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1 Introdu
tion

1.1 Why groups? Why representations?

Groups are

. . . ubiquitous,

. . . 
ome in many di�erent guises.

In this 
ourse: mainly �nite groups & 
ompa
t Lie groups.

(There's mu
h more, but our sele
tion is not only interesting in its own right, it's also a

good starting point.)

Representations (reps)

. . . (very roughly) study groups using ve
tor spa
es (linearity!),

. . . 
onvenient,

. . . in this 
ourse mostly ve
tor spa
es over C, sometimes over R, probably never over

�nite �elds (again this is a good starting point for everything else),

. . . tell us something about the group in question,

. . . are how groups often show up in appli
ations, e.g. in physi
s (quantum me
hani
s,

atomi
 energy levels, sele
tion rules, masses in parti
le physi
s,. . . ).

Course plan (very roughly)

. . . develop rather 
omplete theory for reps of �nite groups (on 
omplex ve
tor spa
es),

. . . study symmetri
 groups (and reps) in some details,

. . . see what we 
an 
arry over / what is new for (
ompa
t) Lie groups.
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1.2 Basi
 de�nitions

De�nition: (group)

Let G 6= ∅ be a set and ◦ an operation ◦ : G×G→ G. We 
all (G, ◦) a group if:

(G1) a, b ∈ G ⇒ a ◦ b ∈ G (
losure)

(already implied by ◦ : G×G→ G)

(G2) (a ◦ b) ◦ c = a ◦ (b ◦ c) ∀ a, b, c ∈ G (asso
iativity)

(G3) ∃ e ∈ G with a ◦ e = a = e ◦ a ∀ a ∈ G (identity / neutral element)

(G4) for ea
h a ∈ G ∃ a−1 ∈ G with a ◦ a−1 = e = a−1 ◦ a, with e from (G3) (inverses)

If it is 
lear from the 
ontext whi
h operation we talk about, then we often just write G
instead of (G, ◦).
De�nition: (abelian group)

A group (G, ◦) is 
alled 
ommutative or abelian, if in addition we have:

(G5) a ◦ b = b ◦ a ∀ a, b ∈ G (
ommutativity)

Remarks:

1. The identity e is unique.

2. For ea
h a ∈ G the 
orresponding inverse is unique.

3. Often we 
all the operation multipli
ation (or group multipli
ation) and write

a · b or just ab instead of a ◦ b.
4. If the number of group elements is �nite, we speak of a �nite group, and we 
all the

number of group elements the order |G| of the group. (otherwise: in�nite group).

5. A �nite group (order n) is 
ompletely determined by its group table (or multipli
ation

table) (with n2
elements)

e a b c · · ·
e e a b c · · ·
a a a2 ab ac · · ·
b b ba b2 bc · · ·
c c ca cb c2 · · ·
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Fa
t: No two elements within one row (or 
olumn) 
an be the same. (see exer
ises)

This implies the rearrangement lemma: If one multiplies all elements of a group

{e, a, b, c, . . .} by one of the elements, one obtains again all elements, in general in a

di�erent order.

In other words: Ea
h row and ea
h 
olumn in the group multipli
ation table 
ontains

ea
h of the group elements exa
tly on
e.
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Examples:

1. (Z,+): e = 0, a−1 = −a for a ∈ Z (abelian); analogously (R,+) or (C,+)

2. (R\{0}, ·): e = 1, x−1 = 1
x
for x ∈ R (abelian); analogously (Q\{0}, ·) or (C\{0}, ·)

3. G: set of all symmetry operations (rotations, re�e
tions, . . . ), whi
h leave a 
ertain

obje
t (atom, mole
ule, geometri
al obje
t

2

, . . . ) invariant.

◦: subsequent appli
ation of operations.

G 
an be �nite (e.g. for a 
ube) or in�nite (e.g. for a sphere) � in general non-abelian.

De�nition: (subgroup)

Let (G, ◦) be a group. A subset H ⊆ G, whi
h satis�es (G1)�(G4) (with the same operation

◦), is 
alled a subgroup of G.

Remarks:

1. Every group has two trivial subgroups: {e} and G.
All other subgroups are 
alled non-trivial.

2. |G| (if �nite) is divisible by |H|. (will be proved later)

De�nition: (homomorphism)

Given two groups (G, ◦) and (G′, •), a map f : G→ G′
is 
alled a homomorphism, if

f(a ◦ b) = f(a) • f(b) ∀ a, b ∈ G .

Remarks:

1. A homomorphism f maps the identity to the identity and inverses to inverses, more

pre
isely f(eG) = eG′
and f(a−1) = f(a)−1 ∀ a ∈ G.

2. The image of the homomorphism f : G→ G′
is

im(f) = f(G) = {f(g) : g ∈ G} ,

the kernel of f is the preimage of the identity of G′
,

ker(f) = {g ∈ G : f(g) = eG′} .

De�nition: (isomorphism)

A bije
tive homomorphism f : G→ G′
is 
alled isomorphism. We then say that G and G′

are isomorphi
, and write G ∼= G′
.

Remark:

1. Isomorphi
 groups have the same group table, i.e. they are identi
al ex
ept for what

we 
all their elements (and the group operation). (
orrespondingly for in�nite groups)

2

For a mattress (re
tangle) we obtain the Klein four-group, see e.g. https://opinionator.blogs.

nytimes.
om/2010/05/02/group-think/
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1.3 Examples, further properties & outlook

1. A group of the kind {
e, a, a2, . . . , an−1

︸ ︷︷ ︸
pairwise di�erent

}
, an = e ,

is 
alled 
y
li
 group Cn
The smallest non-
y
li
 group is of order 4.
The smallest non-abelian group is of order 6.

2. A group with two elements: {e, a}
We have: ee = e, ea = a and ae = e.
What about aa? (= a or = e)
Group table:

e a

e e a
a a e

. . . only possibility sin
e we 
annot have an element twi
e in one row or 
olumn, (see

above)

This is C2. (see example 1)

⇒ Any group of order 2 is isomorphi
 to C2;

in parti
ular C2
∼= Z2 := ({0, 1},+ mod 2).

3. Examples for groups isomorphi
 to Z2:

(a) Consider the following two maps Rn → Rn
,

e : ~x 7→ ~x ,

P : ~x 7→ −~x (parity) .

group operation: 
omposition of maps

⇒ e ◦ e = e, e ◦ P = P , P ◦ e = P , P ◦ P = e, i.e. isomorphi
 to Z2. (it has to)

(b) Instead of the two spatial transformations 
onsider now

operators a
ting on (real- or 
omplex-valued) fun
tions f of ~x:

(Oef)(~x) = f(~x)

(OPf)(~x) = f(−~x)

⇒ O2
e = Oe, OeOP = OP , OPOe = OP , O

2
P = Oe, i.e. isomorphi
 to Z2.

Remark: These operators are linear, i.e.

O(αf + βg) = αO(f) + βO(g) .
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(
) Consider operators a
ting on 
omplex-valued fun
tions of two variables

(physi
s: wave fun
tion of two parti
les)

(OEψ)(~x1, ~x2) = ψ(~x1, ~x2)

(OSψ)(~x1, ~x2) = ψ(~x2, ~x1)

O2
S = OE. . . ⇒ {OE, OS} ∼= Z2

(di�erent names than operators in example 3b in order to emphasise the di�erent

realisations)

When we will have learned about group a
tions and representations, we 
an revisit these

examples from a di�erent point of view, not just as homomorphisms.

Z2 looks rather inno
ent, but many 
on
epts whi
h we want to dis
uss in the following 
an

already by illustrated for Z2.
2019-10-15

4. Consider now example 3b and two fun
tions fe and fo with

(OPfe)(~x) = fe(~x) �even parity�

(OPfo)(~x) = −fo(~x) �odd parity�

(e.g. ~x =
(
x
y
z

)
∈ R3

, fe(~x) = x2 + yz, fo(~x) = xy sin z)

fe und fo show a spe
ial behaviour under appli
ation of {Oe, OP}:
• fe is invariant under OP

• fo only 
hanges the sign under OP

Appli
ations of group and representation theory in physi
s take advantage of the invarian
e

of subspa
es formed by even or odd fun
tions, respe
tively; similarly for more 
ompli
ated

groups, as we will see later.

5. The identity (if integral exists)

∫

Rd

fe(~x) fo(~x) d
dx = 0

is an example for an �orthogonalty relation� between obje
ts with spe
ial symmetry

properties (�sele
tion rule� in quantum me
hani
s; more later).

6. Any fun
tion 
an be written as a sum of an even and an odd fun
tion

f = fe + fo with fe =
1

2

(
f(~x) + f(−~x)

)

fo =
1

2

(
f(~x)− f(−~x)

)
.

This illustrates that we 
an expand �obje
ts� without spe
ial symmetry properties

into linear 
ombinations of �obje
ts� with spe
ial symmetry properties.
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1.4 Permutations � the symmetri
 group

De�nition: (symmetri
 group)

The symmetri
 group of degree n, Sn, are the bije
tions of {1, 2, . . . , n} to itself under


omposition.

Remarks:

1. Elements of Sn are 
alled permutations.

2. |Sn| = n!

3. two-line notation: write image of �rst line in se
ond line, e.g.

S6 ∋ π =

(
1 2 3 4 5 6
6 4 1 2 5 3

)

means π(1) = 6, π(2) = 4, . . .

4. Every permutation 
an be written as a produ
t of disjoint 
y
les, e.g.

π =

(
1 2 3 4 5 6
6 4 1 2 5 3

)
= (163)(24)(5) 3-
y
le, 2-
y
le, 1-
y
le

= (163)(24) usually omit 1-
y
les

• where (163) means π(1) = 6, π(6) = 3, π(3) = 1, and thus

(163) = (631) = (316) but 6= (136) .

• Disjoint 
y
les 
ommute, e.g. (163)(24) = (24)(163).

• Every ℓ-
y
le (ℓ > 2) 
an be written as a produ
t of 2-
y
les (transpositions),

e.g.

(163) = (13)(16) ,

where (13)(16) is shorthand for (13) ◦ (16).
5. diagrammati
 birdtra
k notation: for π ∈ Sn draw lines whi
h end in position 1, . . . , n

on the right and in position π(1), . . . , π(n) on the left, e.g. π, σ ∈ S3,

π = (132) = , σ = (12) = ,

and for 
omposition we 
ompose diagrams and twist lines at will (it only matters

where lines end),

πσ = π ◦ σ = = .

9



Examples:

1. S2 = {e, (12)} ∼= Z2

2. S3 = {e, (12), (13), (23), (123), (132)}
• group table: see exer
ises

• S3 is non-abelian (the smallest non-abelian group), as are all Sn with n ≥ 3,
sin
e e.g.

(12)(13) = (132) 6= (13)(12) = (123) .

• subgroups: {e} and S3 (trivial)

{e, (12)}, {e, (13)}, {e, (23)}, all ∼= Z2

{e, (123), (321)} ∼= C3

Theorem 1. (Cayley)

Every group of order n is isomorphi
 to a subgroup of Sn.

Proof:

Write in a slightly unorthodox way by expli
itly using properties of the group table � just

to keep Problem 1 interesting.

Let (G, ·) be a �nite group, |G| = n. For h ∈ G de�ne

ϕh : G→ G

g 7→ ϕh(g) = h · g .

ϕh permutes the n elements of G (sin
e it yields a row of the group table). Now

f : g 7→ ϕg

G→ G′ := {ϕg : g ∈ G}

is a homomorphism, be
ause (i)

(ϕa ◦ ϕb) (g) = ϕa (ϕb(g)) = ϕa(b · g) = a · b · g = ϕa·b(g) ,

and be
ause (ii) f is inje
tive (otherwise there would be two equal lines in the group table

of G), i.e. G ∼= G′
.

Further, G′

ontains only permutations of the n elements of G, i.e. G′

is isomorphi
 to a

subgroup of Sn. �

1.5 Group a
tions

De�nition: (group a
tion)

Let G be a group and M a set. A (group) a
tion of G on M is a map

G×M →M

(g,m) 7→ gm ,

10



whi
h satis�es

em = m ∀ m ∈M and

g(hm) = (gh)m ∀ g, h ∈ G and ∀ m ∈M .

Remark: Thus, M →M , m 7→ gm, is bije
tive for ea
h (�xed) g ∈ G, sin
e
gm1 = gm2 ⇒ g−1gm1 = g−1gm2 ⇔ m1 = m2 (inje
tive) and

m ∈M ⇒ gm′ = m with m′ = g−1m (surje
tive).

De�nition: (orbit)

The orbit of the point m ∈M under an a
tion of a group G on M is de�ned as

Gm = {gm : g ∈ G} .

Remarks:

1. The orbit of a �typi
al� point 
ontains n = |G| elements.

2. The orbit of a �spe
ial� point 
ontains less than n = |G| elements.

Example:

Consider D3, the symmetry group of an equilateral triangle (�D� for dihedral group).

D3
∼= S3 (permutations of the triangle's 
orners).

Group elements: • identity

• 2 rotations (about 120◦ and 240◦)
• 3 re�e
tions (axes through ea
h of the 
orners)

D3 a
ts naturally on M , a plane with the origin in the 
entre of the triangle.

◦

• × • × •
×
•

×
•

×
•

×

spe
ial point

(orbit with 1 element)

typi
al point

(orbit with 6 elements)

spe
ial points

(orbits with 3 elements)

De�nition: (stabiliser)

Let G×M →M , (g,m) 7→ gm, be an a
tion of G auf M . The set of group elements that

map a given m ∈M to itself, i.e.

Gm = {g ∈ G : gm = m} ,

is 
alled stabiliser (or isotropy group or little group) of m.

Remark: Gm is a group (see exer
ises).
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For the D3-example (see above):

• the stabiliser of × ist {e}
• the stabiliser of ◦ ist D3

• the stabiliser of • ist {I, σ} ∼= Z2, where σ is the re�e
tion a
ross the axis though •
Noti
e that in all three 
ases |Gm| · |Gm| = |G|. This is true in general for �nite groups

(orbit-stabiliser theorem, see exer
ises).

1.6 Conjuga
y 
lasses and normal subgroups

De�nition: (
onjugation)

Let G be a group. We say x ∈ G is 
onjugate to y ∈ G ⇔
Def.

∃ g ∈ G : y = gxg−1
.

We then write x ∼ y.

Remark:

∼ de�nes an equivalen
e relation, sin
e

1. re�exivity: x ∼ x ∀ x ∈ G (with g = e).

2. symmetry: x ∼ y ⇔ y ∼ x (with g ↔ g−1
)

3. transitivity: x ∼ y und y ∼ z ⇒ x ∼ z (y = gxg−1, z = hyh−1 ⇒ z = (hg)x(hg)−1
)

Examples:

1. G = S3: (13) ∼ (12), sin
e (23)(12) (23)−1

︸ ︷︷ ︸
=(23)

= (13)

2. G = SO(3), group of spatial rotations in 3 dimensions:

R~n(φ) = rotation about axis ~n by angle φ
For arbitrary R ∈ SO(3) we have RR~n(φ)R

−1 = R~n′(φ) with ~n′ = R~n, i.e. rotations
by the same angle but about di�erent axes are 
onjugate to ea
h other.

De�nition: (
onjuga
y 
lass)

For a group G and x ∈ G we 
all {gxg−1 : g ∈ G} the 
onjuga
y 
lass of x.

Remarks:

1. The 
lass of e 
ontains only e, sin
e geg−1 = e ∀ g.
2. For abelian groups ea
h element forms a 
lass of its own, sin
e gxg−1 = x ∀ g.
3. In general a 
lass is not a subgroup (
f. below).

4. Ea
h element of G is 
ontained in exa
tly one 
lass, sin
e it's an equivalen
e rela-

tion. . . transitivity.

5. |G| is divisible by the number of elements of ea
h 
onjuga
y 
lass. (orbit-stabiliser

theorem, 
f. exer
ises).

6. Later: The number of 
onjuga
y 
lasses is equal to the number of non-equivalent

12



irredu
ible representations of a group.

Example: S3

First 
lass: {e}.
Now 
onjugate (12) with all elements of S3,

e(12)e = (12)

(12)(12)(12) = (12)

(13)(12)(13) = (23)

(23)(12)(23) = (13)

(123)(12)(132) = (23)

(132)(12)(123) = (13)

i.e. (12), (13) and (23) form a 
lass.

For the remaining two elements we have

(12)(123)(12) = (132)

i.e. (123) ∼ (132) and thus 
ontained in the same 
lass.

We found 3 
lasses:

Ce = {e} , C(12) = {(12), (13), (23)} , C(123) = {(123), (321)} .

Noti
e: Two elements of S3 are 
onjugate if they have the same 
y
le stru
ture; this is true

for Sn in general (later).

For D3
∼= S3: C(12) � re�e
tions , C(123) � rotations

2019-10-17

De�nition: (
onjugate subgroups, normal subgroup)

(i) We 
all a subgroup K ⊆ G 
onjugate to a subgroup H ⊆ G if ∃ g ∈ G su
h that

K = gHg−1 = {ghg−1 : h ∈ H} .

(ii) If ghg−1 ∈ H ∀h ∈ H und ∀ g ∈ G then we 
all H a normal subgroup (or invariant

subgroup) of G.

Examples:

1. The subgroup K = {e, (13)} ⊂ S3 is 
onjugate to H = {e, (12)}, sin
e (23)e(23)−1 =
e und (23)(12)(23)−1 = (13).

2. Every group has two trivial normal subgroups: {e} and G.
3. The only non-trivial normal subgroup of S3 is {e, (123), (132)}.

Remark: A �nite group is 
alled simple if it has no non-trivial subgroup.

Thus, S3 is not simple.

13



1.7 Cosets and quotient groups

De�nition: (
oset)

Let G be a group and H ⊆ G a subgroup. For g ∈ G the set

gH := {gh : h ∈ H}
is 
alled a left 
oset of H (in G). Similarly we 
all

Hg := {hg : h ∈ H}
a right 
oset of H .

Remarks:

1. gH,Hg ⊆ G.

2. If g ∈ H ⇒ gH = Hg = H (rearrangement lemma, 
f. Problem 1).

3. The number of elements of a 
oset is equal the order of the subgroup,

shortly |gH| = |H|.
4. In the following we 
onsider mostly left 
osets.

5. Two 
osets g1H and g2H are either identi
al (⇔ g−1
1 g2 ∈ H)

or disjoint.

Proof: Assume that there is a 
ommon element, i.e.

∃ h1, h2 ∈ H : g1h1 = g2h2
⇔ g2 = g1h1h

−1
2

⇒ g2H = g1h1h
−1
2 H = g1H �

6. Sin
e ea
h g ∈ G is element of exa
tly one 
oset, and sin
e |gH| = |H|, it follows
that H divides |G| (
f. 1.2).3

Example:

For S3: Let H1 = {e, (12)} (not normal) and H2 = {e, (123), (132)} (normal).

• Left and right 
osets of H1:

eH1 = {e, (12)} H1e = {e, (12)}
(12)H1 = {(12), e} H1(12) = {(12), e}
(13)H1 = {(13), (123)} H1(13) = {(13), (132)}
(123)H1 = {(123), (13)} H1(132) = {(132), (13)}
(23)H1 = {(23), (132)} H1(23) = {(23), (123)}
(132)H1 = {(132), (23)} H1(123) = {(123), (23)}

Left and right 
osets are di�erent, and, e.g.

S3 = H1 ∪ (13)H1 ∪ (23)H1 .
3

Alternatively, we 
ould de�ne an a
tion of G on G by left multipli
ation and then invoke the orbit-

stabiliser theorem.

14



• Cosets of H2:

eH2 = {e, (123), (132)} H2e = {e, (123), (132)}
(123)H2 = {(123), (132), e} H2(123) = {(123), (132), e}
(132)H2 = {(132), e, (123)} H2(132) = {(132), e, (123)}
(12)H2 = {(12), (23), (13)} H2(12) = {(12), (13), (23)}
(13)H2 = {(13), (12), (23)} H2(13) = {(13), (23), (12)}
(23)H2 = {(23), (13), (12)} H2(23) = {(23), (12), (13)}

Left and right 
osets are identi
al, and, e.g.

S3 = H2 ∪ (12)H2

Generally: If H is a normal subgroup of G then left and right 
osets are identi
al, sin
e

gHg−1 = H ⇔ gH = Hg .

Then the partitioning of G into 
osets is unique.

If H is normal, then the 
osets form a group. . .

De�nition: (quotient group)

Let H be a normal subgroup of G. We de�ne the quotient group (G/H, ·) as the set of


osets,

G/H := {gH : g ∈ G} ,
with the group law

(g1H) · (g2H) = (g1g2)H .

Remarks:

1. |G/H| = |G|
|H|

2. (G/H, ·) is a
tually a group, sin
e

(G1) g1, g2 ∈ G ⇒ (g1g2)H ∈ G/H ,

(G2) asso
iativity of G 
arries over to G/H ,

(G3) eG/H = H , be
ause gH ·H = gH = H · gH , and

(G4) the inverse of gH is g−1H , be
ause gH · g−1H = H = g−1H · gH .

3. Where did we need that H is normal (d.h. gHg−1 = H ∀ g ∈ G)? Otherwise, in

general the group law · isn't a well-de�ned map G/H ×G/H → G/H . Repla
ing H
by hH with some h ∈ H must not 
hange the result, but

(g1hH) · (g2H) = (g1hg2)H 6=
in general

(g1g2)H

= (g1g2 g
−1
2 hg2)H

However, if H is normal then g−1
2 hg2 ∈ H und thus (g1g2 g

−1
2 hg2)H = (g1g2)H .

15



Examples:

• H2 = {e, (123), (132)} ⊂ S3 is normal. The quotient group S3/H2 has two elements,

{e, (123), (132)} and {(12), (13), (23)}

and is thus isomorphi
 to Z2.

• H1 = {e, (12)} ⊂ S3 is not normal, e.g. (123)(12)(123)−1 = (23) /∈ H1, and thus · is
not well-de�ned, e.g.

(eH1)((13)H1) = (13)H1 = {(13), (123)}
6= ((12)H1) · ((13)H1) = (12)(13)H1 = (132)H1 = {(132), (23)} .

1.8 Dire
t produ
t

De�nition: (dire
t produ
t)

For two groups (A, ◦) and (B, •) the dire
t produ
t is the Cartesian produ
t A × B with

group law

(a1, b1) · (a2, b2) = (a1 ◦ a2, b1 • b2) .

Remarks:

1. eA×B = (eA, eB) and (a, b)−1 = (a−1, b−1).

2. For �nite groups |A×B| = |A||B|.
3. G := A× B has a normal subgroup isomorphi
 to A, namely

(A, eB) := {g ∈ G : g = (a, eB) with a ∈ A} .

�normal� sin
e for a1 ∈ A and (a2, b2) ∈ G we have

g(a1, eB)g
−1 = (a2, b2)(a1, eB)(a

−1
2 , b−1

2 ) = (a2a1a
−1
2 , b2eBb

−1
2 ) = ( a2a1a

−1
2︸ ︷︷ ︸

∈A

, eB) .

Similarly for B.
Furthermore A ∼= G/B (and vi
e versa):

4

G/B = {(a, b)B : (a, b) ∈ G} = {(a, B) : a ∈ A} (rearrangement lemma)

Caveat: In general, for a normal subgroup H of G, G 6∼= H×(G/H) (sin
e in general
G/H isn't a normal subgroup

5

of G).
Example: S3 has subgroups H1 = {e, (12)} and H2 = {e, (123), (132)}.

H2 is normal.

S3/H2
∼= Z2

∼= H1, but S3 6∼= H1 ×H2, sin
e H1 isn't a normal subgroup,

or, in other words, the elements of H1 und H2 don't 
ommute.

