti-

symmetriser,

• zero if q hanges the way in whih the symmetrisers and anti-symmetrisers are on-

neted.

Thus, (epλ)
2 = ηλe

p
λ, but we still have to show that ηλ 6= 0. However, if ηλ was zero then e

p
λ

would be nilpotent. Then the trae of the map A(Sn) ∋ q 7→ qepλ would be zero, but the

trae of this map is n! (oe�ient of e times the order of the group, f. Setion 4.3.1).

(ii) epλqe
p
λ = spλa

p
λqs

p
λa

p
λ is again a linear ombination of terms of the form spλqa

p
λ, q ∈ Sn;

we have shown in (i) that they are all proportional to epλ.

(iv) Sine epλ = peλp
−1

we onlude that epλpeλ = peλp
−1peλ =

(i)
pηλeλ 6= 0.

�

Remark: Unfortunately, for n ≥ 5 the Young operators for the standard tableaux no

longer satisfy epλe
q
λ = 0 ∀ p 6= q (they still satisfy epλe

q
µ = 0 ∀λ 6= µ, see (iii) above).

However, the ideals generated by the Young operators of the standard tableaux are still

linearly independent (Exerises) and

A(Sn) =
⊕

{ standard
tableaux

Θp
λ}
A(Sn)epλ .

(without proof). In partiular this implies that dim (A(Sn)epλ) is given by the number of

standard tableaux for the partition λ.
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5.5 Calulating haraters using Young diagrams

The haraters of the irreps of Sn, and in partiular their dimensions dµ = χµ(e), an be

evaluated with the methods of Setion 4.3.1. There are more e�ient methods whih we

give here without proofs.

These methods are bases on the Frobenius harater formula (or Frobenius-Weyl-Charakter-

Formel) whih relates haraters of irreps of Sn to haraters of irreps of Sm with m < n.

• The dimension dλ of irrep Γλ with Young diagram Θλ is given by the number of

standard tableaux for the partition Θλ. Two other formulas:

dλ= n!

∏
i<j(ℓi − ℓj)∏

i ℓi!
=

n!∏
i,k hik

with

n! = |Sn|
i, j = 1, . . . , r (r = number of rows of Θλ)

k = 1, . . . , λi (λi = number of boxes in row i)

ℓi = λi + r − i
hik = number of boxes below and to the right of box i, k + 1 for the box itself,

alled the hook length of the box i, k

Examples:

(i)

h23 = 7

(ii) Young diagram with hook lengths written into the boxes:

Θλ =
6 4 2 1
3 1
1

⇒ dλ =
7!

6 · 4 · 2 · 1 · 3 · 1 · 1 = 35

• This implies that Sn has only two one-dimensional irreps (Γs
and Γa

, f. Setion 5.1)

with Young diagrams:

Γs : ···︸ ︷︷ ︸
n boxes

, Γa : :̇




n boxes.
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• For an irrep Γλ we obtain the assoiate irrep Γ̃λ by transposing Θλ, i.e. by inter-

hanging rows and olumns:

Θλ = , Θ̃λ = .

2019-11-28

• Reursive evaluation of haraters of irreps of Sn:

� The boundary of a Young diagramm is the right and lower boundary,

i.e. a boundary �eld is any �eld, s.t. there is no �eld to the lower right of it.

Example: 1
3 2

6 5 4
7

� skew-hook := onneted piee of the boundary, s.t. after removing this piee we

retain a Young diagram.

In the example above: 1�2, 1�4, 1�5, 1�7, 2, 2�4, 2�5, 2�7, 4, 4�5, 4�7, 7

⇒ All end boxes of rows are starting boxes of skew hooks,

all end boxes of olumns are end boxes of skew hooks.

� Eah hook orresponds to a skew hook and vie versa.

The hook length is equal to the length of the orresponding skew hook.

Example: The skew hook 1�5 orresponds to the following hook:

1
3 2

6 5 4
7

� A skew hook is alled positive (negative), if the number of its vertial steps(=

number of rows −1) is even (odd).

� Let c be a onjugay lass of Sn with disjoint yles of lengths a1, a2, . . . , aq.
Wanted: harater χλc of this lass in irrep Γλ.

∗ Choose any yle of c, say with length ai.

∗ Denote by c̄ the lass of Sn−ai , obtained by removing the yle ai from c.

∗ For the Young diagram Θλ determine all skew hooks of length ai and denote
the Young diagram(s) of Sn−ai, obtained by removing suh a skew hook by

Θλ̄. Then

χλc =
∑

λ̄

±χλ̄c̄

with �+� for positive skew hooks and �−� for negative skew hooks.
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∗ Iterate this proedure.

∗ If no box of the Young diagram remains then χλ̄=0
( ) = 1.

(Don't forget the sign of the last skew hook removed!)

∗ If there is no skew hook of length ai then χ
λ
c = 0.

This method is most e�ient if we hoose the yle ai s.t. there are as few skew hooks

of length ai as possible.

Examples:

1. S13, c = (7, 4, 2), Γλ = (6, 3, 3, 1) =

� There is only one (skew) hook of length 7:

∗ ∗ ∗ ∗
∗

∗ ∗

⇒ χ
(6,3,3,1)
(7,4,2) = +χ

(2,2,1,1)
(4,2)

� Now there is only one (skew) hook of length 4:

∗ ∗
∗
∗

⇒ χ
(6,3,3,1)
(7,4,2) = +χ

(2)
(2) = 1 (trivial rep)

2. One more, haraters of the two-dimensional irrep of S3,

f. Setion 2.4.1 and Problem 29:

χ(3) = −1 (remove ompletely, 1 vertial step)

χ(2,1) = 0 (no skew hook of length 2)

χ(1,1,1) = χ(1,1) + χ(1,1) = 1 + 1 = 2
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6 Lie groups

When speaking about in�nite groups we will ombine the notion of a group with notions

from others areas of mathematis. There will be preise de�nitions using notions like

�topologial spae�, �onnetedness� or �di�erentiable manifold�. However, we will not

introdue all these notions and onepts in detail. If you are familiar with these notions �

�ne. If not, don't panik! Some of the subtelties will not be relevant for the ases we are

interested in, so we will gloss over them. Aspets whih are important in our ontext will be

introdued and disussed arefully, suh that no prior knowledge beyond, say, multivariable

alulus/analysis in Rn
will be required.

6.1 Topologial groups

De�nition: (topologial group)

A set G is alled topologial group if

(i) G (with some operation) is a group,

(ii) G is a topologial spae,

(iii) the map G ∋ g 7→ g−1 ∈ G is ontinuous, and

(iv) the map G×G ∋ (g, h) 7→ gh ∈ G is ontinuous.

Examples:

1. Parametrise GL(n,R) = {A ∈ Rn×n : detA 6= 0} by the matrix elements Aij ∈ R,

i.e. GL(n,R) ⊂ Rn2
, and hoose on GL(n,R) the indued topology of (the standard

topology of) Rn2
.

• The matrix elements of C = AB are algebrai funtions of Aij and Bkl, i.e

(A,B) 7→ AB is ontinuous.

• A 7→ A−1
is also ontinuous, sine the matrix elements of A−1

are rational,

non-singular funtions of the Ajk.
⇒ GL(n,R) is a topologial group.

2. By similar arguments O(n) or SO(n) topologial groups as subsets of Rn2
, and

GL(n,C), U(n) or SU(n) as subsets of Cn2
.

De�nition: (isomomorphism)

Two topologial groups G and H are alled isomorphi, if there exists a bijetive map

f : G→ H , whih is both, an isomorphism of groups, and a homeomorphism of topologial

spaes (i.e. f is ontinuous and f−1
is ontinuous).

Example: The group G1 = (R,+) is a topologial group.

We de�ne the group G2 = (R,⊕) by

x⊕ y = f
(
f(x) + f(y)

)
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where

f(x) =

{
x , if x ≤ 1 or x ≥ 2

3− x , if 1 < x < 2
.

Notie that f(f(x)) = x ∀ x ∈ R. In G2, for small ε > 0, we have (1 − ε)−1 = −1 + ε,
but (1 + ε)−1 = −2 + ε, i.e. G2 is not a topologial group sine property (iii) is violated.

f : G2 → G1 is an isomorphism of groups but not an isomorphism of topologial groups.

De�nition: (homogeneous spae)

A topologial spae X is alled homogeneous, if for every pair x, y ∈ X there exists a

homeomorphism f : X → X s.t. f(x) = y.

Remark: Every topologial group G is homogeneous, sine for any g1, g2 ∈ G there is a

(unique) h ∈ G s.t. g2 = hg1 (h = g2g
−1
1 ). Thus, f : g 7→ hg is the desired homeomorphism

(sine group multipliation is ontinuous).

Homogeneity simpli�es studying loal properties dramatially: It is su�ient to study the

group in a neighbourhood of one elements, e.g. in a neighbourhood of the identity.

Later, when we also an di�erentiate, then we an study loal properties by expanding

about the identity. This will lead us from Lie groups to Lie algebras.

Important global properties are ompatness and onnetedness. (disonneted, simply

onneted, multiply onneted)

Examples (ompatness):

1. Consider O(n) = {A ∈ Rn×n : ATA = 1}. The matrix elements Aij of A ∈ O(n)
satisfy

n∑

k=1

AikAjk = δij ⇒
n∑

i,k=1

A2
ik = n ,

i.e. the elements of O(n) an be identi�ed with points on sphere with radius

√
n in

Rn2
. The union of these points is a losed

15

and bounded subset of this sphere and

thus ompat ⇒ O(n) is ompat.

Similarly for U(n).

2. The Lorentz boosts Λ (transformations between oordinate systems with relative

veloity v)

x′0 =
x0 − v

c
x1√

1− v2

c2

, x′1 =
x1 − v

c
x0√

1− v2

c2

, (c: speed of light, x0 = c·time)

form the group O(1, 1) and as matries an be parametrised as

Λ =
1√

1− β2

(
1 −β
−β 1

)
∈ R2×2

with β = v
c
.

15

sine it's the solution of a system of polynomial equations
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Sine |v| < c we have β ∈ (−1, 1), i.e. the parameter range is bounded but not losed

⇒ the Lorentz group O(1, 1) is not ompat.

Maybe non-ompatness es even more evident when using the parametrisation in

terms of the rapidity t with β = tanh t (f. Problem 11), sine then t ∈ R.

3. GL(n,R) is not ompat beause det : Rn×n → R is ontinuous but not bounded on

GL(n,R) (sine | det(λA)| = |λ|n |detA|, ∀ λ ∈ R).
2019-12-03

De�nition: (onneted omponent)

The onneted omponent of g ∈ G is the union of all onneted sets that ontain g.

Remarks:

1. A onneted omponent is atually onneted.

2. (a) Let G0 ⊆ G be the onneted omponent of the identity e.

(b) If G is onneted then G0 = G.

() If G0 = {e}, then G is totally disonneted as due to homogeneity all other

onneted omponents then also ontain just one element.

(d) The onneted omponent of g is gG0 = G0g, sine g ∈ gG0 (and ∈ G0g)
and sine left and right multipliation are homeomorphisms and as suh map

onneted sets to onneted sets.

(e) Hene G0 is a normal subgroup.

(f) The quotient group G/G0 is totally disonneted, sine G/G0
∼= {gG0 : g ∈ G},

i.e. for two di�erent elements h1G0 6= h2G0 (of the quotient group) h2 annot be
ontained in the onneted omponent of h1 (sine this onneted omponent is

just the oset h1G0).

Examples:

1. SU(2) is onneted (even simply onneted), sine with the parametrisation of Prob-

lem 22,

SU(2) ∋ g =

(
u −v
v u

)
,

|u|2 + |v|2 = 1 ⇔ (Re u)2 + (Im u)2 + (Re v)2 + (Im v)2 = 1 ,

SU(2) is homeomorphi to S3
, and spheres Sn with n ≥ 2 are (simply) onneted.

2. O(n) is not onneted, sine OTO = 1 implies

1 = det(OOT ) = (detO)2 ⇔ detO = ±1

i.e. O(n) has two onneted omponents, SO(n) = {O ∈ O(n) : detO = 1} and
{O ∈ O(N) : detO = −1}.

Before disussing Lie groups in general, let's look at an example whih illustrates some of

the basi ideas.
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6.2 Example: SO(2)

• SO(2) = group of rotations in the plane R2
about the origin

• Parametrise by one parameter,

natural hoie: rotation angle φ with 0 ≤ φ < 2π.
(Any monotonous funtion of φ would also be �nde.)

• De�ning representation: ation of SO(2) on vetor in R2
(i.e. as an orthogonal 2× 2

matrix)

xj 7→
∑

k

Rjkxk with R(φ) =

(
cosφ − sinφ
sin φ cos φ

)
. (∗)

• SO(2) is abelian, sine R(φ1)R(φ2) = R(φ1 + φ2) = R(φ2)R(φ1).

• Derivative:

dR

dφ
(φ) =

(
− sin φ − cosφ
cosφ − sinφ

)

. . . at the identity 1 (φ = 0)

dR

dφ
(0) =

(
0 −1
1 0

)
=: −iJ with J =

(
0 −i
i 0

)
.

(the fator (−i) is physiists' onvention)
J is alled generator of the group, sine. . .

• Seek a di�erential equation of the form

dR
dφ

= AR:

dR

dφ
(φ) =

(
− sinφ − cosφ
cosφ − sinφ

)
R(φ)−1

︸ ︷︷ ︸
=R(−φ)

R(φ)

=

(
− sinφ − cosφ
cosφ − sinφ

)(
cosφ sin φ
− sin φ cosφ

)
R(φ)

=

(
0 −1
1 0

)
R(φ) = −iJR(φ)

Hene R(φ) solve the initial value problem dR
dφ

= −iJR, R(0) = 1 ⇒ R(φ) = e−iJφ
.

• With J2 = 1 we have

R(φ) = e−iJφ =
∞∑

n=0

(−i)n
n!

Jnφn

=
∞∑

n=0

(−i)2n
(2n)!

J2n

︸ ︷︷ ︸
=

(−1)n

(2n)!
1

φ2n +
∞∑

n=0

(−i)2n+1

(2n+ 1)!
J2n+1

︸ ︷︷ ︸
=−i

(−1)n

(2n+1)!
J

φ2n+1

= 1 cos(φ)− iJ sinφ . X f. (∗)
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• Viewed as a representation on C2
(although we introdued it as a representation on

R2
) the de�ning representation is reduible. It an be redued by diagonalising J :

J =

(
0 −i
i 0

)
has eigenvalues ±1 with eigenvetors e± =

(
1
±i

)
, i.e.

Je± = ±e± ⇒ R(φ)e± = e∓iφe± ,

we �nd two one-dimensional (and thus irreduible) unitary representations, e±iφ
.

• Consider now a (omplex) vetor spae V , dimV = n, and a representation of SO(2)
in terms of unitary matries U(φ) ating on V .

We an write

U(φ) = e−iJφ

with a Hermitian n× n matrix J , sine then

U(φ1)U(φ2) = e−iJφ1e−iJφ2 = e−iJ(φ1+φ2)
(beause the exponents ommute)

= U(φ1 + φ2) and

U(φ)† = eiJ
†φ = eiJφ = U(−φ) = U(φ)−1

By diagonalising J we an ompletely redue U ⇒ all unitary irreduible represen-

tations are one-dimensional (also sine SO(2) is abelian, f. Problem 13).