4

here B is shorthand for (eA, B)
5

In general G/H doesn't even need to be isomorphi
 to a subgroup of G.
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1.9 Example:

The homomorphism from SL(2,C) to the Lorentz group

• Let M be the Minkowski spa
e, i.e. M = R4
with the Lorentz metri


6

‖x‖2 = x20 − x21 − x22 − x23 .
We 
all x = (x0, x1, x2, x3) a four-ve
tor.

• A (homogeneous) Lorentz transformation Λ is a linear mapM →M , whi
h preserves

the Lorentz metri
, i.e.

‖Λx‖2 = ‖x‖2 ∀ x ∈M .

• The Lorentz group L = O(3, 1) is the group of all (homogeneous) Lorentz transfor-

mations.

• Identify ea
h x ∈M with a Hermitian 2× 2 matrix:

7

X := f(x) := x01+ x1σ1 + x2σ2 + x3σ3 with

1 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

i.e. X =

(
x0 + x3 x1 − ix2
x1 + ix2 x0 − x3

)

The σj are 
alled Pauli matri
es. It follows that

detX = x20 − x21 − x22 − x23 = ‖x‖2 .

• Let now A ∈ GL(2,C) := {B ∈ C2×2 : detB 6= 0} (group under matrix multipli
a-

tion). De�ne an a
tion of GL(2,C) on C2×2
by

C2×2 ∋ X 7→ AXA†

and denote the indu
ed a
tion on M by

M ∋ x 7→ φ(A)x := f−1(Af(x)A†) .

• We have (AXA†)† = AXA†
, i.e. AXA†

is Hermitian and thus φ(A)x is a (real)

four-ve
tor. Furthermore,

‖φ(A)x‖2 = det(AXA†) = | detA|2 detX = | detA|2‖x‖2 .

• With A ∈ SL(2,C) := {B ∈ C2×2 : detB = 1} we have
‖φ(A)x‖2 = ‖x‖2 ,

i.e. φ(A) 
orresponds to Lorentz transformation.

2019-10-22

6

more pre
isely ‖x‖2 = d(x, x) with the pseudo-Riemannian metri
 d(x, y) = x0y0−x1y1−x2y2−x3y3.
7

The Hermitian 2× 2 matri
es form a (real) four-dimensional ve
tor spa
e, a basis of whi
h is given by

1 and the Pauli matri
es.
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• Furthermore,

φ(A)φ(B)x = φ(A)f−1(Bf(x)B†) = f−1(ABf(x)B†A†) = φ(AB)x ,

i.e. φ : SL(2,C)→ O(3, 1) is a group homomorphism.

• φ is no isomorphism, sin
e φ(−A) = φ(A) (not inje
tive).

• Examples (see exer
ises):

1. For the matrix

Uθ =

(
e−iθ 0
0 eiθ

)

φ(Uθ) is a rotation about the x3-axis by the angle 2θ.

2. For the matrix

Vα =

(
cosα − sinα
sinα cosα

)

φ(Vα) is a rotation about the x2-axis by the angle 2α.

3. For the matrix

Mr =

(
r 0
0 1

r

)

φ(Mr) is a Lorentz boost in x3-dire
tion with parameter 2 ln(r).
By the way: The boosts alone (in arbitrary dire
tions) do not form a group.

The homomorphism φ : SL(2,C)→ O(3, 1) isn't surje
tive either:

• SL(2,C) is (path-)
onne
ted (without proof).

• O(3, 1) is dis
onne
ted (four 
onne
ted 
omponents).

� proper Lorentz transformations: det Λ = +1
improper Lorentz transformations: det Λ = −1

� ortho
hronous (time dire
tion preserving) Lorentz transformations: Λ00 ≥ 1
non-ortho
hronous Lorentz transformations: Λ00 ≤ −1

� only the proper, ortho
hronous Lorentz transformations are in the same 
on-

ne
ted 
omponent as e. They form the subgroup L0
.

• im(φ) = L0
(
f. exer
ises).
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Homomorphism from SU(2) to O(3)

• SU(2) is the group of unitary 2× 2 matri
es with unit determinant 1, i.e.

SU(2) := {A ∈ C2×2 : AA† = 1 and detA = 1} ⊂ SL(2,C).

• How does A ∈ SU(2) ⊂ SL(2,C) a
t on e0 = (1, 0, 0, 0)?
E0 := f(e0) = 1 and thus

E0 → AE0A
† = A1A† = 1 = E0 i.e. φ(A)e0 = e0.

• O(3) := {R ∈ R3×3 : RRT = 1} is the group of orthogonal 3× 3 matri
es.

• For a Lorentz transformation of the form

Λ =

(
1 0
0 R

)
with R ∈ O(3)

we have Λe0 = e0 (and vi
e versa), i.e. these transformations form a subgroup of

O(3, 1) whi
h is isomorphi
 to O(3).8

Thus, φ is also a homomorphism SU(2)→ O(3).

� It is on
e more 2-to-1, sin
e φ(A) = φ(−A).
� Similar to the analysis above, A ∈ SU(2) is mapped to su
h φ(A) ∈ O(3)
whi
h lie in the 
onne
ted 
omponent of 1, i.e. those with determinant 1, i.e.

φ(SU(2)) = SO(3).

8

One also says: O(3) is a subgroup of O(3, 1).
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2 Representations

We will rarely, if ever, �x an expli
it basis,

but thinking this way makes it easier to

manipulate tensorial obje
ts.

Predrag Cvitanovi¢

2.1 De�nitions

De�nition: (representation)

Let G be a group and V a ve
tor spa
e. A representation (rep) Γ of G is a homomorphism

G→ GL(V ), i.e. into the bije
tive linear maps V → V , i.e. in parti
ular

Γ(g)Γ(h) = Γ(gh) ∀ g, h ∈ G

and Γ(e) = 1 (identity matrix/operator). We 
all dimV the dimension of the representa-

tion, and we will require dimV > 0.

Remarks:

1. A representation is an a
tion of G on V (in addition: linear).

2. We say that V 
arries the representation Γ, and we 
all V the 
arrier spa
e (of Γ).

3. Unless otherwise stated we 
onsider ve
tor spa
es over C (maybe sometimes over R,

probably never over other �elds),

e.g. Cn
or L2(Rd),9

equipped with a s
alar produ
t 〈·|·〉 : V × V → C, i.e. with ∀ v, w ∈ V and ∀ α ∈ C:

(i) 〈v|w〉 = 〈w|v〉
(ii) 〈v|αw〉 = α〈v|w〉
(iii) 〈v|v〉 ≥ 0 and = 0 only for v = 0

4. Choosing an orthonormal basis of V (if �nite-dimensional), i.e. {vj : j = 1, . . . , λ =
dimV }, then ea
h Γ(g) 
orresponds to a λ× λ matrix with elements

Γ(g)jk = 〈vj |Γ(g)vk〉 ,

and we 
all Γ a matrix representation.

We say: The vi transform under G in the representation Γ.

5. If V is a �nite-dimensional ve
tor spa
e over C, then V ∼= CdimV
and dim V = tr Γ(e).

De�nition: (faithful representation)

We 
all a representation faithful if the homomorphism Γ : G → GL(V ) is inje
tive, i.e.
di�erent group elements are represented by di�erent matri
es.

9

It's best to think of the �nite-dimensional 
ase for the moment. In the in�nite-dimensional 
ase we'd

really want separable Hilbert spa
es and bounded linear operators Γ(g).
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Remarks:

1. Every group has the trivial representation, with Γ(g) = 1 ∀ g ∈ G; in general not

faithful.

2. If the group G has a non-trivial normal subgroup H , then a representation of the

quotient group G/H also indu
es a representation of G. This representation is not

faithful. (
f. Problem 9)

Idea: Γ̃(g) := Γ(gH) ⇒ (i) Γ̃(g)Γ̃(h) = Γ(gH)Γ(hH) = Γ(ghH) = Γ̃(gh),
(ii) Γ(h) = 1 ∀ h ∈ H .

Conversely: If a non-trivial rep Γ is not faithful, then G has at least one non-trivial

normal subgroup H , su
h that Γ indu
es a faithful representation of the quotient

group G/H . (in the above sense)

De�nition: (unitary representation)

A representation Γ : G → GL(V ) is 
alled unitary, if Γ(g) is unitary ∀ g ∈ G, i.e.
〈Γ(g)v|Γ(g)w〉 = 〈v|w〉 ∀ v, w ∈ V .
Remarks:

1. If V is �nite-dimensional and if we 
hoose an orthonormal basis, then su
h a repre-

sentation is in terms of unitary matri
es.

2. Unitary representations are important for appli
ations in physi
s, sin
e it is in terms

of them that symmetries are implemented in quantum me
hani
s (or quantum �eld

theory).

3. For �nite groups every (�nite dimensional) rep is equivalent to a unitary rep, see

next se
tion.

2.2 Equivalent Representations

De�nition: (equivalent representations)

We say that two representations Γ : G → GL(V ) and Γ̃ : G → GL(W ) are equivalent, if
there exists an invertible linear map S : V →W su
h that

Γ(g) = S−1 Γ̃(g)S ∀ g ∈ G .

Remarks:

1. If the linear map is even unitary, i.e. (writing U instead of S) U : V → W with

〈Uφ|Uψ〉W = 〈φ|ψ〉V then we say that the representations are unitarily equivalent.

For �nite-dimensional representations we have V ∼= W ∼= CdimV
, and by 
hoosing

orthonormal bases U be
omes a unitary matrix.

2. For �nite groups every representation is equivalent to a unitary representation. . .

Theorem 2. Let G be a �nite group, Γ : G→ GL(V ) a representations and 〈·|·〉 a s
alar

produ
t on V . Then Γ is equivalent to a unitary representation.
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Proof:

(v, w) :=
∑

g∈G
〈Γ(g)v|Γ(g)w〉 (∗)

is also a s
alar produ
t sin
e

(i) (v, w) =
∑
g∈G
〈Γ(g)v|Γ(g)w〉 = ∑

g∈G
〈Γ(g)w|Γ(g)v〉 = ∑

g∈G
〈Γ(g)w|Γ(g)v〉 = (v, w),

(ii) (v, αw) =
∑
g∈G
〈Γ(g)v|Γ(g)αw〉 = α

∑
g∈G
〈Γ(g)v|Γ(g)w〉 = α(v, w),

(iii) (v, v) =
∑
g∈G
〈Γ(g)v|Γ(g)v〉︸ ︷︷ ︸

≥0

≥ 〈Γ(e)v|Γ(e)v〉 = 〈v|v〉 ≥ 0 , = 0 only, if v = 0.

Let {vj} be an orthonormal basis (ONB) with respe
t to 〈·|·〉 and {wj} an ONB with

respe
t to (·, ·). Then there exists an invertible map S : V → V with Swj = vj (
hange of
basis). Hen
e

(v, w) = 〈Sv|Sw〉 , (+)

sin
e with v =
∑
j

αjwj and w =
∑
j

βjwj we see that

〈Sv|Sw〉 = 〈S∑
j

αjwj|S
∑
k

βkwk〉 =
∑
j,k

αjβk 〈vj|vk〉︸ ︷︷ ︸
=δjk=(wj ,wk)

= (
∑
j

αjwj,
∑
k

βkwk) = (v, w) .

Now Γ̃ with

Γ̃(g) := SΓ(g)S−1

is equivalent to Γ and unitary, sin
e

〈Γ̃(g)v|Γ̃(g)w〉 = 〈SΓ(g)S−1v|SΓ(g)S−1w〉
=

(+,∗)

∑

g′∈G
〈Γ(g′)Γ(g)︸ ︷︷ ︸

Γ(g′g)

S−1v|Γ(g′)Γ(g)S−1w〉 , g′g =: h

=
∑

h∈G
〈Γ(h)S−1v|Γ(h)S−1w〉 (rearrangement lemma)

=
(∗)

(S−1v, S−1w)

=
(+)
〈v|w〉

�

Remark: Finiteness of G was ne
essary in order to be able to write

∑
g∈G. Later we will

see, that for some in�nite groups (namely 
ompa
t groups, like e.g. SO(n) or U(n)) we

an repla
e the sum by a suitable integral. The theorem then still holds for 
ontinuous

representations.
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2.3 Beispiele und Invariante Unterräume

� se
tion skipped in WS 19/20 �

Wir führen einige wi
htige Konzepte zusammen mit einigen Spre
hweisen aus der physikalis-


hen Literatur anhand eines einfa
hen Beispiels ein.

• Betra
hte wieder {I, P} ∼= Z2,

I : Rd ∋ ~x 7→ ~x , P : Rd ∋ ~x 7→ −~x

sowie {OI , OP} ∼= Z2 (vgl. Beispiel 3b aus Abs
hnitt 1.3).

10

(OIf)(~x) = f(~x) , (OPf)(~x) = f(−~x) .

Wähle eine Funktion f1 ohne spezielle Symmetrieeigens
haften unter {OI , OP} und
de�niere

f2(~x) := (OPf1)(~x) = f1(−~x) .
Weiter sei

S := span(f1, f2) ,

dimS = 2 (Das war mit �ohne spezielle Symmetrieeigens
haften� gemeint.)

• Man sagt S ist invariant unter {OI , OP}, d.h.

f ∈ S ⇒ OIf, OPf ∈ S .

Klar, da

OPf = OP (α1f1 + α2f2) = α1OPf1 + α2OPf2 = α2f1 + α1f2 ∈ S .

Dies de�niert eine 2-dimensionale Darstellung von Z2 (oder irgendeiner zu Z2 iso-

morphen Gruppe) auf S. In der Basis {f1, f2} gilt

Γ 3©(I) =

(
1 0
0 1

)
, Γ 3©(P ) =

(
0 1
1 0

)
.

• De�niere nun eine neue Basis,

f̄1 := f1 + f2 , f̄2 := f1 − f2 , S = span(f̄1, f̄2) .

⇒ OP f̄1 = f̄1 (gerade) , OP f̄2 = −f̄2 (ungerade) .

10{OI , OP } ist au
h eine Darstellung von Z2 auf einem geeigneten Funktionen-Raum � jetzt wollen wir

aber auf etwas anderes hinaus. . .
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Man sagt f̄1 und f̄2 haben feste Parität.

Darstellung von Z2 auf S in der neuen Basis:

Γ 4©(I) =

(
1 0
0 1

)
, Γ 4©(P ) =

(
1 0
0 −1

)

Γ 4©
ist äquivalent zu Γ 3©

, sogar unitär äquivalent, denn

Γ 4© = U †Γ 3©U mit U =
1√
2

(
1 1
1 −1

)

(Hier klar, denn gerade dur
h diesen Basiswe
hsel hatten wir Γ 4©
ja erhalten � in

anderen Fällen weiÿ man das aber viellei
ht gerade ni
ht!)

• S hat jedo
h no
h kleinere invariante Unterräume, es gilt nämli
h

S = S̄1 ⊕ S̄2 , (direkte Summe)

wobei die S̄j := span(f̄j) einzeln invariant unter {OI , OP} sind,

OP (αf̄1) = αf̄1 ∈ S̄1
OP (αf̄2) = −αf̄2 ∈ S̄2

Man sagt S ist reduzibel (bzgl. {OI , OP}).
S̄1 und S̄2 sind irreduzibel, d.h. sie können ni
ht in kleinere invariante Räume zerlegt

werden (hier weil sie 1-dimensional sind).

• Auf den invarianten Unterräumen sind jeweils eindimensionale Darstellungen de�niert:

Γ 1©(I) = 1 , Γ 1©(P ) = 1 , auf S̄1 und

Γ 2©(I) = 1 , Γ 2©(P ) = −1, auf S̄2 .

Jede Funktion mit gerader (ungerader) Parität transformiert si
h unter {OI , OP} in
der Darstellung Γ 1©

(Γ 2©
).

• Wie S (s.o.) heiÿt nun au
h die Darstellung Γ 3©
reduzibel

11

und man s
hreibt

Γ 3© = Γ 1© ⊕ Γ 2© .

• Weiteres Beispiel: Betra
hte

h1(~x) := x2 + y + z , h2(~x) := (OPh1)(~x) = x2 − y − z , Sh := span(h1, h2) ,

g1(~x) := e−xyz , g2(~x) := (OPg1)(~x) = exyz , Sg := span(g1, g2) .

11

wird später no
h ri
htig de�niert
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Das Tensor-Produkt Sh⊗Sg wird dur
h die vier Produkte h1g1, h1g2, h2g1, h2g2 aufges-
pannt und ist invariant unter {OI , OP}, denn f ∈ Sh ⊗ Sg ⇒

OPf = OP (ah1g1 + bh1g2 + ch2g1 + dh2g2)

= dh1g1 + ch1g2 + bh2g1 + ah2g2 ∈ Sh ⊗ Sg

Dies de�niert eine 4-dimensionale Darstellung von Z2 auf Sh ⊗ Sg:

Γ 5©(I) = 1 , Γ 5©(P ) =




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0




• Invariante Unterräume:

h1g1 und h2g2 = OP (h1g1) spannen einen invarianten Unterraum Sω auf,

analog Sδ := span(h1g2, h2g1). O�ensi
htli
h:

Sh ⊗ Sg = Sω ⊕ Sδ

jeweils mit einer Darstellung äquivalent zu Γ 3©
. Reduziere Sω und Sδ jeweils weiter

dur
h Einführen von Basisfunktionen gerader und ungerader Parität. Für die Darstel-

lungen gilt dann

Γ 5© = Γ 3© ⊗ Γ 3© = Γ 1© ⊕ Γ 1© ⊕ Γ 2© ⊕ Γ 2©

Man s
hreibt au
h (Dimensionen)

2⊗ 2 = 1⊕ 1⊕ 1⊕ 1

Sieht etwas lustig aus und ist hier natürli
h ni
ht besonders tiefsinnig � aber wenn

wir ähnli
he Re
hungen später z.B. für Darstellungen von SU(n) dur
hführen können,
haben wir einiges gelernt. . .

� end of skipped part �
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2.4 Irredu
ible Representations

This basis way of thinking about X ⊗ Y is useful;

the abstra
t de�nition is useful in showing that

the 
onstru
tion is not basis dependent.

Barry Simon

Reminder: (dire
t sum & tensor produ
t)

Let V and W be ve
tor spa
es, dimV = n, dimW = m, with bases {v1, . . . , vn} and

{w1, . . . , wm}, respe
tively. Then
(i) {v1, . . . , vn, w1, . . . , wm} is a basis for the dire
t sum V ⊕W

with dimV ⊕W = dim V + dimW and

(ii) {vj ⊗ wk}j=1,...,n,k=1,...,m is a basis for the tensor produ
t V ⊗W
with dimV ⊗W = dim V · dimW .

Remarks:

1. For linear maps A : V → V and B : W → W we de�ne A⊕ B as the linear map

A⊕ B : V ⊕W → V ⊕W
(v, w) 7→ (Av,Bw) ,

in matrix notation (
A 0
0 B

)(
v
w

)
=

(
Av
Bw

)
.

2. Given two representations Γ : G → GL(V ) and Γ̃ : G → GL(W ) we 
an de�ne the

representation Γ ⊕ Γ̃ : G → GL(V ⊕W ), by (Γ⊕ Γ̃)(g) = Γ(g)⊕ Γ̃(g). (dire
t sum
of representations)

Produ
t representations Γ⊗ Γ̃ will be de�ned similarly later.

In the following we ask ourselves whether a given representation is a dire
t sum of �smaller�

representations. . .

2019-10-24

De�nition: (invariant subspa
e)

Let Γ : G→ GL(V ) be a representation and U ⊆ V a subspa
e of V . U is 
alled invariant

subspa
e (with respe
t to Γ), if Γ(g)v ∈ U ∀ v ∈ U and ∀ g ∈ G.
Remark: Every 
arrier spa
e has two trivial invariant subspa
es, namely V and {0}. All
other invariant subspa
e (if there are any) are 
alled non-trivial.

De�nition: (irredu
ible representation & 
omplete redu
ibility)

We 
all a representation Γ : G→ GL(V )

(i) irredu
ible, if V possesses no non-trivial invariant subspa
e. Then we also 
all V
irredu
ible with respe
t to Γ.

(ii) redu
ible, if V possesses a non-trivial invariant subspa
e U .

26



(iii) 
ompletely redu
ible, if V 
an be written as a dire
t sum of irredu
ible invariant

subspa
es.

Abbreviation for �irredu
ible representation�: irrep

Beispiele:

In Abs
hnitt 2.3 waren Γ 3©
, Γ 4©

und Γ 5©
reduzibel, Γ 1©

und Γ 2©
dagegen irreduzibel.

Theorem 3. Let Γ : G → GL(V ) be a unitary representation and U ⊆ V an invariant

subspa
e. Then:

(i) U⊥ = {v ∈ V : 〈u|v〉 = 0 ∀ u ∈ U} is also invariant,

(ii) the restri
tions Γ|U and Γ|U⊥ de�ne representations Γ1
and Γ2

, and

(iii) Γ ist equivalent to Γ1 ⊕ Γ2
; we simply write Γ = Γ1 ⊕ Γ2

.

Corollary: (Mas
hke's Theorem)

We 
an write every (�nite-dimensional) unitary representation as a dire
t sum of irredu
ible

representations.

Combined with Theorem 2 this implies that for �nite groups every (�nite-dimensional)

representation is 
ompletely redu
ible.

We 
an �nd a basis of V su
h that in matrix notation

Γ(g) =




Γ1(g) 0
Γ2(g)

Γ3(g)

0
.

.

.


 ,

where the Γj are irredu
ible (nj × nj blo
ks with nj = dimΓj).

Here an irredu
ible representation 
an appear more than on
e, (relabel)

Γ = Γ1 ⊕ · · · ⊕ Γ1

︸ ︷︷ ︸
a1 times

⊕ Γ2 ⊕ · · · ⊕ Γ2

︸ ︷︷ ︸
a2 times

⊕ · · · =
⊕

j

ajΓ
j ,

i.e. in Γ the irredu
ible representation Γj is 
ontained aj times.

Beispiele: In Abs
hnitt 2.3 lag die reduzible Darstellung Γ 4©
bereits in reduzierter Form

(d.h. blo
kdiagonal) vor, Γ 3©
und Γ 5©

können dur
h einen Basiswe
hsel in diese Form

gebra
ht werden. In Γ 5©
kamen die Irreps Γ 1©

und Γ 2©
je zweimal vor.

Proof: Essentially, we have to show (i), then (ii) and (iii) follow immediately.

(i) Let v ∈ U⊥
, u ∈ U and g ∈ G. Then we have

〈Γ(g)v|u〉 = 〈v|Γ(g)†u〉 = 〈v|Γ(g)−1u〉 = 〈v|Γ(g−1)u〉 = 0 .

(ii) Γ1 := Γ|U , u ∈ U ⇒
Γ1(g)Γ1(h)u = Γ1(g)Γ(h)u = Γ(g)Γ(h)u = Γ(gh)u = Γ1(gh)u

�
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2.4.1 Example: OA operators for the group D3

• D3 = symmetry group of an equilateral triangle

∼= S3

• •

•

L1

L2 L3

x

y

~x1 = (x1, y1)

~x2 = (x2, y2)~x3 = (x3, y3)

• group elements:

e = identity

C = rotation by 120

◦
, 
lo
kwise about the 
entre =̂ (123)

C̄ = rotation by 120

◦
, anti-
lo
kwise about the 
entre =̂ (132)

σ1, σ2, σ3 = re�e
tions a
ross L1, L2, L3 =̂ (23), (13), (12)

group table: see exer
ises

• Now 
onsider invertible linear maps A : R2 → R2, ~x 7→ A~x. (The 6 elements of D3

are examples for maps of this kind.)

• For ea
h map A de�ne an operator OA, a
ting on fun
tions f : R2 → C (or R) as

(OAf)(~x) = f(A−1~x) .