• Now seek one-dimensional unitary representations, i.e. J ∈ R. Due to U(2π) = U(0)
we demand

e−2πiJ = 1 ⇔ J = m ∈ Z ,

i.e. the unitary irreduible representations Um(φ) = e−imφ
are labelled by integers m:

(i) m = 0: R(φ) 7→ U0(φ) = 1 (trivial representation)

(ii) m = 1: R(φ) 7→ U1(φ) = e−iφ

Isomorphism between SO(2) and the unit irle in C, i.e. SO(2) ∼= U(1); thus
everything observed for SO(2) is also true for U(1).

(iii) m = −1: R(φ) 7→ U−1(φ) = eiφ,
like (ii), but unit irle overed in opposite diretion.

(iv) m = ±2: R(φ) 7→ U±2(φ) = e∓2iφ
.

Homomorphism SO(2)→ U(1), with unit irle overed twie.

Similarly for larger m.

Only the representations with m = ±1 are faithful.

• Now onsider f : SO(2)→ C (su�iently nie).

Parametrising SO(2) by the rotation angle φ, f has to be a 2π-periodi funtion of

φ. Then ∫ 2π

0

f(φ)
dφ

2π
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is invariant under φ 7→ φ + α for any �xed α; essentially, we integrate over SO(2),

with normalisation hosen s.t. |SO(2)| =
∫ 2π

0
dφ
2π

= 1.

With his we obtain: Orthogonality of representation matries / haraters (f. The-

orem 6 and orollary to Theorem 6),

∫ 2π

0

Um(φ)Un(φ)
dφ

2π
=

∫ 2π

0

ei(m−n)φ dφ

2π
= δmn ,

and ompleteness (f. Problem 19), i.e. the Fourier series of f ,

∑

n∈Z
e−inφ cn =

∑

n∈Z
Un(φ) cn

with cn =
1

2π

∫ 2π

0

einφ
′

f(φ′) dφ′ =

∫ 2π

0

Un(φ′)f(φ′)
dφ′

2π
,

onverges to f (pointwise for, say, ontinuously di�erentiable f , otherwise at least in
the L2

-sense),

Physis notation:

f(φ) =

∫ 2π

0

1

2π

∑

n∈Z
Un(φ)Un(φ′)

︸ ︷︷ ︸
=δ(φ−φ′)

f(φ′) dφ′ .

(δ-funtion/-omb as integral kernel of Fourier expansion)

2019-12-05

6.3 Lie groups

De�nition: (Lie group)

A set G is alled Lie group, if:

(i) G is a group,

(ii) G is an analyti manifold,

(iii) the map G ∋ g 7→ g−1 ∈ G is analyti, and

(iv) the map G×G ∋ (g, h) 7→ gh ∈ G is analyti.
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Remarks:

1. An n-dimensional analyti manifold M is Hausdor� spae equipped with harts

(Uj , ϕj), i.e. Uj ⊆M open and homeomorphisms ϕj : Uj → ϕ(Uj) ⊆ Rn
, with

(i) M =
⋃
j Uj and

(ii) ϕj ◦ ϕ−1
k : ϕk(Uj ∩ Uk)→ ϕj(Uj ∩ Uk) analyti ∀ j, k

(i.e. an be expanded into onvergent power series).

2. This means that loally the group elements are analyti funtions of n parameters,

where n is the dimension of G (as a manifold), more preisely:

Consider a hart (U, ϕ) and g, h, gh ∈ U . Denote by xj , j = 1, . . . , n, the oordinates
of g, and by yj the oordinates of h, i.e.

ϕ(g) = (x1, x2, . . . , xn) = x ∈ Rn

ϕ(h) = (y1, y2, . . . , yn) = y .

Then the oordinates zj of gh,

ϕ(gh) = (z1, z2, . . . , zn) = z ,

are analyti funtions of x and y,

zj = fj(x, y) .

Similarly, the oordinates of g−1
are analyti funtions of x.

3. Now hoose U with e ∈ U and ϕ s.t. ϕ(e) = 0 ∈ Rn
, and f as above. Then

fj(x, 0) = xj , fj(0, y) = yj

and thus

∂fj
∂xk

(0, 0) =
∂fj
∂yk

(0, 0) = δjk

and also

∂2fj
∂xk∂xl

(0, 0) =
∂fj

∂yk∂yl
(0, 0) = 0 .

Expand f(x, y) about (0, 0),

fj(x, y) = xj + yj +
∑

k,l

∂2fj
∂xk∂yl

(0, 0)
︸ ︷︷ ︸

=:ajkl

xkyl + . . .

and de�ne

cjkl := ajkl − ajlk ,
the struture onstants of the Lie group (oordinate dependent). They satisfy:

(i) For abelian groups cjkl = 0, sine then f(x, y) = f(y, x).
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(ii) cjkl = −cjlk
(iii)

∑
l(c

j
klc

l
nm + cjnlc

l
mk + cjmlc

l
kn) = 0

The last identity follows from assoiativity of group multipliation by omparing the

third order terms in the oordinate expansions of g(hg̃) and (gh)g̃.

Example: matrix Lie groups

1. Consider the matrix elements Aij ∈ R of a group element A ∈ GL(n,R) as oordi-
nates. The map

ψ : Rn2 → R , A 7→ detA

is ontinuous, and thus the preimage ψ−1(0) of the losed set {0} is losed. GL(n,R)
is the omplement of ψ−1(0) and hene open and an analyti submanifold of Rn2

.

• The matrix elements of C = AB are algebrai funtions of Aij and Bkl, i.e

(A,B) 7→ AB is analyti.

• Likewise A 7→ A−1
, sine the matrix elements of A−1

are rational, non-singular

funtions of Ajk.
Hene GL(n,R) is a Lie group.

2. For GL(n,C) onsider real and imaginary part of the matrix elements as oordinates

and argue as before (in terms of submanifolds of R2n2
).

3. For groups like O(n), U(n), SO(n) or SU(n) one �rst observes that they are losed

subgroups of GL(n,R) or GL(n,C), respetively. One an show that losed subgroups

of Lie groups are Lie (sub-)groups. (Later we will study some of these more expliitly.)

6.4 Lie algebras

De�nition: A Lie algebra g is a vetor spae over a �eld K (here mostly R, sometimes

C), with an operation

[·, ·] : g× g→ g

(X, Y ) 7→ [X, Y ]

alled Lie braket, whih satis�es (∀ X, Y, Z ∈ g):

(i) [λX + µY, Z] = λ[X,Z] + µ[Y, Z] ∀ λ, µ ∈ K (linearity)

(ii) [X, Y ] = −[Y,X ] (anti-symmetry)

(iii) [X, [Y, Z]] + [Y, [Z,X ]] + [Z, [X, Y ]] = 0 (Jaobi identity)

Remarks:

1. A Lie algebra is alled ommutative if [X, Y ] = 0 ∀ X, Y ∈ g.

2. One an show that the tangent spae to a Lie group G at the identity is a Lie algebra g.

To this end onsider urves g(t) in G with g(0) = e. Then the derivative (in a hart) at

t = 0 is a tangent vetor.
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For matrix Lie groups we an expliitly de�ne the Lie algebra elements, also alled gener-

ators, as matries:

−iġ(0) := −idg
dt

(0) ∈ g .

The Lie braket is now the matrix ommutator (rather times (−i), see below)

[X, Y ] = XY − Y X .

The ommutator is linear and anti-symmetri, the Jaobi identity an be veri�ed by diret

alulation.

It remains to show that X, Y ∈ g implies that also (−i)[X, Y ] ∈ g.

To this end onsider a urve g(t) with g(0) = e, and thus X := −iġ(0) ∈ g.

De�ne another urve g̃(t) = h g(t) h−1
with g̃(0) = heh−1 = e, i.e.

−i ˙̃g(0) = h
(
− iġ(0)

)
h−1 = hXh−1 ∈ g .

With yet another urve h(t) with h(0) = e, i.e. Y := −iḣ(0) ∈ g de�ne

X̃(t) = h(t)X h(t)−1 ∈ g .

The derivative also takes values in g (sine g is a vetor spae), and thus

˙̃
X(0) = iY X +X(iY ) = −i(XY − Y X) = (−i)[X, Y ] ∈ g .

Here we have used that

d
dt
h(t)−1

∣∣
t=0

= −iY , whih follows from

d
dt

(
h(t)−1h(t)

)
= 0 and

the produt rule.)

Choosing a basis {Xj} of g we have

[Xj , Xk] = i
∑

l

cljkXl

with the struture onstants cljk of the Lie algebra (basis dependent).

The struture onstants of the Lie algebra are equal to the struture onstants of orre-

sponding the Lie group (see Setion 6.3) � supposing an appropriate hoie of basis and

oordinates: As basis {Xj} for g hoose the tangent vetors to the oordinate lines in a

hart U ∋ e, i.e. for matrix Lie groups in an expliit parametrisation by taking derivatives

with respet to the parameters,

Xj = −iġ(0) with g(t) = ϕ−1(0, . . . , 0, xj = t, 0, . . . , 0) ,

hene Xj = −i
∂ϕ−1

∂xj
(0) .

In Setion 6.3 we ompared expansions of gh and hg, here we expanded hgh−1−g. The

properties (ii) & (iii) of the struture onstants of Setion 6.3 now follow from the Lie

braket properties (ii) & (iii) of the ommutator.

2019-12-10
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3. It is su�ient to onsider speial urves, namely one-parameter subgroups, i.e. solutions

of the initial value problem

ġ(t) = iXg(t) , g(0) = e ,

with X ∈ g. One writes g(t) = exp(iXt). For matrix Lie groups this exponential is given

by the absolutely and uniformly onvergent series

exp(itX) =

∞∑

ν=0

(it)ν

ν!
Xν

(f. Problem 33).

For the speial groups with det g = 1 the generators are traeless, sine

det g(t) = det(eitX) = eit trX
!
= 1 ⇔ trX = 0 .

For unitary groups, i.e. gg† = 1, the generators are Hermitian, sine

g(t)† = g(t)−1 ⇔ e−itX†

= e−itX ⇔ X = X† .

(See Problem 33 in both ases.)

Examples:

1. G = SO(3), i.e. rotations in 3 dimensions; de�ning representation in terms of 3 × 3
matries R,

~x 7→ R~x ,

e.g. rotation by angle φ about the z-axis:

Rz(φ) =



cosφ − sinφ 0
sin φ cos φ 0
0 0 1


 .

Generator:

J3 := Jz := −i
dRz

dφ
(0) =




0 i 0
−i 0 0
0 0 0


 ∈ g = so(3)

(Hermitian and traeless). Similarly for rotations about the x- or y-axis,

J1 := Jx =



0 0 0
0 0 i
0 −i 0




and J2 := Jy =



0 0 −i
0 0 0
i 0 0


 .

One veri�es by diret alulation that [Jx, Jy] = iJz et., i.e.

[Jj , Jk] = −i
3∑

l=1

εjkl Jl
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with the struture onstants of SO(3) or so(3):

εjkl =





1 , j, k, l yli
0 , at least 2 indies equal

−1 , otherwise

.

2. G = {OA operators for rotations} (again, onsider either as elements of some groupG
isomorphi to SO(3) or as a representation of SO(3)), ating on funtions f : R3 → C

(f. Setion 2.4.1), say f ∈ C1(R3) as

(ORf)(~x) = f(R−1~x) with R ∈ SO(3) .

One more, rotation by angle φ about z-axis:

(ORz(φ)f)(x, y, z) = f
(
Rz(φ)

−1
(
x
y
z

))
= f(x cosφ+ y sin φ,−x sinφ+ y cosφ, z) .

Generator (viewed either as element of g or as representation of an element of so(3)):

−i d
dφ

(ORz(φ)f)(x, y, z)

∣∣∣∣
φ=0

= −i
(
∂f

∂x
(~x) y +

∂f

∂y
(~x) (−x)

)
= i

(
x
∂

∂y
− y ∂

∂x

)

︸ ︷︷ ︸
∈g

f(~x)

In quantum mehanis Lz =
1
i
(x ∂

∂y
−y ∂

∂x
) is the z-omponent of the so-alled angular

momentum operator

~L = ~x × (~
i
∇) (here ~ = 1). Commutators and struture

onstants as in the previous example.

Remark: In physis the generators typially are operators orresponding to quantities

that an be measured (observables).

6.5 More on SO(3)

We study some global properties of SO(3) in terms of an expliit parametrisation.

• SO(3) = rotation group in 3 dimensions: 3 real parameters

Consider, e.g., an orthogonal matrixR ∈ SO(3), onsisting of 3 orthonormal olumns:

1st olumn, hoose freely  2 parameters (angles � point on a 2-sphere), 2nd seond

orthogonal to 1st olumn, otherwise arbitrary  1 parameter (angle).

• We an parametrise rotations as R~n(ψ), with rotation angle ψ and rotation axis ~n,

~n =



sin θ cos φ
sin θ sinφ

cos θ




.

x

y

z
~n

θ

φ
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parameter ranges:

0 ≤ θ ≤ π

0 ≤ φ < 2π

0 ≤ ψ ≤ π (sine we have ~n and −~n)

redundanies: (i) R~n(0) = R~n′(0)

(ii) R~n(π) = R−~n(π)

• A rotation thus orresponds to a vetor

~ψ = ψ~n, i.e. SO(3) orresponds to a ball in

three-dimensional spae with radius π.

x

y

z

~ψ
θ

φ π

Using the artesian omponents of

~ψ as parameters, −i ∂R/∂ψj yields the generators
of Setion 6.4.

Bak to the parametrisation in terms of θ, φ, ψ. . .

This �xes redundany (i), and due to redundany (ii) antipodal points on the surfae

of the ball have to be identi�ed (i.e. SO(3) is homeomorphi to the real projetive

spae RP 3
).

• Consequently, there are two kinds of losed urves in SO(3): Curves whih an be

ontinuously ontrated to a point, and urves for whih this is not possible, i.e.

SO(3) is onneted but not simply onneted.

P

P

b

a

Curve b is also losed in SO(3).
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These global properties in�uene the possible representations of the group (as we will

see later).

• Further observations:

Rotations about a �xed axis form a (one-parameter) subgroup of SO(3). Suh a

subgroup is isomorphi to SO(2) (f. Setion 6.2).

For arbitrary rotations R ∈ SO(3) we have (an be shown expliitly using the gener-

ators of Setion 6.4)

RR~n(ψ)R
−1 = R~n′(ψ) with ~n′ = R~n .

This implies that all rotations by the same angle are in the same onjugay lass.

Alternative parametrisation in terms of Euler angles

We just list some formulae; an be heked by diret omputation.

• Every rotation an also be expressed in terms of Euler angles,

R = R3(α)R2(β)R3(γ)

with

R2(ψ) = Ry(ψ) =




cosψ 0 sinψ
0 1 0

− sinψ 0 cosψ


 ,

R3(ψ) = Rz(ψ) =



cosψ − sinψ 0
sinψ cosψ 0
0 0 1


 .

• parameter ranges:

0 ≤ α, γ < 2π

0 ≤ β ≤ π

• relation with axis-angle parameters:

φ =
1

2
(π + α− γ)

tan θ =
tan β

2

sin α+γ
2

cosψ = 2 cos2
β

2
cos2

α + γ

2
− 1

2019-12-12
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6.6 Invariant integration: Haar measure

When representing �nite groups we often used the rearrangement lemma as follows

∑

g∈G
f(g) =

∑

g∈G
f(hg) =

∑

g∈G
f(gh) ∀ h ∈ G .

For ontinuous groups we would like to replae

∑
g∈G f(g) by an integral, say,

∫
G
f(g)dµ(g).

To this end we need an invariant measure µ.