• The 6 operators OA, A ∈ D3, form the group D̄3, isomorphi
 to D3, sin
e

((OAOB)f)(~x) = (OA(OBf))(~x) = (OBf)(A
−1~x) = f(B−1A−1~x)

= f((AB)−1~x) = (OABf)(~x) .

• We now let these operators a
t on some fun
tions, thereby generating representations

of D̄3
∼= D3

∼= S3.

First

φ1(~x) := e−|~x−~x1|2 = e−(x−x1)2−(y−y1)2 .

What is OCφ1?

φ2(~x) := (OCφ1)(~x) = φ1(C
−1~x)

= exp(−|C−1~x− ~x1|2)
= exp(−|C−1(~x− C~x1)|2)
= exp(−|~x− C~x1|2) (rotations 
onserve lengths)

= exp(−|~x− ~x2|2)
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Similarly:

φ3(~x) := (OC̄φ1)(~x) = e−|~x−~x3|2

For the re�e
tions we have

(Oσ1φ1)(~x) = φ1(σ
−1
1 ~x)

= exp(−|σ−1
1 ~x− ~x1|2)

= exp(−|σ−1
1 (~x− σ1~x1)|2)

= exp(−|~x− σ1~x1|2) (re�e
tions 
onserve lengths)

= exp(−|~x− ~x1|2) (sin
e ~x1 lies on the L1-axis)

= φ1(~x) ,

and also

(Oσ2φ1)(~x) = φ1(σ
−1
2 ~x) = exp(−|~x− σ2~x1|2) = exp(−|~x− ~x3|2)

= φ3(~x)

(Oσ3φ1)(~x) = φ1(σ
−1
3 ~x) = exp(−|~x− σ3~x1|2) = exp(−|~x− ~x2|2)

= φ2(~x) .

Similarly we �nd out how the Os a
t on φ2 and φ3,

φ1 φ2 φ3

Oe φ1 φ2 φ3

OC φ2 φ3 φ1

OC̄ φ3 φ1 φ2

Oσ1 φ1 φ3 φ2

Oσ2 φ3 φ2 φ1

Oσ3 φ2 φ1 φ3

,

i.e. S := span(φ1, φ2, φ3) is invariant under D̄3, and the fun
tions φ1, φ2, φ3 transform

in a three-dimensional representation of the group D3 (
∼= D̄3

∼= S3), namely

Γ1(e) =



1 0 0
0 1 0
0 0 1


 , Γ1(C) =



0 0 1
1 0 0
0 1 0


 , Γ1(C̄) =



0 1 0
0 0 1
1 0 0


 ,

Γ1(σ1) =



1 0 0
0 0 1
0 1 0


 , Γ1(σ2) =



0 0 1
0 1 0
1 0 0


 , Γ1(σ3) =



0 1 0
1 0 0
0 0 1


 .

• Is this representation redu
ible?

Yes, sin
e S is redu
ible, ie. there exists a 
hange of basis de
omposing S in smaller
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invariant subspa
es :

φ̃1 = φ1 + φ2 + φ3

φ̃2 =
√
3(φ2 − φ3)

φ̃3 = 2φ1 − φ2 − φ3

(Later we will learn how to �nd this 
hange of basis.)

• φ̃1 is invariant under D̄3, sin
e the operators OA just permute the terms of the sum,

and in parti
ular span(φ̄1) is invariant and φ̄1 transforms in the trivial representation

Γ2(g) = 1 ∀g ∈ D3.

• For φ̃2 and φ̃3 we obtain

φ̃2 φ̃3

Oe φ̃2 φ̃3

OC −1
2
φ̃2 −

√
3
2
φ̃3

√
3
2
φ̃2 − 1

2
φ̃3

OC̄ −1
2
φ̃2 +

√
3
2
φ̃3 −

√
3
2
φ̃2 − 1

2
φ̃3

Oσ1 −φ̃2 φ̃3

Oσ2
1
2
φ̃2 −

√
3
2
φ̃3 −

√
3
2
φ̃2 − 1

2
φ̃3

Oσ3
1
2
φ̃2 +

√
3
2
φ̃3

√
3
2
φ̃2 − 1

2
φ̃3

,

i.e. span(φ̃2, φ̃3) is invariant, and φ̃2, φ̃3 transform in the two-dimensional representa-

tion,

Γ3(e) =

(
1 0
0 1

)
, Γ3(C) =

(
−1

2

√
3
2

−
√
3
2
−1

2

)
, Γ3(C̄) =

(
−1

2
−

√
3
2√

3
2
−1

2

)
,

Γ3(σ1) =

(
−1 0
0 1

)
, Γ3(σ2) =

(
1
2
−

√
3
2

−
√
3
2
−1

2

)
, Γ3(σ3) =

(
1
2

√
3
2√

3
2
−1

2

)
.

• Hen
e, φ̃1, φ̃2, φ̃3 transform under D̄ in the representation

Γ4(g) =



1 0 0
0
0

Γ3(g)


 ∀ g ∈ D3 ,

i.e. Γ4 = Γ2⊕ Γ3
. Moreover, we also write Γ1 = Γ2⊕ Γ3

, sin
e Γ1
is equivalent to Γ4

,

(even unitarily equivalent)

Γ4(g) = U †Γ1(g)U with U =
1√
6



√
2 0 2√
2
√
3 −1√

2 −
√
3 −1


 ∀g ∈ D3 .

Γ4
is already given in redu
ed form, Γ1

not.

• Remaining question: Is the two-dimensional representation Γ3
redu
ible?
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2.5 S
hur's Lemmas and orthogonality of irredu
ible representa-

tions

Theorem 4. (S
hur's Lemma 1)

Let G be a group, Γ : G → GL(V ) a �nite-dimensional, irredu
ible representation and

A : V → V a linear map. If A 
ommutes with Γ, i.e. AΓ(g) = Γ(g)A ∀ g ∈ G, then
A = c1 for some c ∈ C.

Proof:

Let λ be an eigenvalue of A, i.e. ∃ v ∈ V, v 6= 0 : (A− λ)v = 0, then

(A− λ)Γ(g)v = Γ(g)(A− λ)v = 0 ∀ g ∈ G ,
and thus U := {v ∈ V : (A− λ)v = 0} is an invariant subspa
e. Sin
e U 6= {0}, and sin
e

Γ is irredu
ible, it follows that U = V and hen
e A = λ1. �

Corollary to Theorem 4

For an abelian group G, every unitary irredu
ible representation has dimension 1.
Proof: exer
ises.

Theorem 5. (S
hur's Lemma 2)

Let G be a group, Γ : G → GL(V ) and Γ̃ : G → GL(W ) two �nite-dimensional, unitary

irredu
ible representations and A : V →W a linear map. If

AΓ(g) = Γ̃(g)A ∀ g ∈ G ,
then A = 0 or Γ and Γ̃ are unitarily equivalent.

Proof: Repla
ing g by g−1
and taking the Hermitian 
onjugate, we also have

Γ(g)A† = A†Γ̃(g) ∀ g ∈ G .
This yields

A†AΓ(g) = A†Γ̃(g)A = Γ(g)A†A ∀ g ∈ G ,
With Theorem 4 it follows that A†A = c1 (with c real), i.e. either c = 0 and thus A = 0
or U = 1√

c
A is unitary with Γ̃(g) = UΓ(g)U † ∀ g ∈ G. �

Remark: If the representations are not unitary, but if G is �nite, then a

ording to

Theorem 2: ∃ S and T , su
h that Γ′(G) = SΓ(G)S−1
and Γ̃′(G) = TΓ(G)T−1

are unitary.

For A′ := TAS−1
we have

A′Γ′(G) = TAS−1SΓ(G)S−1 = T Γ̃(G)AS−1 = Γ̃′(G)A′ ,

ie. either A′ = 0 and thus A = 0 or ∃ U unitary, su
h that

Γ̃′(G) = UΓ′(G)U−1

⇔ T Γ̃(G)T−1 = USΓ(G)S−1U−1

⇔ Γ̃(G) = T−1USΓ(G)S−1U−1T ,

i.e. Γ and Γ̃ are equivalent.

2019-10-29
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Theorem 6. Let G be a �nite group and Γj, j = 1, 2, . . ., non-equivalent unitary irredu
ible
representations with dimΓj = dj. Then the matrix elements obey the orthogonality relation

1

|G|
∑

g∈G
(Γj(g)µν) Γ

k(g)µ′ν′ =
1

dj
δjkδµµ′δνν′

∀ µ, ν = 1, . . . , dj and ∀ µ′, ν ′ = 1, . . . , dk.

Proof: Let Vj be the 
arrier spa
e of Γj , and A : Vj → Vk linear (otherwise arbitrary).

De�ne

Ã :=
1

|G|
∑

g∈G
Γk(g)AΓj(g)−1 . (∗)

For every h ∈ G we have

Γk(h)Ã =
1

|G|
∑

g∈G
Γk(h)Γk(g)AΓj(g)−1

=
1

|G|
∑

g∈G
Γk(hg)AΓj(g)−1

=
1

|G|
∑

g′∈G
Γk(g′)AΓj(h−1g′)−1

=
1

|G|
∑

g′∈G
Γk(g′)AΓj(g′)−1 Γj(h−1)−1

= ÃΓj(h) .

With S
hur's lemma (Theorem 5) we 
on
lude that Ã = 0 if j 6= k, and else Ã = c1 with

c =
1

dj
tr Ã =

1

dj
trA ,

i.e.

Ã =
1

dj
trAδjk1 . (+)

Now 
hoose Aαβ = δαν′δβν (i.e. only one element 6= 0) ⇒ trA = δνν′ . Finally:

Ãµ′µ =
(+)

1

dj
δνν′δjkδµµ′

=
(∗)

1

|G|
∑

g∈G

∑

α,β

Γk(g)µ′αAαβ(Γ
j(g)−1)βµ

=
1

|G|
∑

g∈G
Γk(g)µ′ν′ (Γ

j(g)−1)νµ︸ ︷︷ ︸
= (Γj(g)†)νµ = (Γj(g)µν)

�

32



Consequen
es of Theorem 6

• For �xed j, µ, ν we 
olle
t the |G| numbers Γj(g)µν, g ∈ G, in a ve
tor v(jµν) ∈ C|G|
.

• For ea
h representation Γj there are d2j ve
tors of this kind (sin
e µ, ν = 1, . . . , dj).

• A

ording to Theorem 6 v(jµν) ⊥ v(kµ
′ν′)

, if j 6= k or µ 6= µ′
or ν 6= ν ′.

• There are at most |G| mutually orthogonal ve
tors in C|G|

⇒
∑

j

d2j ≤ |G| .

In Se
tion 2.7 we will show that a
tually

∑

j

d2j = |G| .

The sum is over all non-equivalent irredu
ible representations, i.e., in parti
ular,

a �nite group has only �nitely many non-equivalent �nite-dimensional irredu
ible

representations.

2.6 Chara
ters

De�nition: (
hara
ter)

For a �nite-dimensional representation Γ : G→ GL(V ) we 
all χ : G→ C with

χ(g) = tr Γ(g)

the 
hara
ter of the representation.

Remarks:

1. In terms of matrix elements we have

χ(g) =

dimV∑

µ=1

Γ(g)µµ .

2. If Γ and Γ̃ are equivalent then

χ̃(g) = tr Γ̃(g) = tr(SΓ(g)S−1) = tr(S−1SΓ(g)) = tr Γ(g) = χ(g) .

3. All elements of a 
onjuga
y 
lass have the same 
hara
ter,

χ(hgh−1) = tr Γ(hgh−1) = tr
(
Γ(h)Γ(g)Γ(h−1)

)
= tr

(
Γ(h−1)Γ(h)Γ(g)

)

= tr
(
Γ(h−1h)Γ(g)

)
= tr Γ(g) = χ(g) .
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Corollary to Theorem 6. Let G be a �nite group and Γj, j = 1, 2, . . ., non-equivalent,
irredu
ible representations with dimΓj = dj. Then the 
hara
ters χj = tr Γj obey the

orthogonality relation

1

|G|
∑

g∈G
χj(g)χk(g) = δjk .

Proof: W.l.o.g. Γj unitary (else similarity transform, 
f. Theorem 2). In

1

|G|
∑

g∈G
(Γj(g)µν) Γ

k(g)µ′ν′ =
1

dj
δjkδµµ′δνν′


hoose ν = µ and ν ′ = µ′
, and sum over µ and µ′

. �

Remarks:

1. Sin
e the 
hara
ters depend only on the 
onjuga
y 
lass, we 
an rewrite the orthog-

onality relation as

1

|G|
∑

c

nc χ
j
c χ

k
c = δjk .

Here c labels the 
lasses and nc is the number of elements in 
lass c.

2. Let m be the number of di�erent 
onjuga
y 
lasses of G and p the number of non-

equivalent irredu
ible representations.

For �xed j we 
olle
t the m numbers χjc in a ve
tor vj ∈ Cm
. The p ve
tors for

di�erent j are again mutually orthogonal

⇒ p ≤ m.

We will see (exer
ises) that in fa
t p = m, i.e. the number of non-equivalent irre-

du
ible representations is equal to the number of 
onjuga
y 
lasses.

The m × m matrix with entries χjc, j, c = 1, . . . , m, is 
alled 
hara
ter table of the

group.

3. For a (in general redu
ible) representation

Γ =
⊕

j

ajΓ
j , Γj irredu
ible,

we have

χ(g) =
∑

j

ajχ
j(g) .
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This implies

1

|G|
∑

g∈G
|χ(g)|2 = 1

|G|
∑

j,k

ajak
∑

g∈G
χj(g)χk(g)

︸ ︷︷ ︸
=|G|δik

=
∑

j

a2j .

If Γ is irredu
ible, then one aj = 1 and all others vanish, and thus

1

|G|
∑

g∈G
|χ(g)|2 = 1 .

If Γ is redu
ible, then at least one aj > 1 or several aj 6= 0, and thus

1

|G|
∑

g∈G
|χ(g)|2 > 1 .

Hen
e, we have found an irredu
ibility 
riterion for a given representation.

Example: Representations of D3
∼= S3 in Se
tion 2.4.1

• 
onjuga
y 
lasses: {e}, {C, C̄}, {σ1, σ2, σ3}
• For the two-dimensional representation Γ3

we have

1

|G|
(
|χ3(e)|2 + |χ3(C)|2 · 2 + |χ3(σ1)|2 · 3

)
=

22 + (−1)2 · 2 + 0

6
= 1 ,

i.e. Γ3
is irredu
ible.

• We have thus found 2 irredu
ible representations of S3:

The trivial representation, whi
h from now on I want to denote as Γ1
(it was denoted

Γ2
in Se
tion 2.4.1), with d1 = 1 as well as Γ3

with d3 = 2. From
∑

j

d2j = |G| (We already know ≤, in Se
tion 2.7 we will show =.)

we 
on
lude that there has to be another irredu
ible representation with dimension

d2 = 1 (and no others); it is given by

Γ2(e) = Γ2(C) = Γ2(C̄) = 1 ,

Γ2(σ1) = Γ2(σ2) = Γ2(σ3) = −1
(sign of the 
orresponding representation).

• Thus the 
hara
ter table of D3 ≃ S3 reads:

{e} {C, C̄} {σ1, σ2, σ3}
χ1 1 1 1
χ2 1 1 −1
χ3 2 −1 0
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Remark: If we know the 
hara
ters of all irredu
ible representations of a group, then

we 
an 
al
ulate for any given representation (in general redu
ible) how many times the

di�erent irredu
ible representations appear in it:

χ(g)
↑


hara
ter of redu
ible rep

=
∑

j

aj
↑

unknown

χj(g)
↑

known

⇒ 1

|G|
∑

g∈G
χk(g)χ(g) =

1

|G|
∑

j

aj
∑

g∈G
χk(g)χj(g)

︸ ︷︷ ︸
=|G|δjk

= ak

or ak =
1

|G|
∑

c

ncχkc χc

We 
all aj the multipli
ity of Γ
j
in Γ.

2019-10-31

Example: redu
ible three-dimensional representation Γ of D3
∼= S3 (denoted Γ1

in Se
-

tion 2.4.1:

χ(e) = 3 , χ(C) = χ(C̄) = 0 , χ(σ1) = χ(σ2) = χ(σ3) = 1 ,

a1 =
1

6
[1 · 1 · 3 + 2 · 1 · 0 + 3 · 1 · 1] = 1 ,

a2 =
1

6
[1 · 1 · 3 + 2 · 1 · 0 + 3 · (−1) · 1] = 0 ,

a3 =
1

6
[1 · 2 · 3 + 2 · (−1) · 0 + 3 · 0 · 1] = 1 ,


hara
ter table

nc

i.e. Γ = Γ1 ⊕ Γ3
as already determined in Se
tion 2.4.1 (di�erent labelling of irreps).

2.7 The regular representation

De�nition: (group algebra)

For a �nite group G, |G| = n, we de�ne its group algebra A(G) as the ve
tor spa
e spanned
by the group elements, i.e. we take (initially formal) linear 
ombinations

12

A(G) ∋ r =

n∑

j=1

rjgj , rj ∈ C ,

with multipli
ation rule

(
n∑

j=1

rjgj

)(
n∑

k=1

qkgk

)
=

n∑

j=1

n∑

k=1

rjqk gjgk .

indu
ed by group multipli
ation.

12

with obvious addition

n∑
j=1

rjgj +
n∑

j=1

qjgj =
n∑

j=1

(rj + qj)gj ; multipli
ation by s
alars similarly
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Remarks:

1. Due to gjgk ∈ G the result is in A(G), i.e. the produ
t is well-de�ned.
2. A matrix representation, say Γ, of G is also a representation of A(G), in the sense

that by de�ning Γ(
∑

j rjgj) =
∑

j rjΓ(gj) we have ∀ q, r ∈ A(G)

Γ(qr) = Γ(q)Γ(r) and

Γ(q + r) = Γ(q) + Γ(r) ,

where on the r.h.s. we have matrix multipli
ation and addition, respe
tively.

3. dimA(G) = |G| (as a ve
tor spa
e)

4. Group multipli
ation 
an be written as

gjgk =

n∑

m=1

gm (∆j)mk ,

where (∆j)mk en
odes the group table: For j and k �xed, (∆j)mk = 1 for exa
tly one
value of m and vanishes for all others.

5. The n× n matri
es ∆j , j = 1, . . . , n, with elements

(∆j)mk , m, k = 1, . . . , n ,

form a representation of G, 
alled the regular representation.

(∆j is the representation matrix for gj .)

Proof: Let ga, gb, gc ∈ G with gagb = gc ⇒

gagbgj =
∑

m

gagm (∆b)mj =
∑

k,m

gk (∆a)km (∆b)mj

gcgj =
∑

k

gk (∆c)kj

The l.h.s. are identi
al, and thus also the r.h.s. Compare 
oe�
ients:

(∆c)kj =
∑

m

(∆a)km(∆b)mj = (∆a∆b)kj

⇔ ∆c = ∆a∆b

�

Theorem 7. (with the above de�nitions) The regular representation of G 
ontains all

irredu
ible representations of G, and the multipli
ity of the irredu
ible representation Γk is
given by its dimension dk,

∆ =

p⊕

k=1

dk Γ
k

(
p = number of non-equivalent

irredu
ible representations

)
, (∗)
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i.e. ∃S regular, su
h that

S−1∆j S =




1
Γ2(gj)

.

.

.

Γ2(gj)
.

.

.

Γm(gj)
.

.

.

Γm(gj)




.

︸ ︷︷ ︸
d2 blo
ks

. . . ︸ ︷︷ ︸
dm blo
ks

Proof: The 
hara
ters of the regular representation are

χR(gj) =
∑

k

(∆j)kk .

For the identity we have (obviously!)

egj =

n∑

m=1

gm(∆e)mj ⇒ (∆e)mj = δmj ⇒ χR(e) = n .

For gk 6= e gilt

gkgj =

n∑

m=1

gm(∆k)mj 6= gj ⇒ (∆k)jj = 0 ⇒ χR(gk) = 0 .

With the formula from Se
tion 2.6 we �nd

(ak: multipli
ity of the k
th
irredu
ible representation)

ak =
1

n

n∑

j=1

χk(gj)χ
R(gj) =

1

n
χk(e)n = dk

�

Corollary to Theorem 7. We have

∑

k

d2k = n .

Here dk is the dimension of the kth irredu
ible representation and n = |G|.
Remark: In Se
tion 2.5 we only showed ≤.
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Proof: In (∗) 
hoose gj = e,

∆e =
⊕

k

dk Γ
k(e) ,

and take the tra
e,

χR(e) = tr∆e = n =
∑

k

d2k .

�

2.8 Produ
t representations and Clebs
h-Gordan 
oe�
ients

In physi
s appli
ations one often 
onsiders ve
tor spa
es that are tensor produ
ts, where

ea
h fa
tor 
arries a representation of the same group.

Example: Coupling of angular momenta, e.g. orbital angular momentum and spin of an

ele
tron, or spins of several parti
les � ea
h fa
tor 
arries a representation of SU(2).

Let U and V be ve
tor spa
es with bases {ui} and {vj}, respe
tively, and let W = U ⊗ V
with basis {wk}, where wk = ui ⊗ vj (
f. Se
tion 2.4). Further let A : U → U and

B : V → V be linear maps. Then D := A⊗ B is the linear map W →W with

Dwk = Aui ⊗Bvj , where k = (i, j) ,

and extended by linearity to arbitrary w ∈ W , i.e. for w =
∑

k αkwk we have

Dw =
∑

i,j

αij Aui ⊗ Bvj .

In matrix 
omponents:

Aui =
∑

i′

ui′Ai′i , Bvj =
∑

j′

vj′Bj′j and

Dwk =
∑

k′

wk′Dk′k =
∑

i′j′

(ui′ ⊗ vj)Ai′iBj′j ,

i.e. Dk′k ≡ Di′j′ij = Ai′iBj′j. If everything is �nite-dimensional then

trD =
∑

k

Dkk =
∑

i,j

AiiBjj = trA · trB = tr(A⊗ B) .

S
alar produ
ts on U and V indu
e a s
alar produ
t on W by

〈wk|wk′〉 := 〈ui|ui′〉U 〈vj |vj′〉V ,

again extended by (sesqui-)linearity.

If {ui} and {vj} are ONB with respe
t to 〈 | 〉U and 〈 | 〉V , then {wk} is also orthonormal,

〈wk|wk′〉 = δii′δjj′ = δkk′ .
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De�nition: (produ
t representation)

For representations Γµ : G → GL(U) and Γν : G → GL(V ) we de�ne the produ
t repre-

sentation Γµ⊗ν : G→ GL(U ⊗ V ) by

Γµ⊗ν(g) = Γµ(g)⊗ Γν(g) ∀ g ∈ G .

Remarks:

1. Γµ⊗ν is a representation sin
e

Γµ⊗ν(gh)wk = Γµ(gh)ui ⊗ Γν(gh)vj

= Γµ(g)Γµ(h)ui ⊗ Γν(g)Γν(h)vj

= Γµ⊗ν(g)
(
Γµ(h)ui ⊗ Γν(h)vj

)

= Γµ⊗ν(g)Γµ⊗ν(h) (ui ⊗ vj)︸ ︷︷ ︸
=wk

.

2. For the 
hara
ters we have

χµ⊗ν(g) = tr Γµ⊗ν(g) = tr
(
Γµ(g)⊗ Γν(g)

)
= tr Γµ(g) tr Γν(g) = χµ(g)χν(g) .

3. Even for irredu
ible Γµ and Γν the produ
t representation is in general redu
ible,

Γµ ⊗ Γν =
⊕

λ

aλΓ
λ

with

∑

λ

aλdλ = dµdν ,

where dλ is the dimension of Γλ. A

ording to Se
tion 2.6 the multipli
ities are

aλ =
1

|G|
∑

c

nc χλc χ
µ
cχ

ν
c ,

Example: (
f. Se
tion 1.3)

Z2 = {e, P}, two one-dimensional irreps, 
hara
ter table:

e P
χ1 = Γ1 1 1
χ2 = Γ2 1 −1

Another rep (redu
ible)

Γ3(e) =

(
1 0
0 1

)
, Γ3(P ) =

(
0 1
1 0

)
.