Theorem 18. (Haar measure)

Every ompat topologial group possesses a right- and left-invariant measure µ, alled Haar
measure; it is unique up to normalisation.

(in this generality without proof � but we will show expliitly how to onstrut µ for

ompat Lie groups)

Remarks:

1. Invariane means

µ(gA) = µ(Ag) = µ(A)

∀ g ∈ G and all Borel sets A ⊂ G, and in partiular

dµ(gh) = dµ(hg) = dµ(g) ∀ g, h ∈ G .

2. In the following for ompat groups we normalise s.t.

volG =

∫

G

dµ(g) = 1 .

3. Hene (e.g. for ontinuous funtions)

∫

G

f(hg) dµ(g) =
g′=hg

∫

G

f(g′) dµ(h−1g′) =

∫

G

f(g′) dµ(g′) and

∫

G

f(gh) dµ(g) =
g′=gh

∫

G

f(g′) dµ(g′h−1) =

∫

G

f(g′) dµ(g′) .

4. Moreover,

∫
G

f(g−1) dµ(g) =
∫
G

f(g) dµ(g) or dµ(g−1) = dµ(g), sine

∫

G

f(g−1) dµ(g) =

∫

G

f(hg−1) dµ(g) =

∫

G

∫

G

f(hg−1) dµ(h)

︸ ︷︷ ︸∫
G
f(h) dµ(h)

dµ(g)

=∫
G

dµ(g)=1

∫

G

f(h) dµ(h) .
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5. Uniqueness. If µ and ν are both left- and right-invariant and normalised as∫
G
dµ(g) =

∫
G
dν(g) = 1, then µ = ν, sine with

(i)

∫
G
f(g) dµ(g) =

∫
G
f(hg) dµ(g) and

(ii)

∫
G
f(f) dν(h) =

∫
G
f(hg) dν(h)

we an onlude that

∫

G

∫

G

f(hg) dµ(g) dν(h) =
(i)

∫

G

∫

G

f(g) dµ(g) dν(h) =

∫

G

f(g) dµ(g)

=
(ii)

∫

G

∫

G

f(h) dµ(g) dν(h) =

∫

G

f(h) dν(h) .

6. One also �nds invariant measures under weaker onditions, e.g. loally ompat

groups (like GL(n,R) or the Lorentz group) possess left-invariant and right-invariant

measures (unique up to normalisation) but in general the two measures are not iden-

tial.

Many properties follow already from the existene of Haar measure � we don't have to

know it expliitly. Nevertheless, let's ontinue with. . .

6.6.1 Calulating the Haar measure for a Lie group

Parametrise the group elements using n = dimG parameters, i.e.

16 g = g(x1, . . . , xn), then
(loally),

dµ(g) = ̺(x1, . . . , xn) d
nx

with a suitable density ̺(x) and Lebesgue measure dnx = dx1 . . .dxn. We now onstrut

̺ s.t. invariane holds.

First: Behaviour of ̺ under reparametrisation (oordinate hange/transition between dif-

ferent harts) x = f(y):

dµ(g) = ̺(x) dnx = ̺(f(y))

∣∣∣∣det
(
∂f

∂y
(y)

)∣∣∣∣
︸ ︷︷ ︸

Jaobian

dny =: ˜̺(y) dny

Now expand (−i)g(x)−1 ∂g
∂xj

(x) in a basis {Xk} of the Lie algebra g,

g(x)−1 ∂g

∂xj
(x) = i

∑

k

XkA(x)kj

This is possible, beause if g(x) = e then the expression is a generator, else

∂g
∂xj

(x) lies in

the tangent spae at g(x) and is transported to e by g−1(x).

16

Atually g = ϕ−1(x1, . . . , xn) but we suppress hart-dependene for a moment.

89



Alternatively, expliitly onsider h(x, t) := g(x)−1g(x + tej), ej a onial basis vetor, for

�xed x as urve in G. Then h(x, 0) = e and thus

g ∋ ∂h
∂t

(x, 0) = g(x)−1∂g

xj
(x) .

Claim: The density ̺(x) := | detA(x)| de�nes a left-invariant measure.

Proof:

(i) First hek behaviour under a hange of oordinates x = f(y). To this end denote

g(f(y)) =: g̃(y). We have

g̃(y)−1 ∂g̃

∂yj
(y) = g(f(y))−1

∑

ℓ

∂g

∂xℓ
(f(y))

∂fℓ
∂yj

(y)

= i
∑

ℓ,k

XkA(f(y))kℓ
∂fℓ
∂yj

(y)
!
= i
∑

k

XkÃ(y)kj ,

i.e. Ã(y) = A(f(y)) ∂f
∂y
(y) and thus

˜̺(y) = | det Ã(y)| = | detA(f(y))|︸ ︷︷ ︸
̺(f(y))

∣∣∣∣det
∂f

∂y
(y)

∣∣∣∣

as required.

(ii) Choose a speial parametrisation (in a neighbourhood) of g̃ := hg,

g̃(x) = h · g(x) .

Then

g̃(x)−1 ∂g̃

∂xj
(x) = (h · g(x))−1h

∂g

∂xj
(x) = g(x)−1 ∂g

∂xj
(x)

i.e. ˜̺(x) = ̺(x) whih implies the desired invariane,

dµ(hg) = ˜̺(x) dnx = ̺(x) dnx = dµ(g) .
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(iii) Any other parametrisation an be ahieved by further oordinate hanges as in (i).

�

Now hek right-invariane: Choose a parametrisation of g̃ := gh by

g̃(x) = g(x) · h .

Then

g̃(x)−1 ∂g̃

∂xj
(x) = h−1g(x)−1 ∂g

∂xj
(x) h = h−1 i

∑

k

XkA(x)kj h .

Sine h−1Xkh ∈ g,17 we an write h−1Xkh =
∑

ℓXℓ ϕ(h)ℓk with a matrix ϕ(h), i.e.

g̃(x)−1 ∂g̃

∂xj
(x) = i

∑

kℓ

Xℓ ϕ(h)ℓkA(x)kj =: i
∑

l

XℓÃ(x)ℓj

i.e. Ã(x) = ϕ(h)A(x) and thus

dµ(gh) = ˜̺(x) dnx = | det Ã(x)| dnx = | detϕ(h)| | detA(x)| dnx
= | detϕ(h)| ̺(x) dnx = | detϕ(h)| dµ(g)

The fator | detϕ(h)| is alled modular funtion of G. If | detϕ(h)| = 1 ∀ h ∈ G, we say
that G is unimodular, and the left-invariant measure is also right-invariant.

Consider now

∫

G

f(gh) dµ(g) =
g′=gh

∫

G

f(g′) dµ(g′h−1) = | detϕ(h−1)|
∫

G

f(g′) dµ(g′)

and for ompat G hoose the onstant funktion f ≡ 1. Then

∫

G

dµ(g) = | detϕ(h−1)|
∫

G

dµ(g)

i.e. ompat Lie groups are unimodular.

Trivial example: SO(2) (f. Setion 6.2)

Parametrisation

g(φ) =

(
cosφ − sinφ
sin φ cos φ

)
,

generator

X = −i dg
dφ

(0) =

(
0 i
−i 0

)
,

17

Every Lie group ats by onjugation on its own Lie algebra (f. Problems 38 & 40). Expliitly: Let g(t)
be a urve with g(0) = e and −iġ(0) = X ⇒ g̃(t) = hg(t)h−1

is a urve with g̃(0) = e and −i ˙̃g(0) = hXh−1
,

i.e. hXh−1 ∈ g ∀ h ∈ G.
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and thus

g(φ)−1 dg

dφ
(φ) =

(
cos φ sin φ
− sinφ cosφ

)(
− sin φ − cos φ
cosφ − sinφ

)
=

(
0 −1
1 0

)
= iX ,

i.e. A(φ) = 1 and hene dµ(g) = dφ (as expeted).

Now we proeed with what we an onlude already from the existene of the Haar measure

(even before onstruting it expliitly)

2019-12-17

6.7 Properties of ompat Lie groups

Theorems 2 and 6 (inluding the orollary) for representations of �nite groups also hold for

ontinuous representations of ompat Lie groups, if in statements and proofs we replae

1

|G|
∑

g∈G
. . . by

∫

G

. . . dµ(g) ,

i.e.:

(i) Every �nite-dimensional representation is equivalent to a unitary representation.

(ii) The matrix elements of unitary irreduible representations Γµ, Γν (non-equivalent for
µ 6= ν) are orthogonal, i.e.

∫

G

Γµ(g)jk Γ
ν(g)j′k′ dµ(g) =

1

dµ
δµνδjj′δkk′

with dµ = dimΓµ.

(iii) Similarly for the haraters χµ(g) = tr Γµ(g) =
∑

j Γ
µ(g)jj,

∫

G

χµ(g)χν(g) dµ(g) = δµν .

This implies again:

Γ is irreduible ⇔
∫

G

|χ(g)|2 dµ(g) = 1 (where χ(g) = tr Γ(g)) ,

as well as: If Γ is a direte sum of irreduible representations, Γ =
⊕
µ

aµΓ
µ
, then

aµ =

∫

G

χµ(g)χ(g) dµ(g) .

For �nite groups we also showed ompleteness of the representation matries' elements

(f. Problem 17) and the omplete reduibility the regular representation, arried by the

group algebra A(G) (f. Setion 4.3). This implied that there were only �nitely many

non-equivalent irreduible representation (see also Setion 2.7).
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Similarly one an show that ompat Lie groups have ountably many non-equivalent

(ontinuous) irreduible representations, whih are all of �nite dimension. Moreover, every

ontinuous representation is a diret sum of irreduible representations. All this follows

from the Peter-Weyl theorem.

Consider the vetor spae C(G) of ontinuous funtions φ : G→ C with salar produt

〈φ|ψ〉 :=
∫

G

φ(g)ψ(g) dµ(g)

(f. the orthogonality relations for matrix elements and haraters above). The role of the

regular representation is assumed by Γ de�ned as

(Γ(h)φ)(g) = φ(h−1g) ∀ h ∈ G .

rep sine

(Γ(h′)(Γ(h)φ))(g) = (Γ(h)φ)(h′−1g) = φ(h−1h′−1g) = (Γ(h′h)φ)(g) ,

as for the OA operators, f., e.g., Setion 2.4.1.

Theorem 19. (Peter-Weyl)

Let G be a ompat Lie group with non-equivalent irreduible representations Γµ, dimΓµ =
dµ. Then the matrix elements

√
dµ Γ

µ(g)jk, j, k = 1, . . . , dµ, form a omplete set of or-

thonormal funtions for C(G).

(without proof)

Remarks:

1. We an thus expand every funtion f ∈ C(G) as

f(g) =
∑

µ,j,k

cµjk Γ
µ(g)jk

(onvergene in L2
-sense) where

cµjk = dµ

∫

G

Γµ(g)jk f(g) dµ(g) .

This generalises Fourier series (whih we get for SO(2) ∼= U(1), f. Setion 6.2).

2. Completeness in physis notation:

∑

µ,j,k

dµ Γ
µ(g)jk Γµ(h)jk = δ(g − h)

with ∫

G

δ(g − h) f(g) dµ(g) = f(h) .
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6.8 Irreduible representations of SO(3)

For every g ∈ SO(3) exists an X ∈ so(3) s.t. g = eiX . Choose, e.g., the basis

J1 =



0 0 0
0 0 −i
0 i 0


 , J2 =




0 0 i
0 0 0
−i 0 0


 , J3 =



0 −i 0
i 0 0
0 0 0


 ,

of so(3) (generators from Setion 6.4 times (−1)) with

[Jj , Jk] = i
∑

ℓ

εjkℓJℓ .

Then

R~n(ψ) = e−iψ~n ~J
where ~n ~J =

3∑

j=1

njJj

(rotation about axis ~n by angle ψ, f. Setion 6.5), sine ~x(t) := e−it~n ~J~x(0) solves

~̇x = (−i~n ~J) ~x =




0 −n3 n2

n3 0 −n1

−n2 n1 0





x1
x2
x3


 =



−n3x2 + n2x3
n3x1 − n1x3
−n2x1 + n1x3


 = ~n× ~x ,

i.e. irular motion / rotation about axis ~n.

• From every representation of a Lie group we obtain (by taking derivatives) a repre-

sentation of the orresponding Lie algebra (in terms of matries).

With g(t), g(0) = e, ġ(0) = iX and a rep Γ of G de�ne the derived rep dΓ of g by

dΓ(X) = −i d
dt

Γ
(
g(t)

)∣∣∣
t=0

.

• From a representation of the Lie algebra so(3) we obtain (by exponentiating) a rep-

resentation of the group SO(3), if the global (topologial) properties are satis�ed.
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The operator

J2 :=

3∑

j=1

J2
j

ommutes with all generators (and thus with every X ∈ so(3)):

[J2, Jk] =
∑

j

[J2
j , Jk] =

∑

j

(Jj[Jj , Jk] + [Jj , Jk]Jj)

= i
∑

j,ℓ

(JjεjkℓJℓ + εjkℓJℓJj︸ ︷︷ ︸
=εℓkjJjJℓ

) = i
∑

j,l

(εjkℓ + εjℓk)︸ ︷︷ ︸
=0

JjJℓ = 0 .

J2
is not in the Lie algebra; it is a so-alled Casimir operator and an element of the

enveloping algebra (see later). [·, ·] is the (matrix) ommutator.

• This further implies [J2, g] = 0 ∀ g ∈ SO(3), sine g = eiX with X ∈ so(3).

• For representations all this also holds for the representation matries of g, X , and

J2
.

• If the representation is irreduible then aording to Shur's Lemma (Theorem 4),

the representation matrix of J2
is a multiple of the identity matrix.

Now onsider a representation (in general reduible) on a vetor spae V .

Shortened notation: Denote the representation matriex of g,X, J2
also by g,X, J2

(instead of Γ(g), dΓ(X) et.).

Construt irreduible subspaes (and thus irreduible representations) as follows:

• Choose a suitable starting vetor.

• Generate an irreduible basis by repeatedly applying the generators.

Suitable starting vetor: Joint (normalised) eigenvetor of J2
and J3 (possible sine [J

2, J3] =
0), in Dira notation

J3|m〉 = m|m〉
(Here we do not indiate the eigenvalue of J2

when labelling the states, sine for the

moment we stay in �xed eigenspae of J2
. Later we will write |jm〉 instead of |m〉.

De�ne

J± := J1 ± iJ2 .

Then

[J±, J3] = [J1 ± iJ2, J3] = −iJ2 ± i(iJ1) = ∓(J1 ± iJ2) = ∓J±

95



and thus

J3(J±|m〉) = (J±J3 − [J±, J3])|m〉 = (J±m± J±)|m〉 = (m+ 1)(J±|m〉) ,

i.e. either J±|m〉 ∝ |m± 1〉 or J±|m〉 = 0.

Sine the invariant subspae has to be �nite dimensional this sequene has to terminate

on both sides, say at m = j and at m = ℓ with j ≥ ℓ,

J3|j〉 = j|j〉 , J3|ℓ〉 = ℓ|ℓ〉 ,
J+|j〉 = 0 , J−|ℓ〉 = 0 .

2019-12-19

We further have

J−J+ = (J1 − iJ2)(J1 + iJ2) = J2
1 + J2

2 + i[J1, J2]

= J2
1 + J2

2 − J3 ⇒ J2 = J2
3 + J−J+ + J3

and

J+J− = (J1 + iJ2)(J1 − iJ2) = J2
1 + J2

2 − i[J1, J2]

= J2
1 + J2

2 + J3 ⇒ J2 = J2
3 + J+J− − J3 .