De�ne Γ4 := Γ3 ⊗ Γ3 ⇒ χ4(e) = 2 · 2 = 4, χ4(P ) = 0. Thus,

a1 =
1

2
(4 · 1 + 0 · 1) = 2 and

a2 =
1

2
(4 · 1 + 0 · (−1)) = 2 ,
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i.e. Γ3 ⊗ Γ3 = 2Γ1 ⊕ 2Γ2
as one also easily �nds expli
itly, by diagonalising

Γ4(e) = 14 and Γ4(P ) =




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0




2019-11-05

4. In general we 
an de
ompose W = U ⊗ V into a dire
t sum of (under G) invariant
irredu
ible subspa
esW λ

α , with dim(W λ
α ) = dλ. The index α = 1, . . . , aλ distinguishes

di�erent subspa
es 
arrying the same irredu
ible representation, i.e. ∃ U , su
h that

U−1 Γµ⊗ν U =




Γ1

.

.

.

Γ1

.

.

.

Γλ

.

.

.

Γλ

.

.

.




.

︸ ︷︷ ︸
a1 blo
ks

. . . ︸ ︷︷ ︸
aλ blo
ks

Thus U provides the 
hange of basis from the {wk} to some new basis {wλαℓ} in whi
h
the representation matri
es are blo
k-diagonal. Here ℓ = 1, . . . , dλ numbers the absis
ve
tors of W λ

α .

By 
hoosing ONBs on both sides U be
omes unitary.

Remark: In general U is highly non-unique.

The rest is essentially notation � somewhat nasty, but widely used, and sometimes

even useful.

With k = (i, j) and in so-
alled Dira
 notation, one writes

|wλαℓ〉 =
∑

ij

|wij〉 〈i, j(µ, ν)α, λ, ℓ〉︸ ︷︷ ︸
Clebs
h-Gordan 
oe�
ients

. (∗)

The Clebs
h-Gordan 
oe�
ients are matrix elements of U , with

(i, j): row index (old basis),
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(α, λ, ℓ): 
olumn index (new basis),

(µ, ν): �x. (Tells us whi
h produ
t is de
omposed.)

The inverse of (∗) is

|wij〉 =
∑

αλℓ

|wλαℓ〉〈α, λ, ℓ(µ, ν)i, j〉 ,

(this de�nes 〈α, λ, ℓ(µ, ν)i, j〉)
and with U unitary we have 〈α, λ, ℓ(µ, ν)i, j〉 = 〈i, j(µ, ν)α, λ, ℓ〉

• The CG 
oe�
ients satisfy �orthonormality and 
ompleteness relations�

∑

αλℓ

〈i′, j′(µ, ν)α, λ, ℓ〉〈α, λ, ℓ(µ, ν)i, j〉 = δi′iδj′j and

∑

ij

〈α′, λ′, ℓ′(µ, ν)i, j〉〈i, j(µ, ν)α, λ, ℓ〉 = δα′αδλ′λδℓ′ℓ ,

in matrix notation U †U = 1 = UU †
.

• simpli�ed notation

� |i, j〉 := |wij〉 and |α, λ, ℓ〉 := |wλαℓ〉
� Einstein summation 
onvention (sum over repeated indi
es)

� 〈i, j(µ, ν)α, λ, ℓ〉 = 〈i, j|α, λ, ℓ〉

Then we 
an write

Γµ⊗ν(g)|i, j〉 = |i′, j′〉Γµ(g)i′iΓν(g)j′j and

Γµ⊗ν(g)|α, λ, ℓ〉 = |α, λ, ℓ′〉Γλ(g)ℓ′ℓ ,

and 
on
lude

〈α′, λ′, ℓ′|Γµ⊗ν(g)|α, λ, ℓ〉 = 〈α′, λ′, ℓ′|α, λ, ℓ′′〉Γλ(g)ℓ′′ℓ = δα′αδλ′λδℓ′ℓ′′Γ
λ(g)ℓ′′ℓ

= δα′αδλ′λΓ
λ(g)ℓ′ℓ

=
(∗)
〈α′, λ′, ℓ′|Γµ⊗ν(g)|i, j〉〈i, j|α, λ, ℓ〉

= 〈α′, λ′, ℓ′|i′, j′〉Γµ(g)i′iΓν(g)j′j〈i, j|α, λ, ℓ〉 .

(relation between elements of the representation matri
es in the old and the new

basis)
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Example:

In quantum me
hani
s (the spin degree of freedom of) a spin-

1
2
parti
le is des
ribed by a

ve
tor in C2
. The basis ve
tors

|↑〉 :=
(
1
0

)
and |↓〉 :=

(
0
1

)

transform in a two-dimensional representation of SU(2), namely Γ2(g) = g ∀ g ∈ SU(2).
Consider two spin-

1
2
parti
les: C2 ⊗ C2 ∼= C4

, spanned by the produ
t basis

|↑↑〉 := |↑〉 ⊗ |↑〉 , |↑↓〉 := |↑〉 ⊗ |↓〉 , |↓↑〉 := |↓〉 ⊗ |↑〉 , |↓↓〉 := |↓〉 ⊗ |↓〉 ,

transforms in Γ2⊗2
. De�ne a new basis,

|0, 0〉 := |↑↓〉 − |↓↑〉√
2

, |1, 1〉 := |↑↑〉 , |1, 0〉 := |↑↓〉+ |↓↑〉√
2

, |1,−1〉 := |↓↓〉 .

In the exer
ises we show:

• |0, 0〉 transforms in the spin-0 representation of SU(2) (one-dimensional � trivial

representation), and

• |1, m〉, m = −1, 0, 1, transform in the spin-1 representation (three-dimensional) of

SU(2).

Clebs
h-Gordan 
oe�
ients:

|↑↑〉 |↑↓〉 |↓↑〉 |↓↓〉
〈0, 0| 0 1√

2
− 1√

2
0

〈1, 1| 1 0 0 0

〈1, 0| 0 1√
2

1√
2

0

〈1,−1| 0 0 0 1

i.e. e.g. 〈1, 0|↑↓〉 = 1√
2
.

In general one labels the unitary irredu
ible representations of SU(2) by their so-
alled

spin quantum number s ∈ 1
2
N0; the 
orrespong representation has dimension 2s+ 1.

43



3 Appli
ations in quantum me
hani
s

In the following we explore the 
onsequen
es of the orthogonality relations for irredu
ible

representations (Theorem 6) for degenera
ies of quatum me
hani
al energy levels.

3.1 Expansion in irredu
ible basis fun
tions and sele
tions rules

In quantum me
hani
s one 
onsiders ve
tor spa
es (Hilbert spa
es) like V = L2(Rd)⊗Cn
,

i.e. Cn
-valued square-integrable fun
tions in d variables, e.g. d = 3 and n = 2s + 1 for a

parti
le with spin s, moving in three-dimensional spa
e (~x ∈ R3
: position of the parti
le).

ψ, ϕ ∈ L2(Rd)⊗ Cn
, s
alar produ
t

〈ψ|ϕ〉 =
n∑

m=1

∫

Rd

ψm(x)ϕm(x) d
dx .

An operator A : V → V is 
alled unitary, if it leaves s
alar produ
ts invariant, i.e.

〈Aψ|Aϕ〉 = 〈ψ|ϕ〉 ∀ ψ, ϕ ∈ V .

Lemma 8. Let G be a (�nite) group of linear, unitary operators, A ∈ G,13 and let

ψν1 , . . . , ψ
ν
dν

be fun
tions that transform in the unitary irredu
ible representation Γν (with

dim(Γν) = dν), i.e.

Aψνα =

dν∑

β=1

ψνβ Γ
ν(A)βα . (∗)

Then ∃Cν ∈ C su
h that

〈ψνα|ψµβ〉 = Cν δνµ δαβ . (+)

Remark: We say that the ψνα have spe
ial symmetry properties with respe
t to G. If

ν 6= µ, then ψνα and ψµα′ have di�erent symmetry properties. The lemma states that

fun
tions with di�erent symmetry properties are orthogonal to ea
h other.

13

Alternatively, view the operators A as unitary representation of a group G on V .
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Proof:

〈ψνα|ψµβ〉 =
1

|G|
∑

A∈G
〈Aψνα|Aψµβ〉

=
(∗)

1

|G|
∑

A∈G

〈 dν∑

γ=1

ψνγ Γ
ν(A)γα

∣∣∣∣
dµ∑

γ′=1

ψµγ′ Γ
µ(A)γ′β

〉

=
∑

γ,γ′

1

|G|
∑

A∈G
(Γν(A)γα) Γ

µ(A)γ′β

︸ ︷︷ ︸
= 1

dν
δνµδγγ′ δαβ (Theorem 6)

〈ψνγ |ψµγ′〉

= δνµδαβ
1

dν

∑

γ

〈ψνγ |ψνγ〉
︸ ︷︷ ︸

=Cν

�

Remarks:

1. By normalising the ψνα, 〈ψνα|ψνα〉 = 1, we get Cν = 1 ∀ ν.
2. Now we 
an express an arbitrary fun
tion ψ ∈ V as linear 
ombination of fun
tions

with spe
ial symmetry properties (= invariant basis fun
tions) as follows:

(i) Consider the subspa
e spanned by the images of ψ under appli
ation of all

A ∈ G

U = span({Aψ : A ∈ G}) .

U is invariant under G, and ψ ∈ U .
(ii) De
ompose U into irredu
ible invariant subspa
es (whi
h 
arry irredu
ible rep-

resentations of G), and expand ψ in bases of the invariant subspa
es.

Whi
h irredu
ible representations, and thus whi
h basis fun
tions, appear in this

expansion depends on ψ.

3. Equations like (+) are also 
alled sele
tion rules. (Later: A sele
tion rule determines

whi
h transitions 
annot happen sin
e the transition matrix element vanishes due to

symmetries.)

3.2 Invarian
e of the Hamiltonian and degenera
ies

A spe
ial role is played by the Hamiltonian H : V → V (a linear self-adjoint operator) of

a quantum me
hani
al system. In parti
ular, its eigenvalues are the possible energy levels

in whi
h we 
an �nd the system.

45



• Let H be the Hamiltonian of a quantum me
hani
al system and A a unitary operator.

If

AH = HA ,

then we say A 
ommutes with the Hamiltonian or A leaves H invariant.

• The set of all symmetry operations (realised by unitary operators Aj) whi
h leave H
invariant (i.e. AjH = HAj), forms a group G, the symmetry group of H , sin
e

A1H = HA1 , A2H = HA2

⇒ (A1A2)H = A1A2H = A1HA2 = HA1A2 = H(A1A2) .

• Let A ∈ G and |ψ〉 an eigenstate of H with energy E

H|ψ〉 = E|ψ〉
⇒ H(A|ψ〉) = AH|ψ〉 = E(A|ψ〉) (∗)

i.e. A|ψ〉 is also eigenstate of H with the same energy E.

• If E is not degenerate then A|ψ〉 ∝ |ψ〉.
If E ism-fold degenerate, then A|ψ〉 is a linear 
ombination of the states |ψ1〉, . . . , |ψm〉
with energy E. (The previous 
ase was just the spe
ial 
ase m = 1.)

In any 
ase the spa
e S = span(|ψ1〉, . . . , |ψm〉) is invariant under the symmetry

group of H .

⇒ The degenerate states |ψ1〉, . . . , |ψm〉 transform in a representation of G,

A|ψj〉 =
m∑

k=1

Γ(A)kj|ψk〉 , A ∈ G . (+)

In prin
iple this representation 
an by redu
ible or irredu
ible; typi
ally it is irre-

du
ible.

(i) All states transforming in the same irredu
ible representation of G, must have
the same energy:

H|ψj〉 = Ej |ψj〉
⇒
(∗)

H(A|ψj〉) = Ej(A|ψj〉)

⇒
(+)

H(A|ψj〉) =
∑

k

Γ(A)kjH|ψk〉︸ ︷︷ ︸
=Ek|ψk〉

=
∑

k

Γ(A)kjEj|ψk〉= Ej(A|ψj〉)
(with Γ irredu
ible)

⇒ EkΓ(A)kj = Γ(A)kjEj (no sums over j or k)
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Now de�ne an m × m diagonal matrix E = diag(E1, . . . , Em). Then the last

equation reads

E Γ(A) = Γ(A)E ∀A ∈ G ,

i.e. a

ording to S
hur's Lemma (Theorem 4) E is proportional to 1m ⇒ all Ej
are identi
al.

(ii) If Γ is redu
ible and if |ψj〉 and |ψk〉 transform in di�erent irredu
ible represen-

tations,




( )
0

0

( )




← j

← k
,

then Γ(A)ki = 0 for all A (S
hur's Lemma, Theorem 5) and in general(!) Ek 6=
Ej , i.e. there is at least no reason why |ψj〉 and |ψk〉 should be degenerate.

(iii) If states transforming in di�erent irredu
ible representations still have the same

energy, we speak about �a

idental degenera
y�. Possible reasons:

1. ��ne-tuning� of or several parameters in H (rather unlikely).

2. We haven't 
orre
tly identi�ed the full symmetry group, i.e. we have over-

looked some symmetry.

• Con
lusions

� Degenerate states to a given energy typi
ally transform in an irredu
ible repre-

sentation of the symmetry group of H . (i.e. they 
an be 
lassi�ed by irredu
ible

representations).

� number of degenerate states = dimension of the irredu
ible representations

Example: Hydrogen atom

First we negle
t spin (i.e. in parti
ular no spin-orbit 
oupling), Hilbert spa
e L2(R3),

H = − ~2

2m
∆− e2

r
,

where r = |~x|, ~x ∈ R3
.

• Eigenstates are labelled by so-
alled quantum numbers

n = 1, 2, . . . (prin
ipal quantum number),

ℓ = 0, . . . , n−1 (angular/orbital/azimuthal quantum number) and

m = −ℓ, . . . , ℓ (magneti
 quantum number),
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ψ(~x) = Rnℓ(r)Yℓm(θ, φ) .

• The Hamiltonian for any 
entral for
e problem, (i.e. H as above, but with −e2/r
repla
ed by an arbitrary fun
tion of r) in 3 dimensions is invariant under O(3). States
for �xed n and ℓ transform in a (2ℓ+1)-dimensional irredu
ible representation of O(3)
(whi
h we will 
lassify later), i.e. the energy does not depend on m ⇒ (2ℓ + 1)-fold
degenera
y.

• Observation (for hydrogen): The energy also doesn't depend on ℓ (�a

idental degen-
era
y�)

⇒ n2
-fold degenera
y, sin
e

n−1∑
ℓ=0

(2ℓ+ 1) = n2
.

Explanation: The symmetry group is larger than assumed so far. The Hamiltonian of

the hydrogen atom is even invariant under O(4) (H 
ommutes also with the Runge-

Lenz ve
tor) ⇒ energy does not depend on ℓ, and the n2
-fold degenera
y 
an be

understood in terms of the dimensions of the irredu
ible representations of O(4).

3.3 Perturbation theory and lifting of degenera
ies

• typi
al propblem:

H = H0 +H ′ ,

with H0 �integrable� and H
′
�small perturbation�

• Let G be the symmetry group of H0. Two possibilities:

1. H ′
is also invariant under G.

2. H ′
is only invariant under a subgroup B ⊂ G.

• In 
ase 1 the perturbation H ′
does not lead to a splitting of levels (it does not lift

the degenera
y of the spe
trum of H0).

• Case 2 leads to a splitting of levels (we � partially � lift degenera
ies):

� The exa
t eigenstates of H transform in irredu
ible representations of B.

� The degenerate eigenstates of H0 transform in irredu
ible representations of G.

� For the latter representation, the matri
es 
orresponding to the elements of B,
form a representation, say Γ, of B, in general redu
ible, i.e.

Γ =
r⊕

j=1

ajΓ
j

with dim(Γj) = dj .
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� States transforming in an irredu
ible representation of B, are still degenerate.
States transforming in di�erent irredu
ible representations of B, in general have
di�erent energies, i.e. (some of the) so-far degenerate levels split:

⇒ ∑
j aj new energy levels

a1 of these ea
h d1-fold degenerate,

a2 of these ea
h d2-fold degenerate, et
.

Examples:

1. Hydrogen atom as in Se
tion 3.2

Adding a small radially symmetri
 potential V (r) (but not

1
r
) breaks the O(4)-

symmetry to O(3) and ea
h energy level splits into n levels with di�erent ℓ.

n = 1
1

n = 2
4

n = 3
9

1

ℓ = 0

1

ℓ = 0

3

ℓ = 1

1

ℓ = 0

3

ℓ = 1

5

ℓ = 2

Ea
h new level is still (2ℓ+1)-fold degenerate, sin
e H ′
is still invariant under O(3).

2. Fine stru
ture of hydrogen

• Take ele
tron spin into a

ount: instead of L2(R3) now 
onsider L2(R3)⊗ C2
.

• Intermediate step: Consider the same Hamiltonian as before (more pre
isely

H → H ⊗ 12). States whi
h so far transformed in the representation Γ2ℓ+1

of O(3), now transform

14

in Γ2ℓ+1 ⊗ Γ2
but energies are un
hanged, only the

degenera
y is doubled.

• Now add the perturbation H ′
, 
ontaining i.a. spin-dependent terms (spin-orbit


oupling), but still invariant under O(3). With

Γ2ℓ+1 ⊗ Γ2 = Γ2ℓ ⊕ Γ2ℓ+2

we obtain states transforming in one of the two irredu
ible representations. One


alls j = ℓ± 1
2
the total angular momentum quantum number,

2j + 1 = 2(ℓ± 1
2
) + 1 =

{
2ℓ+ 2
2ℓ

.

14

I'm rather sket
hy here. Before, we spoke about irreps of SU(2) when dis
ussing spin. Here we �rst

spoke about an O(3)-symmetry. Later we will see that there is an intimate relation between SU(2) and
SO(3) (and their irreps) � let's just say by slightly adjusting the perspe
tive it's legitimate to think of

Γ2ℓ+1
and Γ2

as irreps of the same group.
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Example: n = 2, ℓ = 0, 1:

Γ1 ⊗ Γ2

︸ ︷︷ ︸
s-Orbital, ℓ=0

⊕ Γ3 ⊗ Γ2

︸ ︷︷ ︸
p-Orbital, ℓ=1

= Γ2 ⊕ Γ2

︸ ︷︷ ︸
still a

identally degenerate,

symmetry group still

larger than O(3)

⊕ Γ4

n = 2; ℓ = 0, 1; s = 1
2

2S1/2,
2P1/2,

2P3/2 2P3/2

2S1/2,
2P1/2

�ne stru
ture

(i.a. spin-orbit 
oupling)
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4 Expansion into irredu
ible basis ve
tors

4.1 Proje
tion operators onto irredu
ible bases

We take up Remark 2 after Lemma 8: Let U be a representation (e.g. by unitary operators)

on V and let eν1, . . . , e
ν
dν
∈ V be fun
tions/ve
tors that transform in the unitary irredu
ible

representation Γν (with dim(Γν) = dν). A

ording to Remark 2 after Lemma 8 we 
an

expand every ψ ∈ V into su
h basis ve
tors, i.e.

ψ =
∑

µ

dµ∑

β=1

cµβ e
µ
β ,

with expansion 
oe�
ients cµβ ∈ C. We thus have

U(g)ψ =
∑

µ

∑

α,β

cµβ e
µ
α Γ

µ(g)αβ ,

and with Theorem 6 it follows that

dµ′

|G|
∑

g∈G
Γµ′(g)α′β′ U(g)ψ =

∑

µ

∑

α,β

cµβ e
µ
α

dµ′

|G|
∑

g∈G
Γµ′(g)α′β′ Γµ(g)αβ

︸ ︷︷ ︸
=δµµ′ δαα′δββ′

= cµ
′

β′e
µ′

α′ .

Fix µ′
and β ′

, and 
onse
utively apply

dµ′

|G|
∑

g∈G
Γµ′(g)α′β′ U(g) , α′ = 1, . . . , dµ′ ,

to ψ: Either the result is always zero (if cµ
′

β′ = 0) or we obtain dµ′ basis ve
tors, whi
h

transform in Γµ
′
(if cµ

′

β′ 6= 0).

This motivates the following de�nition:

De�nition: (generalised proje
tion operators)

Let G be a group, U a representation, Γµ an irredu
ible representation, dimΓµ = dµ. We


all

P µ
jk =

dµ
|G|

∑

g∈G
[Γµ(g)−1]jk U(g)

generalised proje
tion operator.

Remark: In the following Γ will always be unitary, i.e.

[Γµ(g)−1]jk = [Γµ(g)†]jk = Γµ(g)kj (
f. above).

2019-11-12
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Theorem 9. (Properties of P
µ
jk) With above de�nitions we have:

(i) For �xed ψ ∈ V and for �xed µ and j the dµ ve
tors P µ
jkψ, k = 1, . . . , dµ, either all

vanish or they transform in the irredu
ible representation Γµ.

In short: U(g)P µ
jk =

∑

ℓ

P µ
jℓ Γ

ν(g)ℓk.

(ii) P µ
jiP

ν
ℓk = δµνδjkP

µ
ℓi.

(iii) P µ
j := P µ

jj is a proje
tion operator.

(iv) P µ :=
∑

j P
µ
j is a proje
tion operator onto the invariant subspa
e Uµ


ontaining

all ve
tors transforming in the irredu
ible representation Γµ.
(Uµ =

⊕aµ
α=1 U

µ
α , U

µ
α : irredu
ible invariant subspa
es,

α = 1, . . . , aµ, aµ: multipli
ity of Γµ in U)

(v)

∑
µ P

µ = 1 if V 
ompletely redu
ible. (here always assumed)

(vi) U(g) =
∑

µ

∑

j,k

Γµ(g)kjP
µ
jk. (inversion of de�nition)

Proof:

(i) see above

(ii) First: a
tion of generalised proje
tion operators on irredu
ible basis,

P µ
ji e

ν
k =

dµ
|G|

∑

g∈G
Γµ(g)ij U(g) e

ν
k =

∑

ℓ

dµ
|G|

∑

g∈G
Γµ(g)ij Γ

ν(g)ℓk

︸ ︷︷ ︸
=δµνδiℓδjk

eνℓ

= δµνδjk e
µ
i .

(∗)

For ψ ∈ V arbitrary, we have due to (i): the ve
tors ϕνk := P ν
ℓkψ transform in Γν

⇒ P µ
jiP

ν
ℓkψ = P µ

ji ϕ
ν
k =
(∗)
δµνδjk ϕ

µ
i = δµνδjk ϕ

µ
i = δµνδjk P

ν
ℓiψ .

(iii) P µ
j P

ν
k = P µ

jjP
ν
kk =

(ii)
δµνδjk P

µ
jj = δµνδjk P

µ
j .

(iv)

P µP ν =
∑

j,k

P µ
j P

ν
k =

(iii)

∑

j,k

δµνδjk P
µ
j = δµν

∑

j

P µ
j = δµν P

µ

(v) First: a
tion on irredu
ible basis,

∑

µ

P µ eνk =
∑

µ

∑

j

P µ
jj e

ν
k =

∑

µ

∑

j

δµνδjk e
µ
j = eνk ;

write ψ ∈ V as linear 
ombination of irredu
ible basis ve
tors ⇒ ∑
µ P

µ = 1.
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(vi) For ψ ∈ V arbitrary we have due to (i): The ve
tors ϕµk := P µ
jkψ transform in Γµ

⇒
∑

µ

∑

j,k

Γµ(g)kjP
µ
jk ψ =

∑

µ

∑

j,k

Γµ(g)kj ϕ
µ
k =

∑

µ

∑

j

U(g)ϕµj

= U(g)
∑

µ

∑

j

P µ
jj ψ =

(v)
U(g)ψ

�

Examples:

1. Redu
tion of S = span(φ1, φ2, φ3) from Se
tion 2.4.1 (invariant under D3
∼= S3)

• S3 has two 1-dimensional and one 2-dimensional irredu
ible representation (Γ1,Γ2,Γ3
).

• The generalised proje
tion operators are

P 1
11 =

1

6
(OI +OC +OC̄ +Oσ1 +Oσ2 +Oσ3) ,

P 2
11 =

1

6
(OI +OC +OC̄ − Oσ1 − Oσ2 −Oσ3) ,

P 3
11 =

1

3

(
OI −

1

2
OC −

1

2
OC̄ − Oσ1 +

1

2
Oσ2 +

1

2
Oσ3

)
,

P 3
12 =

1

3

(
−
√
3

2
OC +

√
3

2
OC̄ −

√
3

2
Oσ2 +

√
3

2
Oσ3

)
,

P 3
21 =

1

3

(√
3

2
OC −

√
3

2
OC̄ −

√
3

2
Oσ2 +

√
3

2
Oσ3

)
and

P 3
22 =

1

3

(
OI −

1

2
OC −

1

2
OC̄ +Oσ1 −

1

2
Oσ2 −

1

2
Oσ3

)
.

• Applied to a ve
tor in S, e.g. φ1 (see Se
tion 2.4.1 for the a
tion of the OA-

operators on φ1):

� µ = 1 :

P 1
11φ1 =

1

6
(φ1 + φ2 + φ3 + φ1 + φ3 + φ2) =

1

3
(φ1 + φ2 + φ3) ,

invariant under D3 and transforms in the trivial representation Γ1
.

� µ = 2 :

P 2
11φ1 =

1

6
(φ1 + φ2 + φ3 − φ1 − φ3 − φ2) = 0 ,

had to be zero, sin
e Γ2
is not 
ontained in the 3-dimensional representation

a
ting on S.
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� µ = 3 : �rst j = 1,

P 3
11φ1 =

1

3

(
φ1 −

1

2
φ2 −

1

2
φ3 − φ1 +

1

2
φ3 +

1

2
φ2

)
= 0 ,

P 3
12φ1 =

√
3

6
(−φ2 + φ3 − φ3 + φ2) = 0 (if one vanishes, then also the other one)

now j = 2,

P 3
21φ1 =

√
3

6
(φ2 − φ3 − φ3 + φ2) ∝ φ2 − φ3 ,

P 3
22φ1 =

1

3

(
φ1 −

1

2
φ2 −

1

2
φ3 + φ1 −

1

2
φ3 −

1

2
φ2

)
∝ 2φ1 − φ2 − φ3 .

The last two fun
tions transform in Γ3
.

This is the 
hange of basis from Se
tion 2.4.1.

2. Redu
ing a produ
t representation

• Let Γµ⊗ν be a produ
t representation of G on Vµ⊗Vν , in general Γµ⊗ν =
⊕
λ

aλΓ
λ
.

How do we �nd the irredu
ible invariant subspa
es of Vµ ⊗ Vν?
• Start with a produ
t basis |k, ℓ〉 = |eµk〉⊗|eνℓ 〉 and apply the generalised proje
tion
operators P λ

ji.

• For �xed λ, j, k, ℓ the dλ ve
tors

P λ
ji|k, ℓ〉 , i = 1, . . . , dλ ,

either all vanish or they span an irredu
ible invariant subspa
e.

• By varying λ, j, k, ℓ we 
an �nd all irredu
ible invariant subspa
es.

• Exer
ises: Redu
tion of Γ3⊗3
, where Γ3 : S3 → GL(C2).

Summary:

• De
ompose the spa
e V into irredu
ible invariant subspa
es,

V =
⊕

µ,α

V µ
α ,

where µ labels inequivalent irreps and α numbers 
opies of irrep µ.

• For the basis |α, µ, i〉, i = 1, . . . , dµ, of V we have

P µ|α, ν, k〉 = |α, µ, k〉δµν ,
P µ
i |α, ν, k〉 = |α, µ, i〉δµνδik and

P µ
ij |α, ν, k〉 = |α, µ, i〉δµνδjk .
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4.2 Irredu
ible operators and the Wigner-E
kart Theorem

De�nition: (irredu
ible operators)

Let G be a group, U a representation and Γµ a unitary irredu
ible representation, dimΓµ =
dµ. A set of linear operators, {Oµ

i : i = 1, . . . , dµ}, whi
h transform under G as follows,

U(g)Oµ
i U(g)

−1 =

dµ∑

j=1

Oµ
j Γ

µ(g)ji ,

is 
alled a set of irredu
ible operators 
orresponding to the representation Γµ. (The Oµ
i are

also 
alled irredu
ible tensors or irredu
ible tensor operators).

Remarks:

1. The de�nition makes sense, sin
e

U(gh)Oµ
i U(gh)

−1 = U(g)U(h)Oµ
i U(h)

−1U(g)−1 = U(g)
∑

j

Oµ
j Γ

µ(h)jiU(g)
−1

=
∑

j,k

Oµ
kΓ

µ(g)kjΓ
µ(h)ji =

∑

k

Oµ
kΓ

µ(gh)ki .

2. Spe
ial 
ase: If Γµ is the trivial representation then the operator Oµ
(no index i,

sin
e dµ = 1) 
ommutes with U(g) ∀ g ∈ G, 
f. Se
tion 3.2.

3. If Oµ
i , i = 1, . . . , dµ, are irredu
ible operators and |eνj 〉, j = 1, . . . , dν, irredu
ible basis

ve
tors, then the ve
tors Oµ
i |eνj 〉 transform in the produ
t representation Γµ⊗ν :

U(g)Oµ
i |eνj 〉 = U(g)Oµ

i U(g)
−1U(g)|eνj 〉

=
∑

k,ℓ

Oµ
k |eνℓ 〉Γµ(g)kiΓν(g)ℓj .

We 
an redu
e this produ
t representation (
f. Se
tion 2.8) and expand the ve
tors

Oµ
i |eνj 〉 in the irredu
ible basis {|wλαℓ〉},

Oµ
i |eνj 〉 =

∑

αλℓ

|wλαℓ〉〈α, λ, ℓ(µ, ν)i, j〉 . (∗)

This leads to the. . .

Theorem 10. (Wigner-E
kart)

Let Oµ
i be irredu
ible operators and |eνj 〉 irredu
ible ve
tors, then

〈eλℓ |Oµ
i |eνj 〉 =

∑

α

〈α, λ, ℓ(µ, ν)i, j〉 〈λ‖Oµ‖ν〉α

with the so-
alled redu
ed matrix element (whi
h isn't a matrix element. . . )

〈λ‖Oµ‖ν〉α :=
1

dλ

∑

k

〈eλk |wλαk〉 .

2019-11-14
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Proof:

〈eλℓ |Oµ
i |eνj 〉 =

(∗)

∑

α,ρ,m

〈eλℓ |wραm〉 〈α, ρ,m(µ, ν)i, j〉

In the proof of Lemma 8 (Se
tion 3.1) we showed that

〈eλℓ |wραm〉 = δρλδmℓ
1

dλ

∑

k

〈eλk|wλαk〉 ,

and thus

〈eλℓ |Oµ
i |eνj 〉 =

∑

α

1

dλ

∑

k

〈eλk|wλαk〉
︸ ︷︷ ︸

=〈λ‖Oµ‖ν〉α

〈α, λ, ℓ(µ, ν)i, j〉 .

�

Remarks:

1. The redu
ed matrix element does not depend on i, j or ℓ. It seems to also not depend

on the operators O, and the reps µ and ν, but the wλαk depend on O, µ and ν, sin
e

span({wλαk}) = span({Oµ
i e

ν
j})

2. Important in appli
ations, sin
e many matrix elements (ME) on the l.h.s. are deter-

mined by few redu
ed MEs on the r.h.s. The latter 
ontain the 
omplete information

about the physi
s. Everything else (CG 
oe�
ients) is representation theory, i.e. is

already �xed by the symmetries of the problem.

3. In order to determine the redu
ed MEs 
al
ulate as many (suitable) MEs (l.h.s) as

there are redu
ed MEs. Then the Wigner-E
kart Theorem provides us with a system

of linear equations for the redu
ed MEs.

Example: Time-dependent perturbation theory

• Consider an Atom in the state ψ with energy Eψ under the in�uen
e of the (time-

dependent) perturbation O (e.g. ele
tromagneti
 wave). The probability for a tran-

sition to state ϕ (with energy Eϕ) is proportional to

|〈ϕ|O|ψ〉|2 .

Thereby, radiation with frequen
y |Eψ−Eϕ|/h is absorbed or emitted. In experiments

one observes the intensity of this radiation, whi
h is proportional to |〈ϕ|O|ψ〉|2.
• The unperturbed system is rotationally invariant: ψ and ϕ are elements of bases

transforming in irredu
ible representations of SO(3): Γ2ℓ+1
, Γ2ℓ′+1

.

• The perturbation is also rotationally invariant: O is element of a set of irredu
ible

operators, transforms, e.g., in Γ3
(angular momentum 1, dipole radiation).

• Hen
e, 
onsider 〈ℓ′, m′|O3
m′′|ℓ,m〉 (further quantum numbers suppressed),

m = −ℓ, . . . , ℓ, m′ = −ℓ′, . . . , ℓ′, m′′ = −1, 0, 1.
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• Later we will see: Γ3⊗(2ℓ+1) = Γ2ℓ−1 ⊕ Γ2ℓ+1 ⊕ Γ2ℓ+3
, i.e.

� transitions only possible if ℓ′ − ℓ = −1, 0, 1  sele
tion rule,

� no α-sum, only one redu
ed ME,

〈ℓ′, m′|O3
m′′ |ℓ,m〉 = 〈ℓ′, m′(3, 2ℓ+ 1)m′′, m〉 〈ℓ′‖O3‖ℓ〉 .

For �xed ℓ, ℓ′ the relative intensities of the (2ℓ+1)(2ℓ′+1) theoreti
ally possible
transitions are already �xed by the CG 
oe�
ients � some vanish  sele
tion

rule.

(Problem slightly simpli�ed here, 
f. Wu-Ki Tung, Group Theory and Physi
s, World S
i-

enti�
, 1985, Se
tions 4.3, 8.7 & 11.4.)

4.3 Left ideals and idempotents

The generalised proje
tion operators allow us to de
ompose redu
ible reps into sums of

irreps. To this end we already have to know the irreps. Remaining question: How to


onstru
t the irreps?

Redu
e the regular representation (see Se
tion 2.7), as it 
ontains all irredu
ible represen-

tations Γµ (with multipli
ities dµ = dim(Γµ)).

Re
all:

• Carrier spa
e is the group algebra (or Frobenius-Algebra)

A(G) = span(g1, . . . , gn), n = |G| (group elements numbered again).

• A(G) ∋ r =∑i rigi, analogously q ∈ A(G):

rq =
∑

i,j

riqj gigj =
∑

i,j,k

ri gk(∆i)kjqj .

De�nition: (left ideal)

A subspa
e L ⊆ A(G) that is invariant under left multipli
ation is 
alled left ideal, i.e.

r ∈ L and q ∈ A(G) ⇒ qr ∈ L .

A left ideal L is 
alled minimal if it does not 
ontain any non-trivial left ideal K ⊂ L.

Remarks:

1. Similarly one de�nes right ideals and two-sided ideals. (Here we only use left ideals.)

2. L is a left ideal ⇔ L is an invariant subspa
e, sin
e

�⇒� o.k., sin
e G ⊂ A(G)
�⇐� with r ∈ L and q =

∑
j qjgj ∈ A(G) we have

qr =
∑

j

qj gjr︸︷︷︸
∈L (inv. subspa
e)

∈ L (linear 
ombination of elements ∈ L).
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3. Similarly: L is minimal left ideal ⇔ L irredu
ible invariant subspa
e

Idea: Find the minimal left ideals and 
onstru
t the irreps whi
h they 
arry (by applying

the group elements to bases for the left ideals).

In the following we denote by P µ
α the proje
tion operator onto the minimal left ideal Lµα,

i.e. P µ
αA(G) = Lµα. (As before µ labels the non-equivalent irreps, and α = 1, . . . , dµ.)

Properties of P µ
α
:

(i) P µ
α r ∈ Lµα ∀ r ∈ A(G)

(ii) if q ∈ Lµα then P µ
α q = q

(iii) P µ
αP

ν
β = δµνδαβP

µ
α ,

and it follows that

(iv) P µ
α q = qP µ

α ∀ q ∈ A(G)
Proof: De
ompose r ∈ A(G) as r =∑

ν,β

rνβ with rνβ ∈ Lνβ. Then

qP µ
α r = qP µ

α

∑

ν,β

rνβ = qrµα and

P µ
α qr = P µ

α q
∑

ν,β

rνβ = P µ
α

∑

ν,β

qrνβ︸︷︷︸
∈Lν

β

= qrµα . �

Now de�ne Lµ :=
⊕
α

Lµα and �rst 
onstru
t the proje
tion operator P µ
onto Lµ:

For ea
h q ∈ A(G) exists a unique de
omposition

q =
∑

µ

qµ with qµ ∈ Lµ ,

in parti
ular for the identity,

e =
∑

µ

eµ , eµ ∈ Lµ .

Thus,

q = qe = q
∑

µ

eµ =
∑

µ

qeµ︸︷︷︸
∈Lµ

(sin
e eµ ∈ Lµ
)

,

i.e. qµ = qeµ, and we have found:

Lemma 11.

P µ
is given by right multipli
ation with eµ, i.e. P

µq = qeµ ∀ q ∈ A(G).

Remarks:

1. P µ
is linear.
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2. From

eµ︸︷︷︸
∈Lµ

= eµe = eµ
∑

ν

eν =
∑

ν

eµeν︸︷︷︸
∈Lν

it follows that eµeν = δµνeµ � 
f. property (iii).

3. With e =
∑
µ,α

eµα this also works for proje
tions to minimal left ideals, de�ned by

P µ
α q := qeµα .

De�nition: (idempotents)

An element eµ ∈ A(G) that satis�es e2µ = eµ is 
alled (an) idempotent. If e2µ = ξµeµ for

some non-zero ξµ ∈ C then we 
all eµ essentially idempotent.

Remarks:

1. We say the idempotent eµ generates the left ideal Lµ, i.e.

Lµ = {qeµ : q ∈ A(G)} .
2. An idempotent is 
alled primitive, if it generates a minimal left ideal. Otherwise it


an be written as a sum e1 + e2 of two non-zero idempotents with e1e2 = 0 = e2e1.

Theorem 12.

The idempotent eµ is primitive. ⇔ For every q ∈ A(G) ∃λq ∈ C s.t. eµqeµ = λqeµ.

Proof:

�⇒�: Let L be the left ideal generated by eµ.
For q ∈ A(G) de�ne the linear map Q : A(G)→ A(G) by

Qr = reµqeµ for r ∈ A(G) .

Then Qsr = sreµqeµ = sQr ∀s, r ∈ A(G), and in parti
ular ∀r ∈ L and ∀s ∈ G, i.e.
Q 
ommutes with the representation of G 
arried by L.
If eµ is primitive, then L is minimal and a

ording to S
hur's Lemma (Theorem 4)

Q is a multiple of the identity on L. The latter is given by right multipli
ation with

eµ, i.e. ∃ λq ∈ C: eµqeµ = λqeµ.

�⇐�: Let eµ = e1 + e2 with non-zero idempotents e1e2 = 0 = e2e1. Then on the one hand

eµe1eµ = (e1 + e2)e1(e1 + e2) = e1 ,

and on the other hand ∃λ ∈ C s.t.

eµe1eµ = λeµ .

Thus,

λeµ = e1 = e21 = λ2e2µ = λ2eµ ⇔ λ2 = λ ,

but λ = 0 	 e1 6= 0 and λ = 1⇒ eµ = e1 ⇒ e2 = 0 	 e2 6= 0.
�
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Theorem 13.

The left ideals generated by two primitive idempotents, e1 and e2, 
arry equivalent irre-

du
ible representations Γ1
and Γ2

i� e1qe2 6= 0 for at least one q ∈ A(G).

Proof:

�⇐�: Let e1qe2 = s 6= 0 for one q ∈ A(G).
De�ne the linear map S : A(G)→ A(G) by Sr = rs.
Apparently, S : L1 → L2

, and sin
e Se1 = s 6= 0 we have S|L1 6= 0.
It follows that Srp = rps = rSp ∀r, p ∈ A(G), and in parti
ular ∀r ∈ G and ∀p ∈ L1

,

i.e. SΓ1(r) = Γ2(r)S. Hen
e, a

ording to S
hur's Lemma (Theorem 5) Γ1
and Γ2

are equivalent.

�⇒�: If Γ1
and Γ2

are equivalent, then there exists a non-trivial linear map S : L1 → L2

with SΓ1(r) = Γ2(r)S ∀r ∈ G, i.e. Srp = rSp ∀r ∈ G and ∀p ∈ L1
;

by linearity this is also true ∀r ∈ A(G).
De�ne s := Se1 ∈ L2 ⇒ s = se2.
Then s = Se1 = Se1e1 = e1Se1 = e1s = e1se2.

�

Remark:

The primitive idempotent

e1 =
1

|G|

|G|∑

i=1

gi

generates the one-dimensional left ideal L1
, whi
h 
arries the trivial representation.

Proof: L1 = {re1 : r ∈ A(G)}. With

re1 =
(∑

j

rjgj

)( 1

|G|
∑

i

gi

)
=
∑

j

rj
1

|G|
∑

i

gjgi

=
∑

j

rj
1

|G|
∑

k

gk (rearrangement lemma)

= c e1 , where c =
∑

j
rj ,

we �nd L1 = span(e1), dimL1 = 1, and thus minimal. Moreover,

g · c e1 =
c

|G|
∑

i

ggi =
c

n

∑

k

gk = c e1

i.e. L1

arries the trivial representation. �
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Summary:

• The group algebra A(G) 
an be de
omposed into left ideals Lµ (µ labels the non-

equivalent irreps of the group).

• The Lµ are generated by right multipli
ation with idempotents eµ, where

eµeν = δµνeµ and

∑

µ

eµ = e .

• Ea
h Lµ 
an be de
omposed into dµ minimal left ideals Lµα, α = 1, . . . , nµ.

• The Lµα are generated by right multipli
ation with primitive idempotents eµα.

• Having found all primitive idempotents, one 
an straightforwardly 
onstru
t all irreps

of the group.

• Exer
ises: Redu
tion of the regular rep of C3.

• In Se
tion 5 we will use this method in order to 
onstru
t all irreps of Sn.

4.3.1 Dimensions and 
hara
ters of the irredu
ible representations

Theorem 14. Let G be a group with group algebra A(G), and let

eµ =
∑

g∈G
ag g (ag ∈ C , linear 
ombination

of group elements

)

be a primitive idempotent with 
orresponding left ideal Lµ = A(G)eµ, 
arrying the irre-

du
ible representation Γµ, dimΓµ = dµ. Then ∀h ∈ G

χµ(h) = tr Γµ(h) =
|G|
nc

∑

g∈c
ag

where c is the 
onjuga
y 
lass of h with nc elements.

Remark: dµ = χµ(e) = |G|ae.
Proof:

De�ne the linear map

Ah : A(G) ∋ r 7→ h−1reµ .

(i) The tra
e of Ah is the 
hara
ter of h
−1
:

Choose a basis {r1, . . . , r|G|} of A(G) s.t. {r1, . . . , rdµ} is a basis of Lµ. Then

Ahrj = h−1rjeµ


ontains no terms proportional to rk with k > dµ, i.e. now j ≤ dµ,

Ahrj = h−1rjeµ = h−1rj =

dµ∑

k=1

rkΓ
µ(h−1)kj
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and thus

trAh = χµ(h−1) = χ(h)

(w.l.o.g. 
hoose Γµ unitary, all others equivalent).

(ii) Now 
hoose the group elements g ∈ G as basis for A(G). Then

Ahg = h−1geµ =
∑

g′∈G
ag′ h

−1gg′︸ ︷︷ ︸
?
=g ⇔ g′=g−1hg

= ag−1hg g + terms not proportional to g ,

and thus

trAh =
∑

g∈G
ag−1hg =

∑

g′∈c
ag′ |Gg′| =

|G|
nc

∑

g′∈c
ag′ ,

where Gg′ is the stabiliser of g
′
, and a

ording the orbit-stabiliser theorem (see Prob-

lem 7) we have nc · |Gg′| = |G|.
Combining (i) and (ii) proves the theorem. �
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5 Representations of the symmetri
 group

and Young diagrams

The representation theory of Sn is fundamental in several ways:

• Finite groups of order n are isomorphi
 to subgroups of Sn (Theorem 1).

• Primitive idempotents in A(Sn) also play a role in the 
onstru
tion of irreps of


lassi
al Lie groups, as U(m), O(m) or SU(m).

• When 
onsidering quantum systems of identi
al parti
les Sn is always a �fa
tor� of

the symmetry group of the Hamiltonian H , i.e. the eigenstates of H transform in

irreps of Sn.

5.1 One-dimensional irredu
ible representations

and asso
iate representations of Sn

The alternating group An is the group of even permutations of {1, 2, . . . , n} (i.e. ea
h

element is the produ
t of an even number of transpositions). An is a normal subgroup of

Sn, with quotient group Sn/An ∼= Z2.

⇒ Sn has two one-dimensional representations, indu
ed by the by the representations of

Z2 (
f. Problems 10 & 16):

Γs(p) = 1 ∀ p ∈ Sn (trivial representation) and

Γa(p) = sgn(p) :=

{
1 for p even
−1 for p odd

.

sgn(p) is 
alled sign or parity of the permutation p.

Later: There are no other one-dimensional representations of Sn (see Se
tion 5.5).

Alternatively, we obtain Γs
and Γa

from. . .

Lemma 15. The symmetriser s =
∑
p∈Sn

p and the anti-symmetriser a =
∑
p∈Sn

sgn(p)p are

essentially idempotent and primitive.

Proof: For s see remark after Theorem 13.

a2 =
∑

p,q

sgn(p)p sgn(q)q =
∑

p

∑

q

sgn(pq)pq

︸ ︷︷ ︸
=a (rearrangement lemma)

= n! a ,

i.e. a is also essentially idempotent.
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Representations: For all q ∈ Sn we have

q ps = s = ps and

q pa =
∑

r

sgn(r)qpr = sgn(qp)
∑

r

sgn(qpr)qpr

︸ ︷︷ ︸
=a

= sgn(q) sgn(p)a = sgn(q)pa .

⇒ Both representations are one-dimensional, with matrix elements 1 and sgn(q), respe
-
tively.

Remark: Non-equivalen
e 
an also be shown as follows: For all p ∈ Sn we have

spa =
↑

rearrangement lemma: sp = s

sa =
∑

q,r

sgn(r)qr =
∑

q

sgn(q)
∑

r

sgn(qr)qr

︸ ︷︷ ︸
= a (rearrangement lemma)

= a
∑

q

sgn(q) = 0 .

⇒ s and a generate non-equivalent irredu
ible representations of Sn with basis ve
tors

{ps} and {pa} (p ∈ Sn), respe
tively.
De�nition: (asso
iate representations)

For a representation Γλ of Sn with dimension dλ, we 
all Γ
λ
and Γ̃λ := Γλ ⊗ Γa

asso
iate

representations.

Remarks:

1. dim( Γ̃λ ) = dλ

2. Γ̃λ is irredu
ible ⇔ Γλ is irredu
ible, sin
e

Γ̃λ(p) = sgn(p)Γλ(p) ⇒
∑

p

|χ̃λ(p)|2 =
∑

p

|χλ(p)|2

(= n! if irredu
ible).