This implies

J2|j〉 = (J2
3 + J3 + J−J+)|j〉 = j(j + 1)|j〉 ,

J2|ℓ〉 = (J2
3 − J3 + J+J−)|ℓ〉 = ℓ(ℓ− 1)|ℓ〉 .

Sine all states lie in the same irreduible subspae, they are all in the same eigenspae of

J2
, i.e.

j(j + 1) = ℓ(ℓ− 1) .

This is a quadrati equation with 2 solutions: ℓ = −j and ℓ = j + 1, but sine j ≥ ℓ we
have

ℓ = −j and j ≥ 0 .

Starting from ℓ we reah j with unit steps and thus

j − ℓ = j − (−j) = 2j ∈ N

Hene, so(3) has irreduible representations with j = 0, 1
2
, 1, 3

2
, 2, . . .

• The dimension of irrep j is 2j + 1.
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• For orthonormal basis vetors, now denoted by |jm〉, we have
J2|jm〉 = j(j + 1)|jm〉
J3|jm〉 = m|jm〉
J±|jm〉 = [j(j + 1)−m(m± 1)]1/2|j,m± 1〉

One obtains the last equation by alulating the norm of J±|m〉.
Denote by Γj(g) the potential representations of SO(3) de�ned by

Γj(g)|jm〉 = g|jm〉 ,
i.e. the matrix elements are

Γj(g)mm′ = 〈jm|g|jm′〉 ,
and in partiular

Γj(e−itJ3)mm′ = 〈jm|e−itJ3 |jm′〉 = 〈jm|e−itm′ |jm′〉 = e−itmδmm′ .

We have e−2πiJ3 = e, but Γj(e−2πiJ3)mm′ = e−2πimδmm′
, i.e. only for

m ∈ Z ⇔ j ∈ N0

do we have Γj(e−2πiJ3) = 1 and only then we really get representations of SO(3).

Irreduible representations of SU(2)
The Pauli matries σ1, σ2, σ3 (f. Problem 34) form a basis of the Lie algebra su(2) with

[σj , σk] = 2i
∑

l

εjklσl ,

i.e. the matries σk/2 satisfy the same relations as the Jk, and thus su(2) ∼= so(3). Hene
we also already know all irreduible representations of su(2). Sine SU(2) = exp(isu(2))
(Problem 37) and sine SU(2) is simply onneted, we get irreduible representations of

SU(2) for all j ∈ N0/2.

Remark on the last step: Aording to Problem 38 the homomorphism ϕ : SU(2) →
SO(3) satis�es ϕ(e−iα

2
~n~σ) = R~n(α), but e−iα

2
~n~σ

is not the identity for α = 2π. However,

Γj(e−4πi
σ3
2 ) = 12j+1 is true for every half-integer j.

Charaters

Sine all rotations by the same angle are in the same onjugay lass, is it su�ient to

onsider rotations about ~e3:

χj(ψ) =

j∑

m=−j
Γj(R~e3(ψ))mm =

j∑

m=−j
e−imψ

for SO(3) with j ∈ N0, ψ ∈ [0, π) ,

χj(α) =

j∑

m=−j
Γj(e−iα

2
σ3)mm =

j∑

m=−j
e−imα

for SU(2) with j ∈ N0/2, α ∈ [0, 2π) .

In partiular, for the de�ning (or �fundamental�) representations

χ1/2(α) = 2 cos(α
2
) , χ1(ψ) = 1 + 2 cosψ .
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6.9 Remarks on some lassial Lie groups

De�nition: (adjoint representation)

LetG be Lie group with orresponding Lie algebra g, and let g ∈ G. The map Ad : g 7→ Adg
with

Adg : g → g

X 7→ gXg−1 =: Adg(X)

is alled adjoint representation of G (on g).

Remarks:

1. One also de�nes Adg(h) := ghg−1
for h ∈ G.

2. Ad is a representation sine

(i) g is a vetor spae,

(ii) Adg(X) ∈ g, sine h(t) := geiXtg−1
is a urve in G with h(0) = e and ḣ(0) =

iAdg(X), and in partiular

geiXtg−1 = eiAdg(X)t ,

(iii) (Adg ◦ Adh)(X) = Adg(Adh(X)) = Adg(hXh
−1) = ghXh−1g−1 = Adgh(X)

3. For X ∈ g one further de�nes adX : g→ g by

adX(Y ) =
1

i

d

dt
AdeiXt(Y )

∣∣∣∣
t=0

=
1

i

d

dt

(
eiXtY e−iXt

)∣∣∣∣
t=0

= [X, Y ] .

Lemma 20. (Prinipal axis theorem for unitary matries)

For every g ∈ U(n) there exists an h ∈ U(n) s.t. h†gh is diagonal, in partiular

g = h



eiϕ1 0

.

.

.

0 eiϕn


h†

with real ϕj.

Proof: Redue to the prinipal axis theorem for Hermitian matries.

Let Mφ := {g ∈ U(n) : eiφ is not eigenvalue of g}. Then

fφ :Mφ → Cn×n

g 7→ i(eiφ + g)(eiφ − g)−1
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(generalised Cayley transformation) maps unitary g to Hermitian matries A := f(g), sine

A† = (−i)(e−iφ − g†)−1(e−iφ + g†)

= (−i)(eiφ + g)(eiφ + g)−1

︸ ︷︷ ︸
=1

(e−iφ − g†)−1(e−iφ + g†)

= (−i)(eiφ + g)(1− eiφg† + e−iφg − 1)−1(e−iφ + g†)

= i(eiφ + g) (eiφg† − e−iφg)−1(e−iφ + g†)︸ ︷︷ ︸
=:B

and

B(eiφ − g) = (eiφg† − e−iφg)−1(e−iφ + g†)(eiφ − g)
= (eiφg† − e−iφg)−1(1+ eiφg† − e−iφg−1) = 1 ,

2020-01-07

i.e. A† = A. Now there exists an h ∈ U(n) s.t. h†Ah = D is diagonal (prinipal axis

theorem for Hermitian matries). Furthermore, fφ is bijetive (as funtion fromMφ to the

Hermitian n× n matries) with

A = i(eiφ + g)(eiφ − g)−1

⇔ A(eiφ − g) = i(eiφ + g)

⇔ eiφ(A− i) = (A + i)g

⇔ g = eiφ(A + i)−1(A− i)= f−1(A) .

Now, for a given g ∈ U(n) hoose φ s.t. g ∈Mφ, all A := fφ(g), and hoose h ∈ U(n) s.t.
h†Ah =: D is diagonal. Then h also diagonalises g:

h†gh = h†eiφ(A+ i)−1hh†(A− i)h = eiφ(D + i)−1(D − i) .

�

Remark: The analogous result also holds for g ∈ SU(n) ⊂ U(n), with h ∈ SU(n), sine if

det h 6= 1, hoose h̃ = (det h)−
1
n h instead.

Theorem 21. For every g ∈ U(n) there exists an X ∈ u(n) s.t. g = eiX .

Proof: Aording to Lemma 20 there exists an h ∈ U(n) s.t.

g = h



eiϕ1 0

.

.

.

0 eiϕn


 h† = heiY h†

with

Y =



ϕ1 0

.

.

.

0 ϕn


 ∈ u(n) .
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Moreover,

g = heiY h† = eiAdh(Y )

i.e. the desired X ∈ u(n) is given by X = Adh(Y ). �

Remarks:

1. With the remark after Lemma 20 we also have: For every g ∈ SU(n) there exists an
X ∈ su(n), s.t. g = eiX .

2. Similarly for g ∈ SO(2n): One �rst shows that there exists an h ∈ SO(2n) s.t.

g = h



R1 0

.

.

.

0 Rn


 hT

with Rj ∈ SO(2). For SO(2n+ 1) the diagonal matrix has an additional row with a

1. Then also every g ∈ SO(n) an be written as eiX with X ∈ so(n).

3. In all these ases we an in priniple onstrut irreps using the same strategy as in

Setion 6.8 for SO(3) or SU(2): First onstrut irreduible representations of the Lie
algebra and by exponentiation (potential) reps of the group.

4. The diagonal matries whih appear in proedure are maximal abelian subgroups

(so-alled maximal tori) of the orresponding group.

6.10 More on Lie algebras and related topis

With the reasoning of Setion 6.9 we know when we an go from irreps of a Lie algebra to

irreps of the orresponding Lie group. This was the last step in the proedure of Setion 6.8.

In the previous steps we used properties of J2
. In the following we disuss more generally

what happened in that step and mention a ouple of relevant notions.

De�nition: (representations of Lie algebras)

Let g be a Lie algebra and V a vetor spae. A representation φ assigns to eah X ∈ g a

linear map φ(X) : V → V s.t.

φ(i [X, Y ]︸ ︷︷ ︸
Lie braket

) = [φ(X), φ(Y )]︸ ︷︷ ︸
ommutator

∀ X, Y ∈ g .

The i-deoration omes from our onvention that G = exp(ig).
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Examples:

1. ad : g ∋ X 7→ adX with adX(Y ) = [X, Y ] de�nes a representation of g on g

adX(adY (Z))− adY (adX(Z)) = [X, [Y, Z]]− [Y, [X,Z]]

= [X, [Y, Z]] + [Y, [Z,X ]]

=
Jaobi identity

−[Z, [X, Y ]]

= [[X, Y ], Z]

= ad[X,Y ](Z) ∀ Z ∈ g .

In a basis {Xj} of g the matrix elements of the representation matries are given by

the struture onstants:

adXj
(Xk) =: i

∑

l

Xl (adXj
)lk

= [Xj , Xk] = i
∑

l

cljkXl .

2. From a rep Γ of a Lie group G we obtain (by di�erentiation) a rep dΓ of the Lie

algebra g,

dΓ(X) =
1

i

d

dt
Γ(eiXt)

∣∣∣∣
t=0

.

In this Setion the i-onvention for the exponentiation is not optimal. . .

De�nition: (enveloping algebra)

Let g be a Lie algebra with basis {Xj}. The enveloping algebra E(g) onsists of formal

polynomials in the generators

∑

j

aj(iXj) +
∑

jk

bjk(iXj)(iXk) +
∑

jkl

cjkl(iXj)(iXk)(iXl) + . . . , aj, bjk, cjkl ∈ R ,

where iXjiXk and iXkiXj + iXl have to be identi�ed if [iXj, iXk] = iXl.

Remarks:

1. A representation φ of a Lie algebra then also yields a representation of the envelop-

ing algebra (all it also φ), whereby the formal produts and sums beome matrix

produts and matrix sums.

2. A basis of the enveloping algebra is, e.g., given by those monomials in the generators

for whih the indies are non-dereasing from left to right � all other monomials an

obtained by exploiting the Lie braket. Examples for SU(2):

σ2σ1 = σ1σ2 − [σ1, σ2] = σ1σ2 − 2iσ3

σ1σ3σ2 = σ1(σ2σ3 − [σ2, σ3]) = σ1σ2σ3 − 2iσ1σ1
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De�nition: (Casimir operator)

C ∈ E(g) is alled Casimir operator if C ommutes with all elements of the enveloping

algebra, i.e. if

[C,A] = 0 ∀ A ∈ E(g) .

Example: J2 := J2
1 + J2

2 + J2
3 for SO(3) (f. Setion 6.8).

Remarks:

1. In partiular a Casimir operator ommutes with all X ∈ g ⊆ E(g).

2. This implies eiXCe−iX = C ∀ X ∈ g, i.e. in the ases of Setion 6.8 and 6.9, where

G = exp(ig), we immediately onlude gCg−1 = C ∀ g ∈ G.
3. gCg−1 = C ∀ g ∈ G is even true more generally, sine one an show:

• exp(ig) always ontains a neighbourhood of the identity in G.
• By taking (�nite) produts eiXeiY eiZ . . . one reahes all g ∈ G0, the onneted

omponent of the identity.

4. If G is onneted, then for representations (of the Lie group, the Lie algebra and

the enveloping algebra) we thus have [dΓ(C),Γ(g)] = 0 ∀ g ∈ G, and aording to

Shur's Lemma (Theorem 4) it follows that for irreps dΓ(C) is a salar multiple of 1.

In the exerise lass we will disuss the Killing form and a method for �nding one Casimir

operator for groups like SU(n) or SO(n).
2020-01-09
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7 Tensor method for onstruting irreduible represen-

tations of GL(N) and subgroups

7.1 Setting

In the following let V be omplex vetor spae with dimV = N , i.e. V ∼= CN
.

De�ne V ⊗n = V ⊗ · · · ⊗ V︸ ︷︷ ︸
n fators

.

Form tensor produts from |vj〉 ∈ V , j = 1, . . . , n:

n⊗

j=1

|vj〉 = |v1〉 ⊗ |v2〉 ⊗ · · · ⊗ |vn〉 ∈ V ⊗n .

General |v〉 ∈ V ⊗n
are linear ombinations of tensor produts, and are alled tensors of

rank n.

• Representation Γ of GL(N) on V ⊗n
: De�ning representation γ on eah fator,

g ∈ GL(N),

Γ(g)

n⊗

j=1

|vj〉 =
n⊗

j=1

γ(g)|vj〉 ,

ontinue by linearly to all of V ⊗n
(i.e. Γ = γ⊗n).

• Representation D of Sn on V ⊗n
: p ∈ Sn,

D(p)
(
|v1〉 ⊗ |v2〉 ⊗ · · · ⊗ |vn〉

)
= |vp−1(1)〉 ⊗ |vp−1(2)〉 ⊗ · · · ⊗ |vp−1(n)〉 ,

also ontinued by linearity to all of V ⊗n
.

D extends to representation of A(Sn).

Evidently,

Γ(g)D(p)|v〉 = D(p)Γ(g)|v〉
∀ p ∈ Sn (and also ∈ A(Sn), ∀ g ∈ GL(N) and ∀ |v〉 ∈ V ⊗n

.

Notation: Form now on, we omit Γ and D, i.e. we write, e.g.,

gp|v〉 = pg|v〉 .

In a basis. . . Choose a basis of V : |j〉, j = 1, . . . , N .

Form a produt basis of V ⊗n
:

|j1〉 ⊗ · · · ⊗ |jn〉 =: |j1 . . . jn〉 , jk = 1, . . . , N (k = 1, . . . , n) .
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General element |x〉 ∈ V ⊗n
:

|x〉 =
N∑

j1,...,jn=1

xj1...jn|j1 . . . jn〉 =
↑

summation onvention

xj1...jn |j1 . . . jn〉 .

Then, e.g., (with p ∈ Sn)

p|x〉 = xj1...jn|jp−1(1) . . . jp−1(n)〉
= xjp(1)...jp(n)

|j1 . . . jn〉 .

7.2 Deomposition of V ⊗n
into irreduible invariant subspaes

with respet to Sn and GL(N)

7.2.1 Symmetry lasses

• Notation: Let (as in Setion 5)

� Θp
λ be a Young tableau

� epλ the orresponding Young operator

� Lλ = {reλ ; r ∈ A(Sn)} the minimal left ideal generated by eλ
(f. Setion 5.4: eλ = eeλ. The other epλ also generate minimal left ideals, and

the orresponding irreps for �xed λ are equivalent.)

• Goal: In the following we will see:

� For �xed |v〉 ∈ V ⊗n
the subspae

{r|v〉 : r ∈ Lλ} = A(Sn)eλ|v〉

is invariant and irreduible with respet to Sn.

� For �xed epλ the subspae

{epλ|v〉 : |v〉 ∈ V ⊗n} = epλV
⊗n

is invariant and irreduible with respet to GL(N).

� We an hoose a basis |λ, α, a〉 of V ⊗n
s.t.

λ lables the so-alled symmetry lass, given by a Young diagram,

α labels the irreduible invariant subspaes w.r.t. Sn,
a labels the irreduible invariant subspaes w.r.t. GL(N).

• For a �xed Young tableau the {epλ|v〉 : |v〉 ∈ V ⊗n} are alled tensors of symmetry Θp
λ.

• For a �xed Young diagram {r|v〉 : r ∈ Lλ , |v〉 ∈ V ⊗n} = A(Sn)eλV ⊗n
are alled

tensors of symmetry lass λ.
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• First onsider the subspae Tλ(α) = {r|α〉 : r ∈ Lλ} for �xed α:
Tλ(α) is either empty or

(i) Tλ(α) is invariant and irreduible under Sn and

(ii) the Sn irrep arried by Tλ(α) is given by the irrep arried by Lλ.

Proof:

(i) Let |v〉 ∈ Tλ(α), then ∃ r ∈ Lλ s.t.

|v〉 = r|α〉
⇒ p|v〉 = pr︸︷︷︸

∈Lλ

|α〉 ∈ Tλ(α) ∀ p ∈ Sn ,

i.e. Tλ(α) is invariant under Sn. (�irreduible� follows from (ii))

(ii) Let {ri} be a basis of Lλ ⇒ {ri|α〉} is a basis of Tλ(α).

a) ation of Sn on Lλ: p ∈ Sn,

pri = rjΓ
λ(p)ji .

b) ation of Sn on Tλ(α): p ∈ Sn,

pri|α〉 = rjΓ
λ(p)ji|α〉 = rj |α〉Γλ(p)ji .

⇒ The representation matries on Tλ(α) are the same as on Lλ, and in partiular
Tλ(α) is irreduible.

7.2.2 Totally symmetri and totally anti-symmetri tensors

• Let Θλ=s = · · · , i.e. es = s is the total symmetriser of Sn,
Ls is one-dimensional.

⇒ For given |α〉 the subspae Ts(α) is one-dimensional = span(es|α〉).
These tensors are totally symmmetri (in all indies).

Eah Ts(α) arries the trivial representation of Sn.

Example: N = 2, n = 3 ⇒ es =
1
6
[e+ (12) + (13) + (23) + (123) + (132)]

There are 4 di�erent totally symmmetri tensors:

es|111〉 = |111〉 =: |s, 1, 1〉
es|112〉 = 1

3
(|112〉+ |121〉+ |211〉) =: |s, 2, 1〉

es|122〉 = 1
3
(|122〉+ |212〉+ |221〉) =: |s, 3, 1〉

es|222〉 = |222〉 =: |s, 4, 1〉

We denote the spae spanned by the tensors of symmetry lass s by T ′
s.
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• Totally anti-symmetri tensors (λ = a) exist only for n ≤ N , i.e. only up to rank N ,

Θλ=a = .

.

.

,

sine for n > N every basis vetor ontains at least

two idential indies, say jk = jl in |j1 . . . jn〉 ⇒ anti-

symmetrisation yields zero.

The Sn irrep on Ta(α) is sgn.

• Example: Tensors of rank 2 (n = 2) in N dimensions

es|ii〉 = |ii〉 i = 1, . . . , N

es|ij〉 =
1

2
(|ij〉+ |ji〉) i 6= j

⇒ N + N(N−1)
2

= 1
2
(N2 +N) totally symmetri tensors.

ea|ii〉 = 0 i = 1, . . . , N

ea|ij〉 =
1

2
(|ij〉 − |ji〉) i 6= j

⇒ 1
2
(N2 −N) totally anti-symmetri tensors (one for N = 2).

2020-01-14

7.2.3 Tensors with mixed symmetry

As an example onsider again tensors of rank n = 3 in N = 2 dimensions, and in partiular

Θλ=κ =
1 2
3

with eκ = [e + (12)][e− (13)]

From Setion 5.3 we know: Lκ = span(eκ, (23)eκ)

• First we hoose |α〉 = |112〉,
eκ|112〉 = [e + (12)][|112〉 − |211〉]

= 2|112〉 − |211〉 − |121〉 =: |κ, 1, 1〉 ,
(23)eκ|112〉 = (23)[2|112〉 − |211〉 − |121〉]

= 2|121〉 − |211〉 − |112〉 =: |κ, 1, 2〉 .
Then Tκ(1) := A(S3)eκ|112〉 = span(|κ, 1, 1〉, |κ, 1, 2〉) is invariant and irreduible

under S3 (f. Setion 5.3).

• Now we hoose |α〉 = |221〉. Then
eκ|221〉 = 2|221〉 − |122〉 − |212〉] =: |κ, 2, 1〉 ,

(23)eκ|221〉 = 2|212〉 − |122〉 − |221〉] =: |κ, 2, 2〉 ,
is a basis for another 2-dimensional, irreduible invariant subspae Tκ(2).
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• |κ, 1, 1〉 and |κ, 2, 1〉 are tensors of symmetry Θκ and span the 2-dimensional subspae

T ′
κ(1) := eκV

⊗3
.

(i) T ′
κ(1) is invariant under GL(2), sine gp = pg ∀ g ∈ GL(2) and ∀ p ∈ S3 implies

geκ|v〉 = eκ g|v〉︸︷︷︸
∈V ⊗3

∈ T ′
κ(1) .

This argument required neither n = 3 nor N = 2, i.e. it is true in general.

(ii) T ′
κ(1) is irreduible under GL(2).

Proof: We expliitly onstrut the representation matries for g ∈ GL(2).

g|κ, 1, 1〉 = g(2|112〉 − |211〉 − |121〉)
reall that g|112〉 = |ijk〉gi1gj1gk2 (sum over i, j, k)

= 2|ijk〉gi1gj1gk2 − |ijk〉gi2gj1gk1 − |ijk〉gi1gj2gk1
3× 8 = 24 terms

= |112〉 (2g11g11g22 − g12g11g21 − g11g12g21)︸ ︷︷ ︸
=2g11 det g

+ |211〉 (2g21g11g12 − g22g11g11 − g21g12g11)︸ ︷︷ ︸
=−g11 det g

+ |121〉 (2g11g21g12 − g12g21g11 − g11g22g11)︸ ︷︷ ︸
=−g11 det g

+ |221〉 (2g21g21g12 − g22g21g11 − g21g22g11)︸ ︷︷ ︸
=−2g21 det g

+ |122〉 (2g11g21g22 − g12g21g21 − g11g22g21)︸ ︷︷ ︸
=g21 det g

+ |212〉 (2g21g11g22 − g22g11g21 − g21g12g21)︸ ︷︷ ︸
=g21 det g

The remaining terms have to vanish sine T ′
κ(1) is invariant under GL(N).

= det g
(
|κ, 1, 1〉g11 + |κ, 2, 1〉(−g21)

)

Similarly one �nds

g|κ, 2, 1〉 = det g
(
|κ, 1, 1〉(−g12) + |κ, 2, 1〉g22

)
.

Hene the representation matries,

Γκ(g) = det g

(
g11 −g12
−g21 g22

)
,

are also ∈ GL(2) and every GL(2)-matrix shows up as Γκ(g). If the represen-

tation was reduible, all Γκ(g) would have a joint eigenvetor � obviously they

don't, and thus the representation is irreduible. �
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• Similarly one �nds: |κ, 1, 2〉 and |κ, 2, 2〉 are tensors of symmetry Θ
(23)
κ and span the

2-dimensional subspae T ′
κ(2) := e

(23)
κ V ⊗3

, whih is also invariant and irreduible

under GL(2) and arries a representation that is equivalent to that arried by T ′
κ(1).

• The diret sum of subspaes T ′
κ(a) (a = 1, 2) ontains all tensors of symmetry lass

κ with Θκ = .

• Complete redution of the 8-dimensional spae V ⊗3
:

(reall that Θs = and Θκ = )

V ⊗3 = Ts(1)⊕ Ts(2)⊕ Ts(3)⊕ Ts(4)︸ ︷︷ ︸ ⊕ Tκ(1)⊕ Tκ(2)︸ ︷︷ ︸ ← invariant under S3

= T ′
s ⊕

︷ ︸︸ ︷
T ′
κ(1)⊕ T ′

κ(2) ← invariant under GL(2)

T ′
s arries a 4-dimensional irrep of GL(2); under S3 it is the deriet sum of 4 one-

dimensional subspaes, eah arrying the trivial rep.

As a onvenient basis for V ⊗3
we an hoose:

� the 4 totally symmetri tensors |s, α, 1〉 with α = 1, . . . , 4 from Setion 7.2.2,

� the 4 tensors |κ, α, a〉 with α = 1, 2 and a = 1, 2.

7.2.4 Complete redution of V ⊗n

The observations and results of Setion 7.2.3 generalise as follows (V ∼= CN
as before).

• V ⊗n
an be ompletely deomposed into irreduible Sn-invariant subspaes,

V ⊗n =
⊕

λ

⊕

α

Tλ(α) .

The λ-sum is only over Young diagrams with at most N rows (N = dimV ), (f. the
disussion of totally anti-symmetri tensors in Setion 7.2.2).

• A basis of Tλ(α) is given by the tensors |λ, α, a〉 with a = 1, . . . , dim(Tλ(α)).

The basis tensors an be hosen s.t. the representations matries for Sn on Tλ(α) are
idential for all α (whih belong to the to the same symmetry lass λ:

p|λ, α, a〉 = |λ, α, b〉Γλ(p)ba︸ ︷︷ ︸
independent of α

• The deomposition of V ⊗n
into irreduible Sn-invariant subspaes also leads to a

deomposition into irreduible GL(N)-invariant subspaes:

� The subspaes T ′
λ(a), spanned by |λ, α, a〉 with �xed λ and a, are invariant (see

Setion 7.2.3) and irreduible (without proof) under GL(N).
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� The GL(N)-irreps arried by T ′
λ(a) for �xed λ do not depend on a, i.e. same

Young diagram, di�erent (standard) Young tableaux  equivalent irreps.

Proof: Let |x〉 ∈ Tλ(α) ⊆ T ′
λ. Then ∃ r ∈ A(Sn) with

|x〉 = reλ|α〉 .

For every g ∈ GL(N) we have (sine gp = pg ∀p ∈ Sn)

g(reλ)|α〉 = (reλ)g|α〉 ∈ Tλ(gα) ⊆ T ′
λ ,

i.e. g does not hange the symmetry lass (we already knew this sine

T ′
λ =

⊕
a

T ′
λ(a) is invariant under GL(N)), and thus

g|λ, α, a〉 = |λ, β, b〉Γλ(g)(βb)(αa)

(summing over the index pair (βb) � summation onvention).

Now we show that Γλ(g)(βb)(αa) is diagonal in the indies (a, b).
Let g ∈ GL(N), p ∈ Sn:

gp|λ, α, a〉 = g|λ, α, c〉Dλ(p)ca = |λ, β, b〉Γλ(g)(βb)(αc)Dλ(p)ca

and

pg|λ, α, a〉 = p|λ, β, c〉Γλ(g)(βc)(αa) = |λ, β, b〉Dλ(p)bc Γ
λ(g)(βc)(αa) .

Due to gp = pg the r.h.s.s are equal. For �xed α and β, instead of the Latin

indies we write a matrix produt:

Γλ(g)βαD
λ(p) = Dλ(p) Γλ(g)βα .

Sine this is true ∀ p ∈ Sn we onlude with Shur's Lemma (Theorem 4) implies

that Γλ(g)βα is a salar multiple of the identity, and thus i.e. Γλ(g)(βc)(αa) is
diagonal in the Latin indies. �

7.2.5 Dimensions of the GL(N)-representations

Essentially we already know the dimensions of the GL(N)-irreps: To eah Young diagram

Θλ orresponds an Sn-irrep D
λ
and a GL(N)-irrep Γλ. For the Sn-irreps we an determine

dimensions and multipliities (within V ⊗n
) using the methods of Setions 4.3.1 and 5.

Aording to the onstrution in Setions 7.2.1�7.2.4 the multipliity of Dλ
is equal to the

dimension of Γλ and vie versa. Determining the dimensions in this way an be tedious,

and there are several other algorithms and formulae. . .
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Graphial rule: Consider a Young diagram, e.g. (i.e. S7), and the orresponding

normal Young tableau

Θλ =
1 2 3 4
5 6
7

.

Apply the Young operator eλ to |i1 . . . i7〉. (ik ∈ 1, 2, . . . , N , in general N 6= n; here n = 7)

Question: Whih starting vetors lead to linearly independent results?

Write the is into the Young diagram:

i1 i2 i3 i4
i5 i6
i7

(∗)

It was eλ = sλaλ (see Setion 5.3), and hene

(i) eλ|i1 . . . in〉 = 0 if in a olumn at least two numbers are idential.

(ii) eλvλ = sgn(vλ)eλ, and thus eλvλ|i1 . . . in〉 and eλ|i1 . . . in〉 are linearly dependent.

Therefore, it is su�ient to onsider starting vetors |i1 . . . in〉 for whih the numbers in

eah olumn of (∗) are inreasing.

2020-01-16

Now hoose the is s.t. the entries in eah row are non-dereasing. (Here equal values are

allowed!)

One an show:

(i) The eλ|i1 . . . in〉 obtained in this way are linearly independent.

(ii) eλhλ|i1 . . . in〉 is a linear ombination of tensors already onstruted.

Due to hλeλ = eλ the eλ|i1 . . . in〉 are symmetri in all is that stand in the same row in

(∗). This restrits the number of basis tensors that an be onstruted from a �xed set

{i1, . . . , in} of indies.
With these rules we an determine the dimensions of the GL(N)-irreps, e.g. we have for

N = 2 (f. Setion 7.2.3)

dimΓ = 2 and dimΓ = 4 ,

sine the allowed hoies are

1 1
2

and

1 2
2

as well as 1 1 1 , 1 1 2 , 1 2 2 and 2 2 2 .

For and N = 2 there is no allowed hoie for the distribution of the numbers 1 and 2.

(This is onsistent with the fat that there are no anti-symmetri tensors with n > N , f.

Setion 7.2.2.)
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We also �nd dimΓ = 2 for GL(2), sine 1 and 2 , and in general

dimΓ = N for GL(N) ,

where we write Γ for the de�ning representation, i.e.

V ⊗n = ⊗ · · · ⊗︸ ︷︷ ︸
n fators

.

Finally we an express the result of Setion 7.2.3 as

⊗ ⊗ = ⊕ ⊕

2 · 2 · 2 = 4 + 2 + 2 ,

for N = 2! In the exerises we will also study N = 3 and higher.

The above method is onvenient for �xed N . In the exerises we will see a method using

birdtraks, whih yields the dimensions as funtions of N .

Further formulae for the dimensions of the GL(N)-irreps (without proofs):

dim(Γλ) =

(
N−1∏

k=1

1

k!

)
det
[
(λi
↑

number of boxes in row i of Θλ

+N − i)N−j
]
i,j=1,...,m

=

(
N−1∏

k=1

1

k!