3. If χλ(p) = 0 for all odd p, then Γ̃λ is equivalent to Γλ (sin
e then all 
hara
ters

are identi
al, 
f. Se
tion 2.6), and Γλ is 
alled self-asso
iate. Otherwise they are

non-equivalent.

4. Γs
and Γa

are asso
iate to ea
h other.

The following theorem is relevant for systems of bosons or fermions.

Theorem 16. Let Γλ and Γµ be irredu
ible representations of Sn. Then

(i) Γλ ⊗ Γµ 
ontains Γs
exa
tly on
e (not at all),

if Γλ and Γµ are equivalent (non-equivalent).

(ii) Γλ ⊗ Γµ 
ontains Γa
exa
tly on
e (not at all),

if Γλ and Γµ are asso
iate (not asso
iate).
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Proof:

First: Consider only unitary representations of Sn
(all others are equivalent to unitary reps, 
f. Theorem 2)

⇒ Chara
ters of irredu
ible representations are real, sin
e

p−1
is in the same 
onjuga
y 
lass as p ⇒ χ(p) = χ(p−1) =

↑
rep is unitary

χ(p)
.

(i) Let as be the multipli
ity of Γ
s
in Γλ⊗µ.

as =
1

n!

∑

p

χs(p)︸ ︷︷ ︸
=1

χλ⊗µ(p) =
1

n!

∑

p

χλ(p)︸ ︷︷ ︸
=χλ(p)

χµ(p) =

{
1 if Γλ and Γµ are equivalent

0 otherwise

.

(ii) Let aa be the multipli
ity of Γ
a
in Γλ⊗µ.

aa =
1

n!

∑

p

χa(p)︸ ︷︷ ︸
=sgn(p)

χλ⊗µ(p) =
1

n!

∑

p

sgn(p)χλ(p)︸ ︷︷ ︸
=χ̃λ(p)=χ̃λ(p)

χµ(p)

=

{
1 if Γ̃λ and Γµ equivalent, i.e. if Γλ and Γµ asso
iate

0 otherwise

.

�

5.2 Young diagrams and Young tableaux

De�nition: (partition, Young diagram)

A partition λ = (λ1, λ2, . . . , λr) of a natural number n is a (�nite) sequen
e of positive

integers with

r∑

i=1

λi = n and λi ≥ λi+1 .

Let λ and µ be two partitions for the same n.

(i) We say that λ and µ are equal, if λi = µi ∀ i.
(ii) We say λ > µ if the �rst non-vanishing term of the sequen
e λi − µi is positive.

Graphi
ally a partition 
an be represented as a Young diagram:

• n boxes, arranged in r rows, left-aligned,

• where the ith row 
onsists of λi boxes.
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Examples:

1. For n = 3 there are 3 di�erent partitions:

(3) (2, 1) (1, 1, 1)

2. For n = 4 there are 5 di�erent partitions:

(4) (3, 1) (2, 2) (2, 1, 1) (1, 1, 1, 1)

2019-11-21

Remark: Ea
h partition 
orresponds to a 
onjuga
y 
lass of Sn and vi
e versa:

• A 
onjuga
y 
lass is 
hara
terised by its 
y
le stru
ture (see Problem 27).

• We read the ith row of the diagram as a λi-
y
le.

• Ea
h of the numbers 1, 2, . . . , n appears in exa
tly one 
y
le ⇒ ∑
i λi = n.

⇒ In parti
ular, the number of Young diagrams for n is equal to the number of 
onjuga
y


lasses of Sn, and thus equal to the number of non-equivalent irredu
ible representations
of Sn.

Example: For S3 we have

{e} : 3 1-
y
les, i.e (1, 1, 1)

{(12), (13), (23)} : 1 2-
y
le, 1 1-
y
le, i.e. (2, 1)

{(123), (132)} : 1 3-
y
le, i.e. (3)

Further de�nitions:

• A Young tableau is a Young diagram, where ea
h of the numbers 1, . . . , n has been

written into one of the boxes.

Examples:

3 4 1
2

or

2 4
3 1

• In a normal Young tableau the numbers appear in in
reasing order, beginning in the

�rst row from left to right, 
ontinuing in the se
ond row et
.

Examples:

1 2 3
4

or

1 2
3 4

For ea
h Young diagram there is exa
tly one normal Young tableau.
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• In a standard Young tableau the numbers in
rease in every row and every 
olumn

(but not ne
essarily in stri
t order).

Examples:

1 2 4
3

or

1 3
2 4

• The normal Young tableau 
orresponding to the partition λ we denote by Θλ.

• We obtain an arbitrary tableau from Θλ by a permutation p of the n numbers in the

boxes:

Θp
λ = pΘλ .

This implies qΘp
λ = Θqp

λ .

Example:

Θ
(23)
(2,2) =

1 3
2 4

Remark: The naming 
onventions in the literature vary, e.g. Young diagramm, Young

graph, Young tableau, or Young frame.

5.3 Young operators

We will see that with ea
h Young tableau we 
an asso
iate a primitive idempotent gener-

ating a minimal left ideal in A(Sn) und thus an irrep of Sn.

De�nitions: Let Θp
λ be a Young tableau.

A horizontal permutation hpλ permutes only numbers within rows of Θp
λ.

A verti
al permutation vpλ permutes only numbers within 
olumns of Θp
λ.

Furthermore, we de�ne

the (row-)symmetriser spλ =
∑

{hp
λ
}

hpλ ,

the (
olumn-)anti-symmetriser apλ =
∑

{vpλ}

sgn(vpλ) v
p
λ and

the Young operator

(or irredu
ible symmetriser)

epλ = spλ a
p
λ =

∑

{hp
λ
}

∑

{vp
λ
}

sgn(vpλ) h
p
λ v

p
λ .

(Some books de�ne e = as instead of e = sa. This is only a matter of 
onvention but leads

to di�erent intermediate results!)

Example: standard tableaux for S3

• Θ1 := Θ(3) = 1 2 3 : all p are horizontal: s1 =
∑

p p = s (symmetriser for S3)

only e is verti
al: a1 = e
e1 = se = s
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• Θ2 := Θ(2,1) =
1 2
3

: e and (12) are horizontal: s2 = e+ (12)
e und (13) are verti
al: a2 = e− (13)
e2 = s2a2 = e + (12)− (13)− (132)

• Θ3 := Θ(1,1,1) =
1
2
3

: only e is horizontal: s3 = e
all p are verti
al: a3 =

∑
p sgn(p)p = a (anti-symmetriser for S3)

e3 = ea = a

• Θ
(23)
2 = 1 3

2
: e and (13) are horizontal: s

(23)
2 = e+ (13)

e and (12) are verti
al: a
(23)
2 = e− (12)

e
(23)
2 = s

(23)
2 a

(23)
2 = e− (12) + (13)− (123)

In birdtra
ks: (
f. Se
tion 1.4 and Problem 28)

e1 = 3! , e3 = 3! , e2 = 4 , e
(23)
2 = 4 .

Re
all (see Problem 28) that open and solid bars over ℓ lines 
ome with a normalisation

fa
tor of 1/ℓ!.

Observations:

Most of the general features (for Sn with n arbitrary) are already present in this example.

(In the following we suppress the upper index p whenever that is unambiguous.)

1. For ea
h tableau Θλ the horizontal and the verti
al permutations, {hλ} and {vλ},
form subgroups of Sn, with {hλ} ∩ {vλ} = {e}.
We obtain the subgroups for Θp

λ from those for Θλ by 
onjugation with p (whi
h

has the same e�e
t as permuting the the numbers in the tableau); 
onsequently

epλ = peλp
−1
. (In the birdtra
k diagrams above we see this by intertwining the last

two lines of e2 on the left and on the right.)

2. sλ and aλ are (total) symmetriser and anti-symmetriser of the 
orresponding sub-

group, in the sense that

sλhλ = hλsλ = sλ and aλvλ = vλaλ = sgn(vλ)aλ .

3. sλ and aλ are essentially idempotent, but in general not primitive.

The eλ are essentially idempotent and primitive (Exer
ises).

4. e1 = s and e3 = a generate the two one-dimensional irreps of S3 (
f. Se
tion 5.1).
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e2 generates a two-dimensional left ideal L2 of A(S3) (by right multipli
ation),

ee2 = e2 ,

(12)e2 = (12) + e− (132)− (13) = e2 ,

(23)e2 = (23) + (132)− (123)− (12) =: r2 ,

(13)e2 = (13) + (123)− e− (23) = −e2 − r2 ,
(123)e2 = (123) + (13)− (23)− e = −e2 − r2 ,
(132)e2 = (132) + (23)− (12)− (123) = r2 ,

i.e. L2 = span(e2, r2). Sin
e e2 is primitive, L2 is minimal.

⇒ The Young operators of the normal Young tableaux generate all irredu
ible rep-

resentations of S3.

5. e
(23)
2 also generates an irredu
ible representation. It has to be equivalent to the irrep

generated by e2, sin
e there are no more two-dimensional irreps of S3.

The left ideal generated by e
(23)
2 is L

(23)
2 = span(e

(23)
2 , r

(23)
2 ) with

r
(23)
2 = (123)− (13) + (23)− (132) .

It is linearly independent from the other left ideals L1 = span(e1), L3 = span(e3),
and L2.

6. A(S3) is the dire
t sum of these four minial left ideals.

The identity 
an be de
omposed as

e =
1

6
e1 +

1

3
e2 +

1

3
e
(23)
2 +

1

6
e3 ,

i.e., the regular representation of S3 is 
ompletely redu
ed by the Young operators


orresponding to the standard Young tableaux.

5.4 Irredu
ible representations of Sn

Most observations about the Young operators for S3 made in Se
tion 5.3 
arry over to Sn
for arbitrary n. (The ex
eption is Observation 6, whi
h is only true for n ≤ 4; it 
an be

reestablished for n ≥ 5 by modifying the Young operators.)

Theorem 17. Let λ 6= µ be a partitions of n ∈ N.

(i) The Young operators epλ are essentially idempotent, i.e. (epλ)
2 = ηλe

p
λ with ηλ 6= 0 and

(ii) the

1
ηλ
epλ are primitive idempotents.

(iii) The irredu
ible representations generated by eλ and eµ are not equivalent.

(iv) The irredu
ible representations generated by eλ and epλ are equivalent.
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Remark: The Young operators eλ of the normal Young tableaux thus generate all non-

equivalent irreps of Sn. . . . sin
e there are as many irreps as there are 
onjuga
y 
lasses

and the 
onjuga
y 
lasses are labelled by partitions or Young diagrams.

Proof: First noti
e that no two terms in

eλ =
∑

{hλ}

∑

{vλ}
sgn(vλ)hλvλ

are the same, sin
e

hλvλ = h′λv
′
λ ⇔ (h′λ)

−1hλ︸ ︷︷ ︸
horizontal

= v′λ(vλ)
−1

︸ ︷︷ ︸
verti
al

⇔ hλ = h′λ and vλ = v′λ

as {hλ} ∩ {vλ} = {e}; in parti
ular eλ 6= 0 and

eλ = e+ terms proportional to p ∈ Sn\{e} .

2019-11-26

In birdtra
ks we have

epλ =

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. (∗)

• Within the grey boxes the lines are 
onne
ted in some way (de�ned by the Young

tableau Θp
λ).

• We also draw one-box (anti-)symmetrisers,

= = ,

i.e. ea
h line in the middle is atta
hed to exa
tly one symmetriser and one anti-

symmetriser.

• The number of symmetrisers (anti-symmetrisers) is given by the number of rows

(
olumns) of Θλ.

• The number of lines atta
hed to a symmetriser (anti-symmetriser) is given by the

number of boxes of the 
orresponding row (
olumn).

Now all proofs will boil down to the question whether we 
an �nd a non-zero 
onne
tion

in the middle of diagrams like (∗).
(iii) We show eλqeµ = 0 ∀ q ∈ A(Sn) (
f. Theorem 13): First observe that

eλqeµ = 0 ∀ q ∈ A(Sn) ⇔ eλpeµ = 0 ∀ p ∈ Sn .
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Sin
e eλpeµ = sλaλpsµaµ we have a linear 
ombination of terms of the form sλpaλ, p ∈ Sn
whi
h in birdtra
ks look like the diagram in (∗), but with the symmetrisers of eλ on the

left and the anti-symmetrisers of eµ on the right. W.l.o.g. let λ > µ.

The �rst (longest) symmetriser goes over λ1 lines. For sλpaλ to be non-zero we have to


onne
t ea
h of these lines to a di�erent anti-symmetriser, of whi
h there are µ1 many. If

λ1 > µ1 then at least two lines have to be 
onne
ted to the same anti-symmetriser and the

term vanishes.

If λ1 = µ1 we 
ontinue with the se
ond symmetriser: λ2 lines whi
h have to be 
onne
ted

to anti-symmetrisers that go over at least two lines � there are µ2 many of these. If λ2 > µ2

we get zero.

If λ2 = µ2 we 
ontinue with the next symmetriser, but eventually we rea
h the �rst j s.t.
λj > µj.

(i) (epλ)
2 = spλa

p
λs
p
λa

p
λ is a linear 
ombination of terms of the form spλqa

p
λ, q ∈ Sn. We already

know that spλqa
p
λ 6= 0 for q = e (sin
e that's just epλ). Varying q we get, by inspe
ting (∗),

• the same result, if q inter
hanges only lines whi
h are atta
hed to the same sym-

metriser,

• at most a sign if q inter
hanges only lines whi
h are atta
hed to the same anti-

symmetriser,

• zero if q 
hanges the way in whi
h the symmetrisers and anti-symmetrisers are 
on-

ne
ted.

Thus, (epλ)
2 = ηλe

p
λ, but we still have to show that ηλ 6= 0. However, if ηλ was zero then e

p
λ

would be nilpotent. Then the tra
e of the map A(Sn) ∋ q 7→ qepλ would be zero, but the

tra
e of this map is n! (
oe�
ient of e times the order of the group, 
f. Se
tion 4.3.1).

(ii) epλqe
p
λ = spλa

p
λqs

p
λa

p
λ is again a linear 
ombination of terms of the form spλqa

p
λ, q ∈ Sn;

we have shown in (i) that they are all proportional to epλ.

(iv) Sin
e epλ = peλp
−1

we 
on
lude that epλpeλ = peλp
−1peλ =

(i)
pηλeλ 6= 0.

�

Remark: Unfortunately, for n ≥ 5 the Young operators for the standard tableaux no

longer satisfy epλe
q
λ = 0 ∀ p 6= q (they still satisfy epλe

q
µ = 0 ∀λ 6= µ, see (iii) above).

However, the ideals generated by the Young operators of the standard tableaux are still

linearly independent (Exer
ises) and

A(Sn) =
⊕

{ standard
tableaux

Θp
λ}
A(Sn)epλ .

(without proof). In parti
ular this implies that dim (A(Sn)epλ) is given by the number of

standard tableaux for the partition λ.
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5.5 Cal
ulating 
hara
ters using Young diagrams

The 
hara
ters of the irreps of Sn, and in parti
ular their dimensions dµ = χµ(e), 
an be

evaluated with the methods of Se
tion 4.3.1. There are more e�
ient methods whi
h we

give here without proofs.

These methods are bases on the Frobenius 
hara
ter formula (or Frobenius-Weyl-Charakter-

Formel) whi
h relates 
hara
ters of irreps of Sn to 
hara
ters of irreps of Sm with m < n.

• The dimension dλ of irrep Γλ with Young diagram Θλ is given by the number of

standard tableaux for the partition Θλ. Two other formulas:

dλ= n!

∏
i<j(ℓi − ℓj)∏

i ℓi!
=

n!∏
i,k hik

with

n! = |Sn|
i, j = 1, . . . , r (r = number of rows of Θλ)

k = 1, . . . , λi (λi = number of boxes in row i)

ℓi = λi + r − i
hik = number of boxes below and to the right of box i, k + 1 for the box itself,


alled the hook length of the box i, k

Examples:

(i)

h23 = 7

(ii) Young diagram with hook lengths written into the boxes:

Θλ =
6 4 2 1
3 1
1

⇒ dλ =
7!

6 · 4 · 2 · 1 · 3 · 1 · 1 = 35

• This implies that Sn has only two one-dimensional irreps (Γs
and Γa

, 
f. Se
tion 5.1)

with Young diagrams:

Γs : ···︸ ︷︷ ︸
n boxes

, Γa : :̇




n boxes.
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• For an irrep Γλ we obtain the asso
iate irrep Γ̃λ by transposing Θλ, i.e. by inter-


hanging rows and 
olumns:

Θλ = , Θ̃λ = .

2019-11-28

• Re
ursive evaluation of 
hara
ters of irreps of Sn:

� The boundary of a Young diagramm is the right and lower boundary,

i.e. a boundary �eld is any �eld, s.t. there is no �eld to the lower right of it.

Example: 1
3 2

6 5 4
7

� skew-hook := 
onne
ted pie
e of the boundary, s.t. after removing this pie
e we

retain a Young diagram.

In the example above: 1�2, 1�4, 1�5, 1�7, 2, 2�4, 2�5, 2�7, 4, 4�5, 4�7, 7

⇒ All end boxes of rows are starting boxes of skew hooks,

all end boxes of 
olumns are end boxes of skew hooks.

� Ea
h hook 
orresponds to a skew hook and vi
e versa.

The hook length is equal to the length of the 
orresponding skew hook.

Example: The skew hook 1�5 
orresponds to the following hook:

1
3 2

6 5 4
7

� A skew hook is 
alled positive (negative), if the number of its verti
al steps(=

number of rows −1) is even (odd).

� Let c be a 
onjuga
y 
lass of Sn with disjoint 
y
les of lengths a1, a2, . . . , aq.
Wanted: 
hara
ter χλc of this 
lass in irrep Γλ.

∗ Choose any 
y
le of c, say with length ai.

∗ Denote by c̄ the 
lass of Sn−ai , obtained by removing the 
y
le ai from c.

∗ For the Young diagram Θλ determine all skew hooks of length ai and denote
the Young diagram(s) of Sn−ai, obtained by removing su
h a skew hook by

Θλ̄. Then

χλc =
∑

λ̄

±χλ̄c̄

with �+� for positive skew hooks and �−� for negative skew hooks.
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∗ Iterate this pro
edure.

∗ If no box of the Young diagram remains then χλ̄=0
( ) = 1.

(Don't forget the sign of the last skew hook removed!)

∗ If there is no skew hook of length ai then χ
λ
c = 0.

This method is most e�
ient if we 
hoose the 
y
le ai s.t. there are as few skew hooks

of length ai as possible.

Examples:

1. S13, c = (7, 4, 2), Γλ = (6, 3, 3, 1) =

� There is only one (skew) hook of length 7:

∗ ∗ ∗ ∗
∗

∗ ∗

⇒ χ
(6,3,3,1)
(7,4,2) = +χ

(2,2,1,1)
(4,2)

� Now there is only one (skew) hook of length 4:

∗ ∗
∗
∗

⇒ χ
(6,3,3,1)
(7,4,2) = +χ

(2)
(2) = 1 (trivial rep)

2. On
e more, 
hara
ters of the two-dimensional irrep of S3,


f. Se
tion 2.4.1 and Problem 29:

χ(3) = −1 (remove 
ompletely, 1 verti
al step)

χ(2,1) = 0 (no skew hook of length 2)

χ(1,1,1) = χ(1,1) + χ(1,1) = 1 + 1 = 2
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6 Lie groups

When speaking about in�nite groups we will 
ombine the notion of a group with notions

from others areas of mathemati
s. There will be pre
ise de�nitions using notions like

�topologi
al spa
e�, �
onne
tedness� or �di�erentiable manifold�. However, we will not

introdu
e all these notions and 
on
epts in detail. If you are familiar with these notions �

�ne. If not, don't pani
k! Some of the subtelties will not be relevant for the 
ases we are

interested in, so we will gloss over them. Aspe
ts whi
h are important in our 
ontext will be

introdu
ed and dis
ussed 
arefully, su
h that no prior knowledge beyond, say, multivariable


al
ulus/analysis in Rn
will be required.

6.1 Topologi
al groups

De�nition: (topologi
al group)

A set G is 
alled topologi
al group if

(i) G (with some operation) is a group,

(ii) G is a topologi
al spa
e,

(iii) the map G ∋ g 7→ g−1 ∈ G is 
ontinuous, and

(iv) the map G×G ∋ (g, h) 7→ gh ∈ G is 
ontinuous.

Examples:

1. Parametrise GL(n,R) = {A ∈ Rn×n : detA 6= 0} by the matrix elements Aij ∈ R,

i.e. GL(n,R) ⊂ Rn2
, and 
hoose on GL(n,R) the indu
ed topology of (the standard

topology of) Rn2
.

• The matrix elements of C = AB are algebrai
 fun
tions of Aij and Bkl, i.e

(A,B) 7→ AB is 
ontinuous.

• A 7→ A−1
is also 
ontinuous, sin
e the matrix elements of A−1

are rational,

non-singular fun
tions of the Ajk.
⇒ GL(n,R) is a topologi
al group.

2. By similar arguments O(n) or SO(n) topologi
al groups as subsets of Rn2
, and

GL(n,C), U(n) or SU(n) as subsets of Cn2
.

De�nition: (isomomorphism)

Two topologi
al groups G and H are 
alled isomorphi
, if there exists a bije
tive map

f : G→ H , whi
h is both, an isomorphism of groups, and a homeomorphism of topologi
al

spa
es (i.e. f is 
ontinuous and f−1
is 
ontinuous).

Example: The group G1 = (R,+) is a topologi
al group.

We de�ne the group G2 = (R,⊕) by

x⊕ y = f
(
f(x) + f(y)

)
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where

f(x) =

{
x , if x ≤ 1 or x ≥ 2

3− x , if 1 < x < 2
.

Noti
e that f(f(x)) = x ∀ x ∈ R. In G2, for small ε > 0, we have (1 − ε)−1 = −1 + ε,
but (1 + ε)−1 = −2 + ε, i.e. G2 is not a topologi
al group sin
e property (iii) is violated.

f : G2 → G1 is an isomorphism of groups but not an isomorphism of topologi
al groups.

De�nition: (homogeneous spa
e)

A topologi
al spa
e X is 
alled homogeneous, if for every pair x, y ∈ X there exists a

homeomorphism f : X → X s.t. f(x) = y.

Remark: Every topologi
al group G is homogeneous, sin
e for any g1, g2 ∈ G there is a

(unique) h ∈ G s.t. g2 = hg1 (h = g2g
−1
1 ). Thus, f : g 7→ hg is the desired homeomorphism

(sin
e group multipli
ation is 
ontinuous).

Homogeneity simpli�es studying lo
al properties dramati
ally: It is su�
ient to study the

group in a neighbourhood of one elements, e.g. in a neighbourhood of the identity.

Later, when we also 
an di�erentiate, then we 
an study lo
al properties by expanding

about the identity. This will lead us from Lie groups to Lie algebras.

Important global properties are 
ompa
tness and 
onne
tedness. (dis
onne
ted, simply


onne
ted, multiply 
onne
ted)

Examples (
ompa
tness):

1. Consider O(n) = {A ∈ Rn×n : ATA = 1}. The matrix elements Aij of A ∈ O(n)
satisfy

n∑

k=1

AikAjk = δij ⇒
n∑

i,k=1

A2
ik = n ,

i.e. the elements of O(n) 
an be identi�ed with points on sphere with radius

√
n in

Rn2
. The union of these points is a 
losed

15

and bounded subset of this sphere and

thus 
ompa
t ⇒ O(n) is 
ompa
t.

Similarly for U(n).