)
N∏

i<j

(λi − λj − i+ j)

=
∏

ij

N + j − i
hij
↑

hook length of box i, j (see Setion 5.5)

(produt over all boxes of Θλ

i = row index, j = olumn index)

Bak to the example V ⊗3
, N = 2:

dim(Γ ) = det

(
4 1
0 1

)
= 4

=
2 + 1− 1

3
· 2 + 2− 1

2
· 2 + 3− 1

1
=

2

3
· 3
2
· 4 = 4

dim(Γ ) = det

(
3 1
1 1

)
= 2

=
2 + 1− 1

3
· 2 + 2− 1

1
· 2 + 1− 2

1
=

2

3
· 3 · 1 = 2

Remark: Using the tensor method one an onstrut all(?) polynomial representations of

GL(N), i.e. reps for whih the elements of the representation matrix for g ∈ GL(N) are
polynomials in the the matrix elements of g. There are also other reps of GL(N), e.g.

g =

(
a b
c d

)
∈ GL(2) , Γ(g) =

(
1 log |ad− bc|
0 1

)
.
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7.3 Irreduible representations of U(N) and SU(N)

The irreduible representations of GL(N) (read GL(N,C), with dimension 2N2
as a real

manifold) from Setion 7.2.4 also restrit to representations of subgroups, whih do not

need to be irreduible. They are, however, irreduible for U(N) (dimensionN2
) and SU(N)

(dimension N2−1) but in general not for O(N) and SO(N).

Idea behind this:

• The generators of GL(N) are the generators of U(N) omplemented by i times the

generators of U(N).  If one an blok-diagonalise the representation of the gen-

erators of U(N) one an also blok-diagonalise the generators of the orresponding

GL(N) rep.

• The generators of U(N) are the generators of SU(N) omplemented by a multiple of

the identity matrix.  If one an blok-diagonalise the representation of the gen-

erators of SU(N) one an also blok-diagonalise the generators of the orresponding

U(N) rep.

No suh simple relation exists for O(N) or SO(N) (dimension N(N−1)/2 in both ases).

Already for V ⊗ V , whih under GL(N) deomposes into symmetri and anti-symmetri

tensors, the orresponding SO(N) rep on the symmetri subspae ontains the trivial rep:

Choose a basis {|j〉} of V ; then |j〉⊗|j〉 (summation onvention) is invariant under SO(N):

g
(
|j〉 ⊗ |j〉

)
=
(
|k〉 ⊗ |ℓ〉

)
gkjgℓj =

(
|k〉 ⊗ |ℓ〉

)
δkℓ = |k〉 ⊗ |k〉 .

In the following we are interested in SU(N).

For SU(N) the two irreps orresponding to the Young diagrams (with row lenghts)

(λ1, . . . , λN) and (λ1+k, . . . , λN+k) are equivalent, e.g.

and .

for N = 5 and k = 1. (Proof: see Problems 45 & 46.) (For GL(N) they di�er by a

fator of (det g)k, and det g = 1 for g ∈ SU(N).) In partiular, the Young diagram Θa = :̇

(N boxes) orresponds to the trivial representation, i.e. g 7→ 1 ∀ g ∈ SU(N). Tensors whih
transform under SU(N) in the trivial representation are alled SU(N) salars or SU(N)
singlets. These tensors do, however, transform under Sn in the totally anti-symmetri rep

(sgn).

Irreduible representations of SU(2)

• de�ning/fundamental representation: , dimension 2

• trivial representation: , dimension 1

• N = 2 ⇒ the Young diagrams have at most 2 rows, i.e. every irrep is equivalent to

� either ,

e.g. ∼ ∼ ∼
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� or a one-row Young diagram, obtained by omitting all two-box olumns,

e.g. ∼ ∼ ∼

⇒ Besides we only have to one-row diagrams.

• Dimension of the irrep orresponding to a one-row diagram with k boxes:

1 ··· 1 1 , 1 ··· 1 2 , 1 ··· 2 2 , 2 ··· 2 2︸ ︷︷ ︸
k + 1 possibilities

. . . or using hook lengths:

∏

ij

N + j − i
hij

=
k∏

j=1

2 + j − 1

k − j + 1
=

(k + 1)!

k!
= k + 1

⇒ For SU(2) there is exatly one irrep for eah k ∈ N0, with dimension k + 1 (f.

Setion 6.8, where we arrived at the same result by di�erent means.)

Irreps of SU(3)

• fundamental rep: , dimension 3

• triviale rep: , dimension 1

• N = 3 ⇒ all Young diagrams have at most 3 rows, more preisely, all irreps are

equivalent to either or a diagram with at most 2 rows, i.e. (λ1, λ2, 0) with

dim(Γλ) =
1

2
det



(λ1 + 2)2 λ1 + 2 1
(λ2 + 1)2 λ2 + 1 1

0 0 1


 =

1

2
(λ1 + 2)(λ2 + 1)(λ1 − λ2 + 1) .

7.4 Reduing tensor produts in terms of Young diagrams

Given two irreps Γλ and Γλ
′
of GL(N), U(N) or SU(N) with Young diagrams Θλ and Θλ′ .

Task: Completely redue the produt rep Γλ ⊗ Γλ
′
.

[examples motivating the following rules℄

From what we have learned so far one an dedue the following graphial rule (without

proof):

1. Write the number i in all boxes of row i of Θλ′ .

2. Add the boxes of Θλ′ to Θλ, in the �rst step the 1s, in the seond step the 2s et.
adhering to the following rules:
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(a) In eah step the resulting diagram has to be a valid Young diagram and must

not have more than N rows.

(b) A number may not appear more than one in the same olumn.

() When reading the numbers row-wise from right to left beginning with the �rst

row, then the seond et., there must never be more is than (i−1)s in this

sequene.

3. If two Young diagrams reated in this way have the same shape, we only ount them

as di�erent if the is are distributed di�erently.

4. For SU(N) olumns with N boxes an be omitted.

5. Consisteny hek: ompare dimensions on both sides of the equation!

Illustration of rule 3:

⊗ 1 1
2 2

= . . . ⊕
1

1 2
2

1,2,1,2

⊕
�
�
�
��❅

❅
❅
❅❅

1
2 2

1

1,2,2,1

seond 2 omes

before seond 1

⊕ . . .

Examples:

1. SU(2)

5⊗ 4 = (j=2)⊗ (j=3
2
)

= ⊗ 1 1 1

=

(
1 ⊕

1

)
⊗ 1 1

=

(
1 1 ⊕ 1

1
⊕

1 1

)
⊗ 1

= 1 1 1 ⊕ 1 1
1

⊕ 1
1 1

⊕
1 1 1

= ⊕ ⊕ ⊕
= 8⊕ 6⊕ 4⊕ 2

= (j=7
2
)⊕ (j=5

2
)⊕ (j=3

2
)⊕ (j=1

2
)

We obtained equivalent results in Problem 41 b) by di�erent means.
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2. SU(3)
Overbars in the following examples an be safely ignored; their meaning will be

explained in the next setion.

3̄⊗ 3 = ⊗ 1 = 1 ⊕
1

= 8⊕ 1

or 3⊗ 3̄ = ⊗ 1
2

=

(
1 ⊕

1

)
⊗ 2 = 1

2
⊕ 1

2
= 8⊕ 1

3⊗ 3 = ⊗ 1 = 1 ⊕
1

= 6⊕ 3̄

3⊗ 3⊗ 3 = (6⊕ 3̄)⊗ 3 =

(
⊕

)
⊗ 1 = 1 ⊕

1
⊕ 1 ⊕

1

= 10⊕ 8⊕ 8⊕ 1

8⊗ 8 = ⊗ 1 1
2

=


 1 ⊕

1
⊕

1


⊗ 1

2

=


 1 1 ⊕ 1

1
⊕

1

1
⊕ 1

1


⊗ 2

= 1 1
2

⊕
1 1

2
⊕ 1

1 2
⊕

1
1

2
⊕

1
2

1
⊕ 1

1 2

= ⊕ ⊕ ⊕ ⊕ ⊕

= 27⊕ 10⊕ 10⊕ 8⊕ 8⊕ 1

7.5 Complex onjugate representations

Observation: Sometimes dimΓλ = dimΓλ
′
for λ 6= λ′. This may be �aidental� but

often it an be understood systematially in terms of the following onstrution.

Example: Consider for N = 3.

Basis tensors: (anti-symmetri tensors of rank 2 in 3 dimensions)

|23〉 − |32〉 , |31〉 − |13〉 , |12〉 − |21〉 .
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Ation of GL(3), e.g.

g(|12〉 − |21〉) = |ij〉(gi1gj2 − gi2gj1)
= |23〉(g21g32 − g22g31) + |32〉(g31g22 − g32g21)︸ ︷︷ ︸

=(|23〉−|32〉) det
( g21 g22
g31 g32

)

+ |31〉(g31g12 − g32g11) + |13〉(g11g32 − g12g31)︸ ︷︷ ︸
=(|31〉−|13〉) (−1) det

( g11 g12
g31 g32

)

+ |12〉(g11g22 − g12g21) + |21〉(g21g12 − g22g11)︸ ︷︷ ︸
=(|12〉−|21〉) det

( g11 g12
g21 g22

)
,

similarly for the other two basis elements. We �nd

Γ (g) =




det

(
g22 g23

g32 g33

)
(−1) det

(
g21 g23

g31 g33

)
det

(
g21 g22

g31 g32

)

(−1) det
(
g12 g13

g32 g33

)
det

(
g11 g13

g31 g33

)
(−1) det

(
g11 g12

g31 g32

)

det

(
g12 g13

g21 g23

)
(−1) det

(
g11 g13

g21 g23

)
det

(
g11 g12

g21 g22

)




= adj(g)T ,

with the adjunt matrix adj(g). Aording to Cramer's rule g−1 =
adj(g)

det g
, i.e.

Γ (g) = det g · (g−1)T .

Remark: This is true for arbitrary N > 2 and the Young diagram

:̇
(N−1 boxes).

For SU(3) we have det g = 1 and g−1 = g†, i.e. Γ (g) = g. We write = and also put a

bar over the dimension

2020-01-21

For GL(N), besides the de�ning rep g also (g−1)T , g and (g−1)T are N-dimensional irreps,

in general non-equivalent.

For SU(N), due to g† = g−1
, we have

(g−1)T = g and (g−1)T = g ,

i.e. at most two of the four irreps are non-equivalent. For SU(2), even g and g are equivalent,
see Problem 42; for N ≥ 3 they are are non-equivalent. In terms of Young diagrams one

obtains the omplex onjugate irrep by means of the following proedure.
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Complex onjugate representations for SU(N)

1. Consider a Young diagramm with at most N−1 rows. (The only m-row diagramm

orresponds to the trivial rep whih is idential to its omplex onjugate.)

2. Add boxes to the Young diagram s.t. it beomes a retangle of height N and same

width as the original diagram.

3. Disard the original boxes and turn the added boxes by 180◦ � this is the Young

diagram of the omplex onjugate rep.

Examples:

1. SU(3)

 ∗
∗

 = (see above)

2. SU(4)

 
∗ ∗

∗ ∗ ∗
∗ ∗ ∗ ∗

 =

3. SU(2) in general

···  
···

∗ ∗ ··· ∗  ··· = ···

This is onsistent with Problem 42, in whih we showed, by other means, that for

SU(2) every rep is equivalent to its omplex onjugate.

4. SU(3) in general

··· ···
···  

··· ···
··· ∗ ··· ∗

∗ ··· ∗ ··· ∗
 

··· ···
··· = ··· ···

···

i.e. (λ1, λ2) = (λ1, λ1 − λ2).
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8 Appliations in partile physis

8.1 Elementary partiles

• In the standard model of partile physis there are 3 (4) fores/interations:

1. strong (nulear) fore

2. eletromagneti fore

3. weak (nulear) fore

4. (gravitation)

(2. & 3. together: eletro-weak fore)

• 3 (4) kinds of �elementary� partiles:

1. leptons (e.g. eletron): spin

1
2
, do not interat via the strong fore

2. hadrons (e.g. proton, neutron): interat via the strong fore

3. partiles whih �arry� the fores (e.g. photon, gluon): integer spin

4. Higgs boson

• Hadrons are omposed of smaller partiles (quarks with spin

1
2
) and ome in two

kinds:

(a) baryons (∼ qqq, e.g. proton, neutron): spin = 1
2
, 3
2
, . . .

(b) mesons (∼ q̄q, e.g. pionen): spin = 0, 1, 2, . . .

• lepton number:

L =





1 for leptons

−1 for anti-leptons

0 otherwise

• baryon number:

B =





1 for baryons

−1 for anti-baryons

0 �otherwise�

quarks: B = 1
3
, anti-quarks: B = −1

3
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8.2 SU(2) isospin

• experimental observation: Among hadrons we �nd sets (�multiplets�), with approxi-

mately the same mass (= eigenvalue of H),

e.g. proton p and neutron n (baryons): mp ≈ mn ≈ 940MeV or

the three pions (mesons): mπ0 ≈ mπ+ ≈ mπ− ≈ 140MeV.

• theoretial explanation:

� The strong fore (essentially) determines the masses, and it is independent of

the eletrial harge.

� The (small) mass di�erenes (within a multiplet) ome from the eletro-weak

fore.

• The degenerate states should transform in an irrep of an �internal� symmetry group,

whih is initially unknown.

 Find a group whih explains the observed partile (mass) spetrum,

i.e. degrees of degeneray = dimensions of irreps.

• Consider �rst p and n and de�ne an objet with two omponents, the nuleon,

N =

(
p
n

)
.

� Lives in a 2-dimensional spae, alled �isospin�-spae.

� Consider SU(2)-transformations on this spae, with generators I1, I2, I3.

� p has I3 =
1
2
, n has I3 = −1

2
(by de�nition)

� The Hamiltonian for the strong fore ommutes with all 3 generators, i.e.

[H, ~I ] = 0 .

We say the strong fore is invariant under SU(2)
isospin

.

� N transforms in the 2-dimensional fundamental rep, or doublet rep (I = 1
2
) of

SU(2)
isospin

.

� Eletrial harge Q is then given in terms of isospin by Q = I3 +
1
2
.

• Other hadrons transform in di�erent irreps of SU(2)
isospin

,

e.g. the pions form an isospin triplet (I = 1) with
π+ : I3 = 1
π 0 : I3 = 0
π− : I3 = −1 .

� eletrial harge doesn't �t to formula above  postulate hyperharge Y (later

U(1)) with

Q = I3 +
1
2
Y .

The nuleon (p and n) has Y = 1, the three pions have Y = 0.
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• Di�erent isospin multiplets are haraterised by di�erent values of quantum numbers

related to the strong fore (B, Y , I, J = spin, P = parity).

For all partiles within a multiplet these numbers are idential.

• H invariant under SU(2)
isospin

does not only have onsequenes for masses, but also,

e.g., for ross setions (via the Wigner-Ekart theorem and SU(2)-Clebsh-Gordan
oe�ients).

8.3 SU(2) �avour

. . . whih, essentially, is still SU(2)
isospin

, but on the level of quarks.

• Hadrons are omposed of quarks, whose interation (strong fore) is desribed by

quantum hromodynamis (QCD).

• In nature we �nd 6 quark-��avours� (u, d, s, c, b, t),
of whih 2 are `very light' (u, d), one �light� (s), and 3 `heavy' (c, b, t).

• In experiments at low energies one observes only partiles onsisting of u and d.
 First onsider only Nf = 2, i.e. a 2-dimensional �avour spae.

• The reason for the isospin invariane of hadron masses is, that for mu = md the QCD

Lagrangian is invariant under SU(2)
�avour

transformations, i.e. the internal symmetry

group is SU(2)
�avour

.

• The 2-dimensional fundamental rep of SU(2)
�avour

ats on

q =

(
u
d

)
up quark (I3 =

1
2
, Y = 1

3
⇒ Q = 2

3
) ,

down quark (I3 = −1
2
, Y = 1

3
⇒ Q = −1

3
) ,

i.e. q transforms as an doublet under SU(2)
�avour

(I = 1
2
, Y = 1

3
).

(Thus, initially �avour is the same as isospin.)

• In the quark model the two nuleons have �quark ontent�

p ∼ uud (I3 =
1
2
, Y = 1 ⇒ Q = 1)

n ∼ udd (I3 = −1
2
, Y = 1 ⇒ Q = 0)

(∼ means we don't are about permutations of quarks at the moment,

i.e. we now onsider produt states of the form ⊗ ⊗ .

Here denotes the 2-dimensional fundamental rep with I = 1
2
and Y = 1

3
.

• Partiles within a multiplet transform in an irrep  deompose the produt:

⊗ ⊗ =
(

⊕
)
⊗ = ⊕ ⊕ = ⊕ ⊕
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in terms of dimensions,

2⊗ 2⊗ 2 = 4⊕ 2⊕ 2

or in terms of the isospin quantum number I,

1
2
⊗ 1

2
⊗ 1

2
= 3

2
⊕ 1

2
⊕ 1

2
.

In Setion 8.4 we will see:

� The doublet

(
p
n

)
orresponds to a linear ombination of the two doublets (I =

1
2
, Y = 1) on the r.h.s.

� The 4-dimensional irrep (I = 3
2
, Y = 1) orresponds to the ∆-baryons.

• Mesons onsist � aording to the quark model � of one quark and one anti-quark. The

latter we obtain by applying the so-alled harge onjugation operator C = UK. Here

U is a unitary operator, and K is the (anti-unitary) operator of omplex onjugation:

(We don't are about U here � it ats on degrees of freedom whih here play no role.)

Ku =: ū Kd =: d̄

Consider an SU(2) transformation of the quark doublet:

(
u′

d′

)
= g

(
u
d

)
⇔

(
ū′

d̄′

)
= g

(
ū
d̄

)
,

i.e. the �anti-doublet�

(
ū
d̄

)
transforms in 2

Sine for SU(2) 2̄ is equivalent to 2, we an also ombine ū and d̄ into a doublet in

suh a way that it transforms in 2: With h = ( 0 −1
1 0 ) ∈ SU(2) we have (f. Problem 45)

g = h−1gh(
ū′

d̄′

)
= h−1gh

(
ū
d̄

)

h

(
ū′

d̄′

)
= g h

(
ū
d̄

)

and thus h

(
ū
d̄

)
=

(
−d̄
ū

)
transforms in the same way as

(
u
d

)
,

i.e. as an isospin doublet with

(
−d̄
ū

)
(I3 =

1
2
, Y = −1

3
⇒ Q = 1

3
) ,

(I3 = −1
2
, Y = −1

3
⇒ Q = −2

3
) ,

(Here we assumed, that Y 7→ −Y under harge onjugation.)
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Now deompose

⊗ =
↑(
u
d

)
⊗

↑(
−d̄
ū

)
= ⊕

or 2 · 2 = 3 + 1 (dimensions)

or

1
2
⊗ 1

2
= 1⊕ 0 (isospin).

Construt multiplets as at the end of Setion 7.2.2. There we had:

triplet = {|11〉, 1√
2
(|12〉+ |21〉), |22〉}, and singlet =

1√
2
(|12〉 − |21〉).

� The isospin-triplet (I = 1, Y = 0) desribes the the pions:

I3 = 1 : π+ = −ud̄

I3 = 0 : π0 =
1√
2
(uū− dd̄)

I3 = −1 : π− = dū

These states are invariant under u↔ −d̄, d↔ ū.

� The singlet is the anti-symmetri linear ombination of states whih are tensor

produts of states with I3 =
1
2
und I3 = −1

2
, i.e.

1√
2
(uū− d(−d̄)) = 1√

2
(uū+ dd̄) .

In Setion 8.4 we will see that this desribes the ω meson.

8.4 SU(3) �avour and the quark model

• At higher energies one also observes the strange quark.

 Consider now Nf = 3, i.e. a 3-dimensional �avour spae with internal symmetry

group SU(3)
�avour

.

• additional quantum number: strangeness S, with Y = S +B

B I I3 Y S Q

u 1
3

1
2

1
2

1
3

0 2
3

d 1
3

1
2
−1

2
1
3

0 −1
3

s 1
3

0 0 −2
3
−1 −1

3
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• QCD proesses leave S (and thus Y ) invariant.

• The QCD-Lagragian (or Hamiltonian) is only invariant under SU(3)
�avour

, if mu =
md = ms. Due to mu ≈ md < ms, this symmetry is not exat, but broken to

SU(2)I × U(1)Y .
⇒ No perfet degeneray, but �small� mass di�erenes between hadrons within an

SU(3) multiplet (f. Problem 53: Gell-Mann-Okubo formula for the baryon deu-

plet).

Remark: The generators of SU(3) (a basis for the 8-dimensional Lie algebra su(3)
� traeless Hermitian 3× 3 matries) an be hosen s.t. (σj are the Pauli matries)


 σj

0
0

0 0 0


 , j = 1, 2, 3, and

1√
3



1 0 0

0 1 0

0 0 −2




are among them. The �rst 3 generate SU(2)I whereas the last one generates U(1)Y .

• The de�ning rep 3 of SU(3)
�avour

ats on

q =



u
d
s


 .

• Mesons onsist of one quark and one anti-quark (whih transforms in 3̄). Thus,

deompose

⊗ = ⊕

or 3⊗ 3̄ = 8⊕ 1 ,

i.e. we expet multiplets of approximately (mass-)degenerate mesons onsisting of

8 partiles or one partile, respetively.

• Experimentally one �nds: The lightest (i.e. ground state) mesons do atually form

an otet and a singlet (together also alled nonet), with quantum numbers B = 0
and JP = 0−. J is the usual spin.
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� pseudosalar meson-otet (salar sine J = 0, pseudo sine P = −1):

I3

Y

•
1

π+

(ud̄)

•
K+

(us̄)•
K0

(ds̄)

•π−

(dū)

•K−
(sū)

• K̄0

(sd̄)

••π
0
(uū,dd̄)

ψ8 (uū,dd̄,ss̄)

1
I = 1

2
, m = 496MeV

I = 1, m = 137MeV

I = 0, m see below

I = 1
2
, m = 496MeV

(mass di�erenes due to mass of strange quark)

� pseudosalar meson-singlet: ψ1 with I = Y = 0.

• It's slightly more ompliated. . .

� Consider all 3 states with I3 = Y = 0:

∗ π0
is the I3 = 0 state of the isospin-triplet, i.e. π0 = 1√

2
(uū− dd̄).

∗ ψ1 is the SU(3)-singlet state, i.e. ψ1 =
1√
3
(uū+ dd̄+ ss̄).

∗ ψ8 is the SU(3)-otet, isospin-singlet state.
orthogonal to both π0

and ψ1, ψ8 =
1√
6
(uū+ dd̄− 2ss̄).

� ψ1 and ψ8 have the same quantum numbers (I = 0 and JPC = 0−+
).

∗ If it was only for the strong interation (QCD) then ψ1 and ψ8 would be

physial states (transforming in di�erent irreps of SU(3)).

∗ Due to the eletro-weak fore these states an mix.

η(548MeV ) = ψ8 cos θ − ψ1 sin θ

η′(958MeV ) = ψ8 sin θ + ψ1 cos θ

The physial states (partiles) are η and η′. θ is alled nonet mixing angle

(experimentally observed value (?) θ = −24.6◦).

• Furthermore, there are exited qq̄-states (rotation, vibration et.)

The �rst �exited� meson-nonet has quantum numbers B = 0 and JP = 1−.
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� vetor meson-otet: (quark ontent as above)

I3

Y

•
1

ρ+

•
K∗+

•
K∗0

•ρ−

•K∗− • K̄∗0

••ρ
0

ψ′
8

1
I = 1

2
, m = 892MeV

I = 1, m = 776MeV

I = 0, m s.u.

I = 1
2
, m = 892MeV

� vetor meson-singlet: ψ′
1 with I = Y = 0.

As above ψ′
1 and ψ

′
8 mix, with θV = 36◦ (almost �ideal� mixing):

φ(1020MeV) = ψ′
8 cos θV − ψ′

1 sin θV ≈ ss̄

ω(782MeV) = ψ′
8 sin θV + ψ′

1 cos θV ≈
1√
2
(uū+ dd̄)

i.e. mρ0,ρ+,ρ− ≈ mω︸ ︷︷ ︸
no s-quark

< mK∗0,K∗+,K∗−,K̄∗0︸ ︷︷ ︸
one s-quark

< mφ︸︷︷︸
two s-quarks

.

• Baryons onsist of 3 quarks. Thus, deompose

⊗ ⊗ = ⊕ ⊕ ⊕

or 3⊗ 3⊗ 3 = 10
↑
S

⊕ 8
↑
MS

⊕ 8
↑
MA

⊕ 1
↑
A

.

with S = tensors that are totally symmetri under S3, i.e. under quark exhange,

MS = tensors with mixed symmetry (symmetri under exhange of the �rst two

quarks ∗),
MA = tensors with mixed symmetry (anti-symmetri under exhange of the �rst

two quarks, ∗),
A = totally anti-symmerti tensors.

∗ This is di�erent from what we get with Young operators for standard tableaux (sym-

metri under 1↔ 2 and 1↔ 3, resp.), i.e. here we take linear ombinations of those
states.

We thus expet multiplets of (almost mass) degenerate baryons, onsisting of 1, 8 or

10 partiles.
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• Experimentally one �nds: The lightest (i.e. ground state) baryons form an otet and

a deuplet:

� baryon-otet (B = 1, JP = 1
2

+
):

I3

Y

•
1

Σ+

(uus)

•
p
(uud)•

n
(udd)

•Σ−

(dds)

•Ξ−
(dss)

• Ξ0
(uss)

••(uds)Σ0

Λ

1
I = 1

2
, m = 939MeV

I = 1, m = 1193MeV

I = 0, m = 1116MeV

I = 1
2
, m = 1318MeV

� baryon-deuplet (B = 1, JP = 3
2

+
):

I3

Y

• Ω−(sss)

• Ξ∗0(uss)

•Σ
∗+

(uus)1

•
∆++

(uuu)
•
∆+

(uud)
•
∆0

(udd)
•
∆−

(ddd)

•Σ
∗−

(dds)

•Ξ∗− (dss)

•Σ
∗0

(uds)

1
I = 3

2
, m = 1232MeV

I = 1, m = 1385MeV

I = 1
2
, m = 1530MeV

I = 0, m = 1672MeV

• What about the singlet and the seond otet?

� Baryons are fermions, and thus their total wave funtion (in spae, spin, �avour

and olour) have to be totally anti-symmetri.

� Baryons are olour-singlets, i.e. they transform in the trivial rep of SU(3)
olour

,

whih is the sgn rep of S3. ⇒ The olour part of the wave funtion is totally

anti-symmetri (under exhange of the quarks).

� In the ground state orbital angular momentum is zero, i.e. the spatial part of

the wave funtion is totally symmetri.

⇒ The spin-�avour part has to be totally symmetri.
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� For the spins of the 3 quarks in a baryon we have (Young diagrams for SU(2)
spin

)

⊗ ⊗ = ( ⊕ ) ⊗ = ⊕ ⊕ = ⊕ ⊕

or

2⊗ 2⊗ 2 = 4
↑
S

⊕ 2
↑
MS

⊕ 2
↑
MA

SU(2)
spin

,

i.e. we have to ombine

(10
↑
S

⊕ 8
↑
MS

⊕ 8
↑
MA

⊕ 1
↑
A

)
�avour

and (4
↑
S

⊕ 2
↑
MS

⊕ 2
↑
MA

)
spin

.

� This leads to the following possibilities for (SU(3), SU(2))-multiplets:

S : (10, 4), (8, 2),

MS : (10, 2), (8, 4), (8, 2), (1, 2),

MA : (10, 2), (8, 4), (8, 2), (1, 2),

A : (1, 4), (8, 2).

Here the totally symmetri otet (8, 2)S orresponds to the linear ombination

(8, 2)S =
1√
2
[(8

↑
MS

, 2
↑
MS

) + (8
↑
MA

, 2
↑
MA

)] ,

and similarly for the other ombinations.

� Only the totally symmetri spin-�avour multiplets (10, 4) and (8, 2) lead to to-

tally symmetri wave funtion for the baryons.

⇒ In the ground state we have only one otet and the deuplet, but no singlet

and no seond otet. (In exited states, however, they an show up.)

• Alternative perspetive:

� Eah quark lives in 6-dimensional spin-�avour spae (3 olours, 2 spin proje-

tions).

 approximate SU(6) spin-�avour symmetry.

� Deomposition into SU(6)-irreps:

6⊗ 6⊗ 6 = 56S ⊕ 70MS
⊕ 70MA

⊕ 20A .

� The 56-dimensional irrep of SU(6) indues a rep of SU(3)
�avour

. The latter is

reduible and we �nd

56S =
ր

dim = 10 · 4

10
3
2 ⊕

տ
dim = 8 · 2

8
1
2 .

This orresponds to the baryon-deuplet (spin

3
2
) and to the baryon-otet (spin

1
2
).
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8.5 Gell-Mann-Okubo formula

• Within an SU(3)
�avour

-multiplet masses of partiles within the same isospin-multiplet

are almost idential, but for di�erent Y (or S) mass di�erenes an be larger.

Reason: mu ≈ md < ms ⇒ SU(3)
�avour

is broken to SU(2)I × U(1)Y .

• Assumption: The SU(3)-breaking term is a small perturbation,

H = H0 +H ′ ,

with H0 invariant under SU(3)�avour
H ′

only invariant under SU(2)I ×U(1)Y

• In Problem 53 we show using perturbation theory:

� H ′
transforms like the ψ8-state of the otet rep of SU(3) (f. Setion 8.4).

� For the masses of baryons within a multiplet one �nds the Gell-Mann-Okubo

formula

m = a+ bY + c
(
I(I + 1)− 1

4
Y 2
)

with a, b, c onstant within a multiplets. (In in Problem 53 we restrit our

attention to retangular Young diagram, in partiular the deuplet; then there

is no c.)

• This formula predited the mass (of the then unknown) Ω−
-partile, whih was found

a few years later with a mass within less than 1% of the predition.
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6 Lie groups (ontinued)

6.11 Roots and weights

Remark: Additive quantum numbers (examples: J3 (spin), I3 (isospin), Y hyperharge)

How did we draw the diagrams for the hadron multiplets in Setion 8.4? We added that

I3- and Y -values for the quarks ontributing to a hadron. This was justi�ed beause these

values are eigenvalues of the two ommuting generators. . .

Let G be a Lie group with Lie algebra g, let Γ1
and Γ2

be reps of G with orresponding

reps dΓ1,2
of g. Consider Γ = Γ1 ⊗ Γ2

. Then

dΓ(X) = dΓ1(X)⊗ 1+ 1⊗ dΓ2(X)

sine

dΓ(X) =
1

i

d

dt
Γ(eiXt)

∣∣∣
t=0

=
1

i

d

dt

(
Γ1(eiXt)⊗ Γ(eiXt)2

) ∣∣∣
t=0

=
1

i

(
d

dt
Γ1(eiXt)⊗ Γ2(eiXt)

) ∣∣∣
t=0

+
1

i

(
Γ1(eiXt)⊗ d

dt
Γ2(eiXt)

) ∣∣∣
t=0

= dΓ1(X)⊗ Γ2(e) + Γ1(e)⊗ dΓ2(X) .