2. The Lorentz boosts Λ (transformations between 
oordinate systems with relative

velo
ity v)

x′0 =
x0 − v

c
x1√

1− v2

c2

, x′1 =
x1 − v

c
x0√

1− v2

c2

, (c: speed of light, x0 = c·time)

form the group O(1, 1) and as matri
es 
an be parametrised as

Λ =
1√

1− β2

(
1 −β
−β 1

)
∈ R2×2

with β = v
c
.

15

sin
e it's the solution of a system of polynomial equations
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Sin
e |v| < c we have β ∈ (−1, 1), i.e. the parameter range is bounded but not 
losed

⇒ the Lorentz group O(1, 1) is not 
ompa
t.

Maybe non-
ompa
tness es even more evident when using the parametrisation in

terms of the rapidity t with β = tanh t (
f. Problem 11), sin
e then t ∈ R.

3. GL(n,R) is not 
ompa
t be
ause det : Rn×n → R is 
ontinuous but not bounded on

GL(n,R) (sin
e | det(λA)| = |λ|n |detA|, ∀ λ ∈ R).
2019-12-03

De�nition: (
onne
ted 
omponent)

The 
onne
ted 
omponent of g ∈ G is the union of all 
onne
ted sets that 
ontain g.

Remarks:

1. A 
onne
ted 
omponent is a
tually 
onne
ted.

2. (a) Let G0 ⊆ G be the 
onne
ted 
omponent of the identity e.

(b) If G is 
onne
ted then G0 = G.

(
) If G0 = {e}, then G is totally dis
onne
ted as due to homogeneity all other


onne
ted 
omponents then also 
ontain just one element.

(d) The 
onne
ted 
omponent of g is gG0 = G0g, sin
e g ∈ gG0 (and ∈ G0g)
and sin
e left and right multipli
ation are homeomorphisms and as su
h map


onne
ted sets to 
onne
ted sets.

(e) Hen
e G0 is a normal subgroup.

(f) The quotient group G/G0 is totally dis
onne
ted, sin
e G/G0
∼= {gG0 : g ∈ G},

i.e. for two di�erent elements h1G0 6= h2G0 (of the quotient group) h2 
annot be

ontained in the 
onne
ted 
omponent of h1 (sin
e this 
onne
ted 
omponent is

just the 
oset h1G0).

Examples:

1. SU(2) is 
onne
ted (even simply 
onne
ted), sin
e with the parametrisation of Prob-

lem 22,

SU(2) ∋ g =

(
u −v
v u

)
,

|u|2 + |v|2 = 1 ⇔ (Re u)2 + (Im u)2 + (Re v)2 + (Im v)2 = 1 ,

SU(2) is homeomorphi
 to S3
, and spheres Sn with n ≥ 2 are (simply) 
onne
ted.

2. O(n) is not 
onne
ted, sin
e OTO = 1 implies

1 = det(OOT ) = (detO)2 ⇔ detO = ±1

i.e. O(n) has two 
onne
ted 
omponents, SO(n) = {O ∈ O(n) : detO = 1} and
{O ∈ O(N) : detO = −1}.

Before dis
ussing Lie groups in general, let's look at an example whi
h illustrates some of

the basi
 ideas.
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6.2 Example: SO(2)

• SO(2) = group of rotations in the plane R2
about the origin

• Parametrise by one parameter,

natural 
hoi
e: rotation angle φ with 0 ≤ φ < 2π.
(Any monotonous fun
tion of φ would also be �nde.)

• De�ning representation: a
tion of SO(2) on ve
tor in R2
(i.e. as an orthogonal 2× 2

matrix)

xj 7→
∑

k

Rjkxk with R(φ) =

(
cosφ − sinφ
sin φ cos φ

)
. (∗)

• SO(2) is abelian, sin
e R(φ1)R(φ2) = R(φ1 + φ2) = R(φ2)R(φ1).

• Derivative:

dR

dφ
(φ) =

(
− sin φ − cosφ
cosφ − sinφ

)

. . . at the identity 1 (φ = 0)

dR

dφ
(0) =

(
0 −1
1 0

)
=: −iJ with J =

(
0 −i
i 0

)
.

(the fa
tor (−i) is physi
ists' 
onvention)
J is 
alled generator of the group, sin
e. . .

• Seek a di�erential equation of the form

dR
dφ

= AR:

dR

dφ
(φ) =

(
− sinφ − cosφ
cosφ − sinφ

)
R(φ)−1

︸ ︷︷ ︸
=R(−φ)

R(φ)

=

(
− sinφ − cosφ
cosφ − sinφ

)(
cosφ sin φ
− sin φ cosφ

)
R(φ)

=

(
0 −1
1 0

)
R(φ) = −iJR(φ)

Hen
e R(φ) solve the initial value problem dR
dφ

= −iJR, R(0) = 1 ⇒ R(φ) = e−iJφ
.

• With J2 = 1 we have

R(φ) = e−iJφ =
∞∑

n=0

(−i)n
n!

Jnφn

=
∞∑

n=0

(−i)2n
(2n)!

J2n

︸ ︷︷ ︸
=

(−1)n

(2n)!
1

φ2n +
∞∑

n=0

(−i)2n+1

(2n+ 1)!
J2n+1

︸ ︷︷ ︸
=−i

(−1)n

(2n+1)!
J

φ2n+1

= 1 cos(φ)− iJ sinφ . X 
f. (∗)
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• Viewed as a representation on C2
(although we introdu
ed it as a representation on

R2
) the de�ning representation is redu
ible. It 
an be redu
ed by diagonalising J :

J =

(
0 −i
i 0

)
has eigenvalues ±1 with eigenve
tors e± =

(
1
±i

)
, i.e.

Je± = ±e± ⇒ R(φ)e± = e∓iφe± ,

we �nd two one-dimensional (and thus irredu
ible) unitary representations, e±iφ
.

• Consider now a (
omplex) ve
tor spa
e V , dimV = n, and a representation of SO(2)
in terms of unitary matri
es U(φ) a
ting on V .

We 
an write

U(φ) = e−iJφ

with a Hermitian n× n matrix J , sin
e then

U(φ1)U(φ2) = e−iJφ1e−iJφ2 = e−iJ(φ1+φ2)
(be
ause the exponents 
ommute)

= U(φ1 + φ2) and

U(φ)† = eiJ
†φ = eiJφ = U(−φ) = U(φ)−1

By diagonalising J we 
an 
ompletely redu
e U ⇒ all unitary irredu
ible represen-

tations are one-dimensional (also sin
e SO(2) is abelian, 
f. Problem 13).

• Now seek one-dimensional unitary representations, i.e. J ∈ R. Due to U(2π) = U(0)
we demand

e−2πiJ = 1 ⇔ J = m ∈ Z ,

i.e. the unitary irredu
ible representations Um(φ) = e−imφ
are labelled by integers m:

(i) m = 0: R(φ) 7→ U0(φ) = 1 (trivial representation)

(ii) m = 1: R(φ) 7→ U1(φ) = e−iφ

Isomorphism between SO(2) and the unit 
ir
le in C, i.e. SO(2) ∼= U(1); thus
everything observed for SO(2) is also true for U(1).

(iii) m = −1: R(φ) 7→ U−1(φ) = eiφ,
like (ii), but unit 
ir
le 
overed in opposite dire
tion.

(iv) m = ±2: R(φ) 7→ U±2(φ) = e∓2iφ
.

Homomorphism SO(2)→ U(1), with unit 
ir
le 
overed twi
e.

Similarly for larger m.

Only the representations with m = ±1 are faithful.

• Now 
onsider f : SO(2)→ C (su�
iently ni
e).

Parametrising SO(2) by the rotation angle φ, f has to be a 2π-periodi
 fun
tion of

φ. Then ∫ 2π

0

f(φ)
dφ

2π
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is invariant under φ 7→ φ + α for any �xed α; essentially, we integrate over SO(2),

with normalisation 
hosen s.t. |SO(2)| =
∫ 2π

0
dφ
2π

= 1.

With his we obtain: Orthogonality of representation matri
es / 
hara
ters (
f. The-

orem 6 and 
orollary to Theorem 6),

∫ 2π

0

Um(φ)Un(φ)
dφ

2π
=

∫ 2π

0

ei(m−n)φ dφ

2π
= δmn ,

and 
ompleteness (
f. Problem 19), i.e. the Fourier series of f ,

∑

n∈Z
e−inφ cn =

∑

n∈Z
Un(φ) cn

with cn =
1

2π

∫ 2π

0

einφ
′

f(φ′) dφ′ =

∫ 2π

0

Un(φ′)f(φ′)
dφ′

2π
,


onverges to f (pointwise for, say, 
ontinuously di�erentiable f , otherwise at least in
the L2

-sense),

Physi
s notation:

f(φ) =

∫ 2π

0

1

2π

∑

n∈Z
Un(φ)Un(φ′)

︸ ︷︷ ︸
=δ(φ−φ′)

f(φ′) dφ′ .

(δ-fun
tion/-
omb as integral kernel of Fourier expansion)
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6.3 Lie groups

De�nition: (Lie group)

A set G is 
alled Lie group, if:

(i) G is a group,

(ii) G is an analyti
 manifold,

(iii) the map G ∋ g 7→ g−1 ∈ G is analyti
, and

(iv) the map G×G ∋ (g, h) 7→ gh ∈ G is analyti
.
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Remarks:

1. An n-dimensional analyti
 manifold M is Hausdor� spa
e equipped with 
harts

(Uj , ϕj), i.e. Uj ⊆M open and homeomorphisms ϕj : Uj → ϕ(Uj) ⊆ Rn
, with

(i) M =
⋃
j Uj and

(ii) ϕj ◦ ϕ−1
k : ϕk(Uj ∩ Uk)→ ϕj(Uj ∩ Uk) analyti
 ∀ j, k

(i.e. 
an be expanded into 
onvergent power series).

2. This means that lo
ally the group elements are analyti
 fun
tions of n parameters,

where n is the dimension of G (as a manifold), more pre
isely:

Consider a 
hart (U, ϕ) and g, h, gh ∈ U . Denote by xj , j = 1, . . . , n, the 
oordinates
of g, and by yj the 
oordinates of h, i.e.

ϕ(g) = (x1, x2, . . . , xn) = x ∈ Rn

ϕ(h) = (y1, y2, . . . , yn) = y .

Then the 
oordinates zj of gh,

ϕ(gh) = (z1, z2, . . . , zn) = z ,

are analyti
 fun
tions of x and y,

zj = fj(x, y) .

Similarly, the 
oordinates of g−1
are analyti
 fun
tions of x.

3. Now 
hoose U with e ∈ U and ϕ s.t. ϕ(e) = 0 ∈ Rn
, and f as above. Then

fj(x, 0) = xj , fj(0, y) = yj

and thus

∂fj
∂xk

(0, 0) =
∂fj
∂yk

(0, 0) = δjk

and also

∂2fj
∂xk∂xl

(0, 0) =
∂fj

∂yk∂yl
(0, 0) = 0 .

Expand f(x, y) about (0, 0),

fj(x, y) = xj + yj +
∑

k,l

∂2fj
∂xk∂yl

(0, 0)
︸ ︷︷ ︸

=:ajkl

xkyl + . . .

and de�ne

cjkl := ajkl − ajlk ,
the stru
ture 
onstants of the Lie group (
oordinate dependent). They satisfy:

(i) For abelian groups cjkl = 0, sin
e then f(x, y) = f(y, x).
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(ii) cjkl = −cjlk
(iii)

∑
l(c

j
klc

l
nm + cjnlc

l
mk + cjmlc

l
kn) = 0

The last identity follows from asso
iativity of group multipli
ation by 
omparing the

third order terms in the 
oordinate expansions of g(hg̃) and (gh)g̃.

Example: matrix Lie groups

1. Consider the matrix elements Aij ∈ R of a group element A ∈ GL(n,R) as 
oordi-
nates. The map

ψ : Rn2 → R , A 7→ detA

is 
ontinuous, and thus the preimage ψ−1(0) of the 
losed set {0} is 
losed. GL(n,R)
is the 
omplement of ψ−1(0) and hen
e open and an analyti
 submanifold of Rn2

.

• The matrix elements of C = AB are algebrai
 fun
tions of Aij and Bkl, i.e

(A,B) 7→ AB is analyti
.

• Likewise A 7→ A−1
, sin
e the matrix elements of A−1

are rational, non-singular

fun
tions of Ajk.
Hen
e GL(n,R) is a Lie group.

2. For GL(n,C) 
onsider real and imaginary part of the matrix elements as 
oordinates

and argue as before (in terms of submanifolds of R2n2
).

3. For groups like O(n), U(n), SO(n) or SU(n) one �rst observes that they are 
losed

subgroups of GL(n,R) or GL(n,C), respe
tively. One 
an show that 
losed subgroups

of Lie groups are Lie (sub-)groups. (Later we will study some of these more expli
itly.)

6.4 Lie algebras

De�nition: A Lie algebra g is a ve
tor spa
e over a �eld K (here mostly R, sometimes

C), with an operation

[·, ·] : g× g→ g

(X, Y ) 7→ [X, Y ]


alled Lie bra
ket, whi
h satis�es (∀ X, Y, Z ∈ g):

(i) [λX + µY, Z] = λ[X,Z] + µ[Y, Z] ∀ λ, µ ∈ K (linearity)

(ii) [X, Y ] = −[Y,X ] (anti-symmetry)

(iii) [X, [Y, Z]] + [Y, [Z,X ]] + [Z, [X, Y ]] = 0 (Ja
obi identity)

Remarks:

1. A Lie algebra is 
alled 
ommutative if [X, Y ] = 0 ∀ X, Y ∈ g.

2. One 
an show that the tangent spa
e to a Lie group G at the identity is a Lie algebra g.

To this end 
onsider 
urves g(t) in G with g(0) = e. Then the derivative (in a 
hart) at

t = 0 is a tangent ve
tor.
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For matrix Lie groups we 
an expli
itly de�ne the Lie algebra elements, also 
alled gener-

ators, as matri
es:

−iġ(0) := −idg
dt

(0) ∈ g .

The Lie bra
ket is now the matrix 
ommutator (rather times (−i), see below)

[X, Y ] = XY − Y X .

The 
ommutator is linear and anti-symmetri
, the Ja
obi identity 
an be veri�ed by dire
t


al
ulation.

It remains to show that X, Y ∈ g implies that also (−i)[X, Y ] ∈ g.

To this end 
onsider a 
urve g(t) with g(0) = e, and thus X := −iġ(0) ∈ g.

De�ne another 
urve g̃(t) = h g(t) h−1
with g̃(0) = heh−1 = e, i.e.

−i ˙̃g(0) = h
(
− iġ(0)

)
h−1 = hXh−1 ∈ g .

With yet another 
urve h(t) with h(0) = e, i.e. Y := −iḣ(0) ∈ g de�ne

X̃(t) = h(t)X h(t)−1 ∈ g .

The derivative also takes values in g (sin
e g is a ve
tor spa
e), and thus

˙̃
X(0) = iY X +X(iY ) = −i(XY − Y X) = (−i)[X, Y ] ∈ g .

Here we have used that

d
dt
h(t)−1

∣∣
t=0

= −iY , whi
h follows from

d
dt

(
h(t)−1h(t)

)
= 0 and

the produ
t rule.)

Choosing a basis {Xj} of g we have

[Xj , Xk] = i
∑

l

cljkXl

with the stru
ture 
onstants cljk of the Lie algebra (basis dependent).

The stru
ture 
onstants of the Lie algebra are equal to the stru
ture 
onstants of 
orre-

sponding the Lie group (see Se
tion 6.3) � supposing an appropriate 
hoi
e of basis and


oordinates: As basis {Xj} for g 
hoose the tangent ve
tors to the 
oordinate lines in a


hart U ∋ e, i.e. for matrix Lie groups in an expli
it parametrisation by taking derivatives

with respe
t to the parameters,

Xj = −iġ(0) with g(t) = ϕ−1(0, . . . , 0, xj = t, 0, . . . , 0) ,

hen
e Xj = −i
∂ϕ−1

∂xj
(0) .

In Se
tion 6.3 we 
ompared expansions of gh and hg, here we expanded hgh−1−g. The

properties (ii) & (iii) of the stru
ture 
onstants of Se
tion 6.3 now follow from the Lie

bra
ket properties (ii) & (iii) of the 
ommutator.

2019-12-10
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3. It is su�
ient to 
onsider spe
ial 
urves, namely one-parameter subgroups, i.e. solutions

of the initial value problem

ġ(t) = iXg(t) , g(0) = e ,

with X ∈ g. One writes g(t) = exp(iXt). For matrix Lie groups this exponential is given

by the absolutely and uniformly 
onvergent series

exp(itX) =

∞∑

ν=0

(it)ν

ν!
Xν

(
f. Problem 33).

For the spe
ial groups with det g = 1 the generators are tra
eless, sin
e

det g(t) = det(eitX) = eit trX
!
= 1 ⇔ trX = 0 .

For unitary groups, i.e. gg† = 1, the generators are Hermitian, sin
e

g(t)† = g(t)−1 ⇔ e−itX†

= e−itX ⇔ X = X† .

(See Problem 33 in both 
ases.)

Examples:

1. G = SO(3), i.e. rotations in 3 dimensions; de�ning representation in terms of 3 × 3
matri
es R,

~x 7→ R~x ,

e.g. rotation by angle φ about the z-axis:

Rz(φ) =



cosφ − sinφ 0
sin φ cos φ 0
0 0 1


 .

Generator:

J3 := Jz := −i
dRz

dφ
(0) =




0 i 0
−i 0 0
0 0 0


 ∈ g = so(3)

(Hermitian and tra
eless). Similarly for rotations about the x- or y-axis,

J1 := Jx =



0 0 0
0 0 i
0 −i 0




and J2 := Jy =



0 0 −i
0 0 0
i 0 0


 .

One veri�es by dire
t 
al
ulation that [Jx, Jy] = iJz et
., i.e.

[Jj , Jk] = −i
3∑

l=1

εjkl Jl
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with the stru
ture 
onstants of SO(3) or so(3):

εjkl =





1 , j, k, l 
y
li

0 , at least 2 indi
es equal

−1 , otherwise

.

2. G = {OA operators for rotations} (again, 
onsider either as elements of some groupG
isomorphi
 to SO(3) or as a representation of SO(3)), a
ting on fun
tions f : R3 → C

(
f. Se
tion 2.4.1), say f ∈ C1(R3) as

(ORf)(~x) = f(R−1~x) with R ∈ SO(3) .

On
e more, rotation by angle φ about z-axis:

(ORz(φ)f)(x, y, z) = f
(
Rz(φ)

−1
(
x
y
z

))
= f(x cosφ+ y sin φ,−x sinφ+ y cosφ, z) .

Generator (viewed either as element of g or as representation of an element of so(3)):

−i d
dφ

(ORz(φ)f)(x, y, z)

∣∣∣∣
φ=0

= −i
(
∂f

∂x
(~x) y +

∂f

∂y
(~x) (−x)

)
= i

(
x
∂

∂y
− y ∂

∂x

)

︸ ︷︷ ︸
∈g

f(~x)

In quantum me
hani
s Lz =
1
i
(x ∂

∂y
−y ∂

∂x
) is the z-
omponent of the so-
alled angular

momentum operator

~L = ~x × (~
i
∇) (here ~ = 1). Commutators and stru
ture


onstants as in the previous example.

Remark: In physi
s the generators typi
ally are operators 
orresponding to quantities

that 
an be measured (observables).

6.5 More on SO(3)

We study some global properties of SO(3) in terms of an expli
it parametrisation.

• SO(3) = rotation group in 3 dimensions: 3 real parameters

Consider, e.g., an orthogonal matrixR ∈ SO(3), 
onsisting of 3 orthonormal 
olumns:

1st 
olumn, 
hoose freely  2 parameters (angles � point on a 2-sphere), 2nd se
ond

orthogonal to 1st 
olumn, otherwise arbitrary  1 parameter (angle).

• We 
an parametrise rotations as R~n(ψ), with rotation angle ψ and rotation axis ~n,

~n =



sin θ cos φ
sin θ sinφ

cos θ




.

x

y

z
~n

θ

φ
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parameter ranges:

0 ≤ θ ≤ π

0 ≤ φ < 2π

0 ≤ ψ ≤ π (sin
e we have ~n and −~n)

redundan
ies: (i) R~n(0) = R~n′(0)

(ii) R~n(π) = R−~n(π)

• A rotation thus 
orresponds to a ve
tor

~ψ = ψ~n, i.e. SO(3) 
orresponds to a ball in

three-dimensional spa
e with radius π.

x

y

z

~ψ
θ

φ π

Using the 
artesian 
omponents of

~ψ as parameters, −i ∂R/∂ψj yields the generators
of Se
tion 6.4.

Ba
k to the parametrisation in terms of θ, φ, ψ. . .

This �xes redundan
y (i), and due to redundan
y (ii) antipodal points on the surfa
e

of the ball have to be identi�ed (i.e. SO(3) is homeomorphi
 to the real proje
tive

spa
e RP 3
).

• Consequently, there are two kinds of 
losed 
urves in SO(3): Curves whi
h 
an be


ontinuously 
ontra
ted to a point, and 
urves for whi
h this is not possible, i.e.

SO(3) is 
onne
ted but not simply 
onne
ted.

P

P

b

a

Curve b is also 
losed in SO(3).
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These global properties in�uen
e the possible representations of the group (as we will

see later).

• Further observations:

Rotations about a �xed axis form a (one-parameter) subgroup of SO(3). Su
h a

subgroup is isomorphi
 to SO(2) (
f. Se
tion 6.2).

For arbitrary rotations R ∈ SO(3) we have (
an be shown expli
itly using the gener-

ators of Se
tion 6.4)

RR~n(ψ)R
−1 = R~n′(ψ) with ~n′ = R~n .

This implies that all rotations by the same angle are in the same 
onjuga
y 
lass.

Alternative parametrisation in terms of Euler angles

We just list some formulae; 
an be 
he
ked by dire
t 
omputation.

• Every rotation 
an also be expressed in terms of Euler angles,

R = R3(α)R2(β)R3(γ)

with

R2(ψ) = Ry(ψ) =




cosψ 0 sinψ
0 1 0

− sinψ 0 cosψ


 ,

R3(ψ) = Rz(ψ) =



cosψ − sinψ 0
sinψ cosψ 0
0 0 1


 .

• parameter ranges:

0 ≤ α, γ < 2π

0 ≤ β ≤ π

• relation with axis-angle parameters:

φ =
1

2
(π + α− γ)

tan θ =
tan β

2

sin α+γ
2

cosψ = 2 cos2
β

2
cos2

α + γ

2
− 1

2019-12-12
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6.6 Invariant integration: Haar measure

When representing �nite groups we often used the rearrangement lemma as follows

∑

g∈G
f(g) =

∑

g∈G
f(hg) =

∑

g∈G
f(gh) ∀ h ∈ G .

For 
ontinuous groups we would like to repla
e

∑
g∈G f(g) by an integral, say,

∫
G
f(g)dµ(g).

To this end we need an invariant measure µ.

Theorem 18. (Haar measure)

Every 
ompa
t topologi
al group possesses a right- and left-invariant measure µ, 
alled Haar
measure; it is unique up to normalisation.

(in this generality without proof � but we will show expli
itly how to 
onstru
t µ for


ompa
t Lie groups)

Remarks:

1. Invarian
e means

µ(gA) = µ(Ag) = µ(A)

∀ g ∈ G and all Borel sets A ⊂ G, and in parti
ular

dµ(gh) = dµ(hg) = dµ(g) ∀ g, h ∈ G .

2. In the following for 
ompa
t groups we normalise s.t.

volG =

∫

G

dµ(g) = 1 .

3. Hen
e (e.g. for 
ontinuous fun
tions)

∫

G

f(hg) dµ(g) =
g′=hg

∫

G

f(g′) dµ(h−1g′) =

∫

G

f(g′) dµ(g′) and

∫

G

f(gh) dµ(g) =
g′=gh

∫

G

f(g′) dµ(g′h−1) =

∫

G

f(g′) dµ(g′) .