If ψ and ϕ are eigenvetors of dΓ1(X) and dΓ2(X), respetively, say

dΓ1(X)ψ = λψ , dΓ2(X)ϕ = µϕ ,

then

dΓ(X)ψ ⊗ ϕ = (λ+ µ)ψ ⊗ ϕ .
(Same for (Young-)symmetrised tensor produts, i.e. for linear ombinations of tensor

produts with permuted fators.)

Reall: Representation theory of SU(2),
f. Setion 6.8 � where we atually started with SO(3),
generators / basis for su(2): (sj =

1
2
σj with the Pauli matries σj)

s1 =
1

2

(
0 1
1 0

)
, s2 =

1

2

(
0 −i
i 0

)
, s3 =

1

2

(
1 0
0 −1

)
,

with [sj , sk] =
∑

ℓ iεjkℓsℓ. De�ne

s+ = s1 + is2 =
1

2

(
0 1
0 0

)
, s− = s1 − is2 =

1

2

(
0 0
1 0

)
,

and onlude that

[s3, s±] = ±s± , [s+, s−] = 2s3 .
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Consider a rep, dΓ(s•) =: J•, with

J3|m〉 = m|m〉 .

Then

J3J±|m〉 = (J±J3 + [J3, J±])|m〉 = (J±m± J±)|m〉 = (m± 1)J±|m〉
The numbers m are alled weights, and with J± we an raise and lower the weights if

J±|m〉 6= 0. If Γ is an irrep, then it is �nite-dimensional, and then there has to be a highest

(and lowest) weight, s.t. when we apply J+ (J−) it vanishes. This essentially �xed the

representation theory of SU(2).

Continue with SU(3),
generators / basis for su(3): Xj =

1
2
λj with the Gell-Mann matries

λk =


 σk

0
0

0 0 0




for k = 1, 2, 3, λ4 =



0 0 1
0 0 0
1 0 0


 , λ5 =



0 0 −i
0 0 0
i 0 0


 ,

λ6 =



0 0 0
0 0 1
0 1 0


 , λ7 =



0 0 0
0 0 −i
0 i 0


 , λ8 =

1√
3



1 0 0
0 1 0
0 0 −2


 .

X1, X2, X3 generate an SU(2) subgroup � and so do X4, X5,
1
2
(
√
3X8+X3) as well as

X6, X7,
1
2
(
√
3X8−X3). Consequently we de�ne

I± = X1 ± iX2 , U± = X6 ± iX7 , V± = X4 ± iX5 ,

I3 = X3 and keep X8 .

In physis one rather de�nes Y = 2√
3
X8 for historial reasons. Then

[I3, I±] = ±I± , [I3, U±] = ∓1
2
U± , [I3, V±] = ±1

2
V± ,

[X8, I±] = 0 , [X8, U±] = ±
√
3
2
U± , [X8, V±] = ±

√
3
2
V± .

For a rep Γ hoose basis vetors as simultaneous eigenvetors of dΓ(X3) and dΓ(X8), say

dΓ(I3)|i3, x8〉 = i3|i3, x8〉 , dΓ(X8)|i3, x8〉 = x8|i3, x8〉 .

By a slight abuse of notation we omit dΓ in the following, i.e.

I3|i3, x8〉 = i3|i3, x8〉 , X8|i3, x8〉 = x8|i3, x8〉 .

Now

I3I±|i3, x8〉 = (i3 ± 1)I±|i3, x8〉 , X8I±|i3, x8〉 = x8I±|i3, x8〉 ,
I3U±|i3, x8〉 = (i3 ∓ 1

2
)U±|i3, x8〉 , X8U±|i3, x8〉 = (x8 ±

√
3
2
)U±|i3, x8〉 ,

I3V±|i3, x8〉 = (i3 ± 1
2
)V±|i3, x8〉 , X8V±|i3, x8〉 = (x8 ±

√
3
2
)V±|i3, x8〉 .
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Now all the pairs (i3, x8) =: ~m weight vetors or simply weights (in our diagrams for

hadron multiplets we indiated the positions of their tips as dots).

By applying reps of I±, U± and V± we an shift the weights by

~α1 = (1, 0) , ~α2 = (−1, 0)
~α3 = (−1

2
,
√
3
2
) , ~α4 = (1

2
,−

√
3
2
)

~α5 = (1
2
,
√
3
2
) , ~α6 = (−1

2
,−

√
3
2
) ,

respetively. The vetors ~αj are alled root vetors or simply roots. We ollet them in a

root diagram:

~α2 ~α1

~α5

~α6

~α3

~α4

We all roots positive (negative), if their �rst omponent is positive (negative); same

for weights. (If there was a root with vanishing �rst omponent, we would all it posi-

tive/negative aording to the sign of the seond omponent.) Hene ~α1, ~α4 and α5 are

positive.

Sine irreps are �nite-dimensional, there an be only �nitely many weights for an irrep.

Therefore, there has to be a highest (lowest) weight, whih annot be raised (lowered) by

adding positive (negative) roots.

Maybe explain here that [I+, U−] = 0 sine there is no root vetor pointing in

the same diretion as ~α1+~α4?

The adjoint rep: another route to roots. In the adjoint rep (rep of the Lie group on

its own Lie algebra) we label an label also the basis vetors by generators,

adXj︸︷︷︸
dΓ(Xj)

Xk
↑

|. . .〉

= [Xj , Xk]︸ ︷︷ ︸
|...〉

(Sine we write generators as matries, the braket on the r.h.s. is a matrix ommutator.)

Now

adI3I3 = [I3, I3] = 0 , adX8I3 = [X8, I3] = 0 ,

i.e. the weight vetor for the basis vetor orresponding to I3 is (0, 0); similarly the weight

vetor orresponding to X8 is also (0, 0). Thus, the weight diagram for the adjoint rep of

SU(3) has two points at the origin. Try to raise or lower weights from there, e.g.
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adI3adI±I3 = [I3, [I±, I3]] = [I3,∓I±] = ±[I±, I3] = ± adI±I3 ,

adX8adI±I3 = [X8, [I±, I3]] =↑
Jaobi id.

−[I±, [I3, X8]︸ ︷︷ ︸
=0

]− [I3, [X8, I±]︸ ︷︷ ︸
=0

] ,

i.e. applying I± hanges the weight by (±1, 0) � of ourse! We have to add the root vetor

~α1,2, as for any other rep (if the result is non-zero); similarly for U± and V±. This already
yields a weight diagram with eight (the dimension of su(3)) points, i.e. repeated attempts

to raise or lower indies have to yield zero in the adjoint rep if the orresponding root

vetor would lead to a new point.

i3

x8

•
1

••

•

• •

•

√
3
2

We an also verify expliitly that repeated appliation of the same raising or lowering

operator to (0, 0) always yields zero,

adI±adI±I3 = [I±, [I±, I3]] = [I±,∓I±] = 0 ,

same if we replae I3 by X8 and/or I± by U±/V±.

The weight diagram of the de�ning rep is �xed by the diagonal elements of I3 and X8.

i3

x8

•s− 1√
3

•u•d
1

2
√
3

1
2

−1
2

← de�ning rep

omplex onjugate

of de�ning rep

→
i3

x8

• s̄1√
3

•ū • d̄
− 1

2
√
3

1
2

−1
2

For the omplex onjugate of the de�ning rep we have to onsider

eiX = e−iX = ei(−X) ,

i.e. X 7→ −X ; for our basis we have X1,3,4,6,8 7→ −X1,3,4,6,8 and X2,5,7 7→ X2,5,7, and in

partiular (I3, X8) 7→ (−I3,−X8), whih �xes the weight diagram.

Point out highest/lowest weights in all weight diagrams.
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6.12 From roots to the lassi�ation of semi-simple Lie algebras

De�nition: (simple Lie group/algebra)

A Lie group G is alled simple if it is onneted, non-abelian, and has no nontrivial normal

Lie subgroups. A Lie algebra g is alled simple if it is non-abelian and has no non-trivial

ideals.

Remarks:

1. The Lie algebra of a simple Lie group is simple.

2. If g is a simple Lie algebra then dim g ≥ 2.

De�nition: (semi-simple Lie algebra)

A Lie algebra g is alled semi-simple if it is a diret sum of simple Lie algebras.

Remarks:

1. The Killing form of a semi-simple Lie algebra is non-degenerate.

2. Every Lie algebra is a semi-diret sum of something (its radial, i.e. its maximal

solvable ideal � whatever that is) and a semi-simple Lie algebra.

The semi-simple Lie algebras an be lassi�ed ompletely by root their root systems.

In this �nal leture I an only give a brief sketh of how this omes about.

De�nition: A Cartan subalgebra of h of a semi-simple Lie algebra g is a maximal ommu-

tative subalgebra h with adH diagonalisable ∀H ∈ h; dim h is alled the rank of g. The rank

is the maximal number of linearly independent, ommuting, diagonalisable generators.

Weights

• Let G be a Lie group with Lie algebra g.

• Let H1, . . . , Hℓ be a basis for h (i.e. ℓ is the rank of G), hene

[Hj, Hk] = 0 ∀ j, k = 1, . . . , ℓ .

The Hj are alled Cartan generators; they are simultaneously diagonalisable.

• The eigenvalues mj of Hj to a joint eigenvetor are olleted in a weight (vetor)

~m = (m1, . . . , mℓ).

• The weights for a �xed irrep are olleted in a weight diagram (with possible degenera-

ies, f. the SU(3)-otet). The number of weights in weight diagram is the dimension

of the irrep. We an label basis vetors of irreduible subspaes by weights: |λ, ~m〉.

• For SU(N) the generators are traeless (same for SO(N)).
⇒ The sum of all weights in a weight diagram is

~0 (for SU(N) or SO(N)).

• A weight is alled positive (negative) if its �rst non-vanishing omponent is positive

(negative).
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• Example: SU(3), f. Setion 6.11

� generators X1, . . . , X8

� ommuting (Cartan) generators: X3, X8 (rank 2)

� fundamental weights: (weight vetors of the de�ning rep)

~m1 = (1
2
, 1
2
√
3
) , ~m2 = (−1

2
, 1
2
√
3
) , ~m3 = (0,− 1√

3
) ,

notie: ~m1 + ~m2 + ~m3 = ~0 (see Setion 6.11 for the weight diagram)

• Relation to Young diagrams:

SU(N) has rank N−1. For the irrep Γλ with Young diagram Θλ the weight diagram

an be onstruted as follows:

� Label the boxes of Θλ by j = 1, . . . , n (i.e. let n be the number of boxes of Θλ).

� Consider all ways in whih we an write numbers ij = 1, . . . , N into the boxes

of Θλ, s.t. (f. Setion 7.2.5)

∗ numbers within rows are non-dereasing, and

∗ numbers within olumns are inreasing.

� The weight vetors are then given by

~Mλ
i1···in =

n∑

j=1

~mij

with the fundamental weights ~mij (f. the remark on additive quantum numbers

at the beginning of Setion 6.11).

Example: SU(3)-otet, i.e. Θλ =

� 8 possibilities

1 1
2

1 2
2

1 3
2

1 1
3

1 2
3

2 2
3

1 3
3

2 3
3

� orresponding weight vetors and weight diagram

~M112 = ~m1 + ~m1 + ~m2 = (1
2
,
√
3
2
)

~M122 = ~m1 + ~m2 + ~m2 = (−1
2
,
√
3
2
)

~M132 = ~m1 + ~m3 + ~m2 = (0, 0)

~M113 = ~m1 + ~m1 + ~m3 = (1, 0)

~M123 = ~m1 + ~m2 + ~m3 = (0, 0)

~M223 = ~m2 + ~m2 + ~m3 = (−1, 0)
~M133 = ~m1 + ~m3 + ~m3 = (1

2
,−

√
3
2
)

~M233 = ~m2 + ~m3 + ~m3 = (−1
2
,−

√
3
2
)

i3

x8

•
1

••

•

• •

•

√
3
2
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Roots

• Let g be an n-dimensional semi-simple Lie algebra of rank ℓ.

• Reall (from Setion 6.11) that in the adjoint rep we label both, reps of generators

as well as basis vetors by generators,

adXj︸︷︷︸
dΓ(Xj)

Xk
↑

|. . .〉

= [Xj , Xk]︸ ︷︷ ︸
|...〉

,

for whih we no introdue the shorthand notation

Xj|Xk〉 = |[Xj, Xk]〉 .

• Basis states orresponding to Cartan generators have weight zero,

Hj|Hk〉 = |[Hj, Hk]〉 = 0 .

• The remaining n − ℓ basis states we all |E~α〉, labelled by their non-zero weights α
(non-zero sine [Hj , E~α] 6= 0 for at least one j). The |E~α〉 an always be hosen as

simultaneous eigenstates of the Cartan generators (without proof),

Hj|E~α〉 = αj |E~α〉 ⇔ [Hj , E~α] = αjE~α . (∗)

So far I onealed that we atually have to onsider omplex/omplexi�ed Lie algebras

in this whole disussion, but reall (Setion 6.11) that for SU(2) and SU(3) the raising
and lowering operators were omplex linear ombinations of generators.

Now (∗) implies

[Hj, E
†
~α] = −αjE†

~α

i.e. we an hoose them s.t.

E†
~α = E−~α . (+)

• The n− ℓ vetors ~α = (α1, . . . , αℓ) are alled root vetors or roots, i.e. the roots are

the non-trivial weights of the adjoint rep.

� Due to (+) the number of roots is always even.

� One an show that the roots are non-degenerate.

• The E~α at as raising/lowering operators,

HjE~α|E~β〉 = (E~αHj + [Hj , E~α])|E~β〉 = (E~αβj + αjE~α)|E~β〉 = (βj + αj)E~α|E~β〉 ,

i.e.
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(i) E~α|E~β〉 is proportional to |E~α+~β〉 if ~α+~β is also a root,

[E~α, E~β] is proportional to E~α+~β if ~α+~β is also a root,

(ii) [E~α, E−~α] is a linear ombination of the Hj

(iii) [E~α, E~β] = 0 if ~α+~β is neither

~0 nor a root.

In partiular, if ~α is a root then 2~α annot be a root (sine [E~α, E~α] = 0).

• Now one onsiders the Jaobi identity for E~α, E−~α, E ~kα+~β and . . . after alulating

along for while . . . one �nds the ondition

(~α, ~β)

(~α, ~α)
=
ν

2
for some ν ∈ Z .

Here the salar produt essentially shows up as

(~α, ~β) =

ℓ∑

j,k=1

αj tr(HjHk)βk ,

and one an show that the generators an be hosen s.t.

tr(HjHk) = δjk , tr(E~αE−~α) = tr(E~αE
†
~α) = 1 .

Interhanging the roles of ~α and

~β, one, of ourse, also �nds

(~α, ~β)

(~β, ~β)
=
µ

2
for some µ ∈ Z .

Together the two onditions imply

(~α, ~α)

(~β, ~β)
=
µ

ν
and cos2 θ =

(~α, ~β)2

(~α, ~α)(~β, ~β)
=
νµ

4
,

where θ is the angle between ~α and

~β. For 0 < θ ≤ 90◦ there are only four solu-

tions to the seond equation: 30◦, 45◦, 60◦, 90◦ (i.e. π
6
,

π
4
,

π
3
,

π
2
). The �rst ondition

�xes the orresponding length ratios, and together with some more symmetry on-

ditions/restritions this makes possible a omplete lassi�ation of root systems and

thus of semi-simple Lie algebras.
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