4. Moreover,

∫
G

f(g−1) dµ(g) =
∫
G

f(g) dµ(g) or dµ(g−1) = dµ(g), sin
e

∫

G

f(g−1) dµ(g) =

∫

G

f(hg−1) dµ(g) =

∫

G

∫

G

f(hg−1) dµ(h)

︸ ︷︷ ︸∫
G
f(h) dµ(h)

dµ(g)

=∫
G

dµ(g)=1

∫

G

f(h) dµ(h) .
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5. Uniqueness. If µ and ν are both left- and right-invariant and normalised as∫
G
dµ(g) =

∫
G
dν(g) = 1, then µ = ν, sin
e with

(i)

∫
G
f(g) dµ(g) =

∫
G
f(hg) dµ(g) and

(ii)

∫
G
f(f) dν(h) =

∫
G
f(hg) dν(h)

we 
an 
on
lude that

∫

G

∫

G

f(hg) dµ(g) dν(h) =
(i)

∫

G

∫

G

f(g) dµ(g) dν(h) =

∫

G

f(g) dµ(g)

=
(ii)

∫

G

∫

G

f(h) dµ(g) dν(h) =

∫

G

f(h) dν(h) .

6. One also �nds invariant measures under weaker 
onditions, e.g. lo
ally 
ompa
t

groups (like GL(n,R) or the Lorentz group) possess left-invariant and right-invariant

measures (unique up to normalisation) but in general the two measures are not iden-

ti
al.

Many properties follow already from the existen
e of Haar measure � we don't have to

know it expli
itly. Nevertheless, let's 
ontinue with. . .

6.6.1 Cal
ulating the Haar measure for a Lie group

Parametrise the group elements using n = dimG parameters, i.e.

16 g = g(x1, . . . , xn), then
(lo
ally),

dµ(g) = ̺(x1, . . . , xn) d
nx

with a suitable density ̺(x) and Lebesgue measure dnx = dx1 . . .dxn. We now 
onstru
t

̺ s.t. invarian
e holds.

First: Behaviour of ̺ under reparametrisation (
oordinate 
hange/transition between dif-

ferent 
harts) x = f(y):

dµ(g) = ̺(x) dnx = ̺(f(y))

∣∣∣∣det
(
∂f

∂y
(y)

)∣∣∣∣
︸ ︷︷ ︸

Ja
obian

dny =: ˜̺(y) dny

Now expand (−i)g(x)−1 ∂g
∂xj

(x) in a basis {Xk} of the Lie algebra g,

g(x)−1 ∂g

∂xj
(x) = i

∑

k

XkA(x)kj

This is possible, be
ause if g(x) = e then the expression is a generator, else

∂g
∂xj

(x) lies in

the tangent spa
e at g(x) and is transported to e by g−1(x).

16

A
tually g = ϕ−1(x1, . . . , xn) but we suppress 
hart-dependen
e for a moment.
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Alternatively, expli
itly 
onsider h(x, t) := g(x)−1g(x + tej), ej a 
oni
al basis ve
tor, for

�xed x as 
urve in G. Then h(x, 0) = e and thus

g ∋ ∂h
∂t

(x, 0) = g(x)−1∂g

xj
(x) .

Claim: The density ̺(x) := | detA(x)| de�nes a left-invariant measure.

Proof:

(i) First 
he
k behaviour under a 
hange of 
oordinates x = f(y). To this end denote

g(f(y)) =: g̃(y). We have

g̃(y)−1 ∂g̃

∂yj
(y) = g(f(y))−1

∑

ℓ

∂g

∂xℓ
(f(y))

∂fℓ
∂yj

(y)

= i
∑

ℓ,k

XkA(f(y))kℓ
∂fℓ
∂yj

(y)
!
= i
∑

k

XkÃ(y)kj ,

i.e. Ã(y) = A(f(y)) ∂f
∂y
(y) and thus

˜̺(y) = | det Ã(y)| = | detA(f(y))|︸ ︷︷ ︸
̺(f(y))

∣∣∣∣det
∂f

∂y
(y)

∣∣∣∣

as required.

(ii) Choose a spe
ial parametrisation (in a neighbourhood) of g̃ := hg,

g̃(x) = h · g(x) .

Then

g̃(x)−1 ∂g̃

∂xj
(x) = (h · g(x))−1h

∂g

∂xj
(x) = g(x)−1 ∂g

∂xj
(x)

i.e. ˜̺(x) = ̺(x) whi
h implies the desired invarian
e,

dµ(hg) = ˜̺(x) dnx = ̺(x) dnx = dµ(g) .
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(iii) Any other parametrisation 
an be a
hieved by further 
oordinate 
hanges as in (i).

�

Now 
he
k right-invarian
e: Choose a parametrisation of g̃ := gh by

g̃(x) = g(x) · h .

Then

g̃(x)−1 ∂g̃

∂xj
(x) = h−1g(x)−1 ∂g

∂xj
(x) h = h−1 i

∑

k

XkA(x)kj h .

Sin
e h−1Xkh ∈ g,17 we 
an write h−1Xkh =
∑

ℓXℓ ϕ(h)ℓk with a matrix ϕ(h), i.e.

g̃(x)−1 ∂g̃

∂xj
(x) = i

∑

kℓ

Xℓ ϕ(h)ℓkA(x)kj =: i
∑

l

XℓÃ(x)ℓj

i.e. Ã(x) = ϕ(h)A(x) and thus

dµ(gh) = ˜̺(x) dnx = | det Ã(x)| dnx = | detϕ(h)| | detA(x)| dnx
= | detϕ(h)| ̺(x) dnx = | detϕ(h)| dµ(g)

The fa
tor | detϕ(h)| is 
alled modular fun
tion of G. If | detϕ(h)| = 1 ∀ h ∈ G, we say
that G is unimodular, and the left-invariant measure is also right-invariant.

Consider now

∫

G

f(gh) dµ(g) =
g′=gh

∫

G

f(g′) dµ(g′h−1) = | detϕ(h−1)|
∫

G

f(g′) dµ(g′)

and for 
ompa
t G 
hoose the 
onstant funktion f ≡ 1. Then

∫

G

dµ(g) = | detϕ(h−1)|
∫

G

dµ(g)

i.e. 
ompa
t Lie groups are unimodular.

Trivial example: SO(2) (
f. Se
tion 6.2)

Parametrisation

g(φ) =

(
cosφ − sinφ
sin φ cos φ

)
,

generator

X = −i dg
dφ

(0) =

(
0 i
−i 0

)
,

17

Every Lie group a
ts by 
onjugation on its own Lie algebra (
f. Problems 38 & 40). Expli
itly: Let g(t)
be a 
urve with g(0) = e and −iġ(0) = X ⇒ g̃(t) = hg(t)h−1

is a 
urve with g̃(0) = e and −i ˙̃g(0) = hXh−1
,

i.e. hXh−1 ∈ g ∀ h ∈ G.
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and thus

g(φ)−1 dg

dφ
(φ) =

(
cos φ sin φ
− sinφ cosφ

)(
− sin φ − cos φ
cosφ − sinφ

)
=

(
0 −1
1 0

)
= iX ,

i.e. A(φ) = 1 and hen
e dµ(g) = dφ (as expe
ted).

Now we pro
eed with what we 
an 
on
lude already from the existen
e of the Haar measure

(even before 
onstru
ting it expli
itly)

2019-12-17

6.7 Properties of 
ompa
t Lie groups

Theorems 2 and 6 (in
luding the 
orollary) for representations of �nite groups also hold for


ontinuous representations of 
ompa
t Lie groups, if in statements and proofs we repla
e

1

|G|
∑

g∈G
. . . by

∫

G

. . . dµ(g) ,

i.e.:

(i) Every �nite-dimensional representation is equivalent to a unitary representation.

(ii) The matrix elements of unitary irredu
ible representations Γµ, Γν (non-equivalent for
µ 6= ν) are orthogonal, i.e.

∫

G

Γµ(g)jk Γ
ν(g)j′k′ dµ(g) =

1

dµ
δµνδjj′δkk′

with dµ = dimΓµ.

(iii) Similarly for the 
hara
ters χµ(g) = tr Γµ(g) =
∑

j Γ
µ(g)jj,

∫

G

χµ(g)χν(g) dµ(g) = δµν .

This implies again:

Γ is irredu
ible ⇔
∫

G

|χ(g)|2 dµ(g) = 1 (where χ(g) = tr Γ(g)) ,

as well as: If Γ is a dire
te sum of irredu
ible representations, Γ =
⊕
µ

aµΓ
µ
, then

aµ =

∫

G

χµ(g)χ(g) dµ(g) .

For �nite groups we also showed 
ompleteness of the representation matri
es' elements

(
f. Problem 17) and the 
omplete redu
ibility the regular representation, 
arried by the

group algebra A(G) (
f. Se
tion 4.3). This implied that there were only �nitely many

non-equivalent irredu
ible representation (see also Se
tion 2.7).
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Similarly one 
an show that 
ompa
t Lie groups have 
ountably many non-equivalent

(
ontinuous) irredu
ible representations, whi
h are all of �nite dimension. Moreover, every


ontinuous representation is a dire
t sum of irredu
ible representations. All this follows

from the Peter-Weyl theorem.

Consider the ve
tor spa
e C(G) of 
ontinuous fun
tions φ : G→ C with s
alar produ
t

〈φ|ψ〉 :=
∫

G

φ(g)ψ(g) dµ(g)

(
f. the orthogonality relations for matrix elements and 
hara
ters above). The role of the

regular representation is assumed by Γ de�ned as

(Γ(h)φ)(g) = φ(h−1g) ∀ h ∈ G .

rep sin
e

(Γ(h′)(Γ(h)φ))(g) = (Γ(h)φ)(h′−1g) = φ(h−1h′−1g) = (Γ(h′h)φ)(g) ,

as for the OA operators, 
f., e.g., Se
tion 2.4.1.

Theorem 19. (Peter-Weyl)

Let G be a 
ompa
t Lie group with non-equivalent irredu
ible representations Γµ, dimΓµ =
dµ. Then the matrix elements

√
dµ Γ

µ(g)jk, j, k = 1, . . . , dµ, form a 
omplete set of or-

thonormal fun
tions for C(G).

(without proof)

Remarks:

1. We 
an thus expand every fun
tion f ∈ C(G) as

f(g) =
∑

µ,j,k

cµjk Γ
µ(g)jk

(
onvergen
e in L2
-sense) where

cµjk = dµ

∫

G

Γµ(g)jk f(g) dµ(g) .

This generalises Fourier series (whi
h we get for SO(2) ∼= U(1), 
f. Se
tion 6.2).

2. Completeness in physi
s notation:

∑

µ,j,k

dµ Γ
µ(g)jk Γµ(h)jk = δ(g − h)

with ∫

G

δ(g − h) f(g) dµ(g) = f(h) .
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6.8 Irredu
ible representations of SO(3)

For every g ∈ SO(3) exists an X ∈ so(3) s.t. g = eiX . Choose, e.g., the basis

J1 =



0 0 0
0 0 −i
0 i 0


 , J2 =




0 0 i
0 0 0
−i 0 0


 , J3 =



0 −i 0
i 0 0
0 0 0


 ,

of so(3) (generators from Se
tion 6.4 times (−1)) with

[Jj , Jk] = i
∑

ℓ

εjkℓJℓ .

Then

R~n(ψ) = e−iψ~n ~J
where ~n ~J =

3∑

j=1

njJj

(rotation about axis ~n by angle ψ, 
f. Se
tion 6.5), sin
e ~x(t) := e−it~n ~J~x(0) solves

~̇x = (−i~n ~J) ~x =




0 −n3 n2

n3 0 −n1

−n2 n1 0





x1
x2
x3


 =



−n3x2 + n2x3
n3x1 − n1x3
−n2x1 + n1x3


 = ~n× ~x ,

i.e. 
ir
ular motion / rotation about axis ~n.

• From every representation of a Lie group we obtain (by taking derivatives) a repre-

sentation of the 
orresponding Lie algebra (in terms of matri
es).

With g(t), g(0) = e, ġ(0) = iX and a rep Γ of G de�ne the derived rep dΓ of g by

dΓ(X) = −i d
dt

Γ
(
g(t)

)∣∣∣
t=0

.

• From a representation of the Lie algebra so(3) we obtain (by exponentiating) a rep-

resentation of the group SO(3), if the global (topologi
al) properties are satis�ed.
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The operator

J2 :=

3∑

j=1

J2
j


ommutes with all generators (and thus with every X ∈ so(3)):

[J2, Jk] =
∑

j

[J2
j , Jk] =

∑

j

(Jj[Jj , Jk] + [Jj , Jk]Jj)

= i
∑

j,ℓ

(JjεjkℓJℓ + εjkℓJℓJj︸ ︷︷ ︸
=εℓkjJjJℓ

) = i
∑

j,l

(εjkℓ + εjℓk)︸ ︷︷ ︸
=0

JjJℓ = 0 .

J2
is not in the Lie algebra; it is a so-
alled Casimir operator and an element of the

enveloping algebra (see later). [·, ·] is the (matrix) 
ommutator.

• This further implies [J2, g] = 0 ∀ g ∈ SO(3), sin
e g = eiX with X ∈ so(3).

• For representations all this also holds for the representation matri
es of g, X , and

J2
.

• If the representation is irredu
ible then a

ording to S
hur's Lemma (Theorem 4),

the representation matrix of J2
is a multiple of the identity matrix.

Now 
onsider a representation (in general redu
ible) on a ve
tor spa
e V .

Shortened notation: Denote the representation matri
ex of g,X, J2
also by g,X, J2

(instead of Γ(g), dΓ(X) et
.).

Constru
t irredu
ible subspa
es (and thus irredu
ible representations) as follows:

• Choose a suitable starting ve
tor.

• Generate an irredu
ible basis by repeatedly applying the generators.

Suitable starting ve
tor: Joint (normalised) eigenve
tor of J2
and J3 (possible sin
e [J

2, J3] =
0), in Dira
 notation

J3|m〉 = m|m〉
(Here we do not indi
ate the eigenvalue of J2

when labelling the states, sin
e for the

moment we stay in �xed eigenspa
e of J2
. Later we will write |jm〉 instead of |m〉.

De�ne

J± := J1 ± iJ2 .

Then

[J±, J3] = [J1 ± iJ2, J3] = −iJ2 ± i(iJ1) = ∓(J1 ± iJ2) = ∓J±
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and thus

J3(J±|m〉) = (J±J3 − [J±, J3])|m〉 = (J±m± J±)|m〉 = (m+ 1)(J±|m〉) ,

i.e. either J±|m〉 ∝ |m± 1〉 or J±|m〉 = 0.

Sin
e the invariant subspa
e has to be �nite dimensional this sequen
e has to terminate

on both sides, say at m = j and at m = ℓ with j ≥ ℓ,

J3|j〉 = j|j〉 , J3|ℓ〉 = ℓ|ℓ〉 ,
J+|j〉 = 0 , J−|ℓ〉 = 0 .

2019-12-19

We further have

J−J+ = (J1 − iJ2)(J1 + iJ2) = J2
1 + J2

2 + i[J1, J2]

= J2
1 + J2

2 − J3 ⇒ J2 = J2
3 + J−J+ + J3

and

J+J− = (J1 + iJ2)(J1 − iJ2) = J2
1 + J2

2 − i[J1, J2]

= J2
1 + J2

2 + J3 ⇒ J2 = J2
3 + J+J− − J3 .

This implies

J2|j〉 = (J2
3 + J3 + J−J+)|j〉 = j(j + 1)|j〉 ,

J2|ℓ〉 = (J2
3 − J3 + J+J−)|ℓ〉 = ℓ(ℓ− 1)|ℓ〉 .

Sin
e all states lie in the same irredu
ible subspa
e, they are all in the same eigenspa
e of

J2
, i.e.

j(j + 1) = ℓ(ℓ− 1) .

This is a quadrati
 equation with 2 solutions: ℓ = −j and ℓ = j + 1, but sin
e j ≥ ℓ we
have

ℓ = −j and j ≥ 0 .

Starting from ℓ we rea
h j with unit steps and thus

j − ℓ = j − (−j) = 2j ∈ N

Hen
e, so(3) has irredu
ible representations with j = 0, 1
2
, 1, 3

2
, 2, . . .

• The dimension of irrep j is 2j + 1.
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• For orthonormal basis ve
tors, now denoted by |jm〉, we have
J2|jm〉 = j(j + 1)|jm〉
J3|jm〉 = m|jm〉
J±|jm〉 = [j(j + 1)−m(m± 1)]1/2|j,m± 1〉

One obtains the last equation by 
al
ulating the norm of J±|m〉.
Denote by Γj(g) the potential representations of SO(3) de�ned by

Γj(g)|jm〉 = g|jm〉 ,
i.e. the matrix elements are

Γj(g)mm′ = 〈jm|g|jm′〉 ,
and in parti
ular

Γj(e−itJ3)mm′ = 〈jm|e−itJ3 |jm′〉 = 〈jm|e−itm′ |jm′〉 = e−itmδmm′ .

We have e−2πiJ3 = e, but Γj(e−2πiJ3)mm′ = e−2πimδmm′
, i.e. only for

m ∈ Z ⇔ j ∈ N0

do we have Γj(e−2πiJ3) = 1 and only then we really get representations of SO(3).

Irredu
ible representations of SU(2)
The Pauli matri
es σ1, σ2, σ3 (
f. Problem 34) form a basis of the Lie algebra su(2) with

[σj , σk] = 2i
∑

l

εjklσl ,

i.e. the matri
es σk/2 satisfy the same relations as the Jk, and thus su(2) ∼= so(3). Hen
e
we also already know all irredu
ible representations of su(2). Sin
e SU(2) = exp(isu(2))
(Problem 37) and sin
e SU(2) is simply 
onne
ted, we get irredu
ible representations of

SU(2) for all j ∈ N0/2.

Remark on the last step: A

ording to Problem 38 the homomorphism ϕ : SU(2) →
SO(3) satis�es ϕ(e−iα

2
~n~σ) = R~n(α), but e−iα

2
~n~σ

is not the identity for α = 2π. However,

Γj(e−4πi
σ3
2 ) = 12j+1 is true for every half-integer j.

Chara
ters

Sin
e all rotations by the same angle are in the same 
onjuga
y 
lass, is it su�
ient to


onsider rotations about ~e3:

χj(ψ) =

j∑

m=−j
Γj(R~e3(ψ))mm =

j∑

m=−j
e−imψ

for SO(3) with j ∈ N0, ψ ∈ [0, π) ,

χj(α) =

j∑

m=−j
Γj(e−iα

2
σ3)mm =

j∑

m=−j
e−imα

for SU(2) with j ∈ N0/2, α ∈ [0, 2π) .

In parti
ular, for the de�ning (or �fundamental�) representations

χ1/2(α) = 2 cos(α
2
) , χ1(ψ) = 1 + 2 cosψ .
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6.9 Remarks on some 
lassi
al Lie groups

De�nition: (adjoint representation)

LetG be Lie group with 
orresponding Lie algebra g, and let g ∈ G. The map Ad : g 7→ Adg
with

Adg : g → g

X 7→ gXg−1 =: Adg(X)

is 
alled adjoint representation of G (on g).

Remarks:

1. One also de�nes Adg(h) := ghg−1
for h ∈ G.

2. Ad is a representation sin
e

(i) g is a ve
tor spa
e,

(ii) Adg(X) ∈ g, sin
e h(t) := geiXtg−1
is a 
urve in G with h(0) = e and ḣ(0) =

iAdg(X), and in parti
ular

geiXtg−1 = eiAdg(X)t ,

(iii) (Adg ◦ Adh)(X) = Adg(Adh(X)) = Adg(hXh
−1) = ghXh−1g−1 = Adgh(X)

3. For X ∈ g one further de�nes adX : g→ g by

adX(Y ) =
1

i

d

dt
AdeiXt(Y )

∣∣∣∣
t=0

=
1

i

d

dt

(
eiXtY e−iXt

)∣∣∣∣
t=0

= [X, Y ] .

Lemma 20. (Prin
ipal axis theorem for unitary matri
es)

For every g ∈ U(n) there exists an h ∈ U(n) s.t. h†gh is diagonal, in parti
ular

g = h



eiϕ1 0

.

.

.

0 eiϕn


h†

with real ϕj.

Proof: Redu
e to the prin
ipal axis theorem for Hermitian matri
es.

Let Mφ := {g ∈ U(n) : eiφ is not eigenvalue of g}. Then

fφ :Mφ → Cn×n

g 7→ i(eiφ + g)(eiφ − g)−1
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(generalised Cayley transformation) maps unitary g to Hermitian matri
es A := f(g), sin
e

A† = (−i)(e−iφ − g†)−1(e−iφ + g†)

= (−i)(eiφ + g)(eiφ + g)−1

︸ ︷︷ ︸
=1

(e−iφ − g†)−1(e−iφ + g†)

= (−i)(eiφ + g)(1− eiφg† + e−iφg − 1)−1(e−iφ + g†)

= i(eiφ + g) (eiφg† − e−iφg)−1(e−iφ + g†)︸ ︷︷ ︸
=:B

and

B(eiφ − g) = (eiφg† − e−iφg)−1(e−iφ + g†)(eiφ − g)
= (eiφg† − e−iφg)−1(1+ eiφg† − e−iφg−1) = 1 ,

2020-01-07

i.e. A† = A. Now there exists an h ∈ U(n) s.t. h†Ah = D is diagonal (prin
ipal axis

theorem for Hermitian matri
es). Furthermore, fφ is bije
tive (as fun
tion fromMφ to the

Hermitian n× n matri
es) with

A = i(eiφ + g)(eiφ − g)−1

⇔ A(eiφ − g) = i(eiφ + g)

⇔ eiφ(A− i) = (A + i)g

⇔ g = eiφ(A + i)−1(A− i)= f−1(A) .

Now, for a given g ∈ U(n) 
hoose φ s.t. g ∈Mφ, 
all A := fφ(g), and 
hoose h ∈ U(n) s.t.
h†Ah =: D is diagonal. Then h also diagonalises g:

h†gh = h†eiφ(A+ i)−1hh†(A− i)h = eiφ(D + i)−1(D − i) .

�

Remark: The analogous result also holds for g ∈ SU(n) ⊂ U(n), with h ∈ SU(n), sin
e if

det h 6= 1, 
hoose h̃ = (det h)−
1
n h instead.

Theorem 21. For every g ∈ U(n) there exists an X ∈ u(n) s.t. g = eiX .

Proof: A

ording to Lemma 20 there exists an h ∈ U(n) s.t.

g = h



eiϕ1 0

.

.

.

0 eiϕn


 h† = heiY h†

with

Y =



ϕ1 0

.

.

.

0 ϕn


 ∈ u(n) .
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Moreover,

g = heiY h† = eiAdh(Y )

i.e. the desired X ∈ u(n) is given by X = Adh(Y ). �

Remarks:

1. With the remark after Lemma 20 we also have: For every g ∈ SU(n) there exists an
X ∈ su(n), s.t. g = eiX .

2. Similarly for g ∈ SO(2n): One �rst shows that there exists an h ∈ SO(2n) s.t.

g = h



R1 0

.

.

.

0 Rn


 hT

with Rj ∈ SO(2). For SO(2n+ 1) the diagonal matrix has an additional row with a

1. Then also every g ∈ SO(n) 
an be written as eiX with X ∈ so(n).

3. In all these 
ases we 
an in prin
iple 
onstru
t irreps using the same strategy as in

Se
tion 6.8 for SO(3) or SU(2): First 
onstru
t irredu
ible representations of the Lie
algebra and by exponentiation (potential) reps of the group.

4. The diagonal matri
es whi
h appear in pro
edure are maximal abelian subgroups

(so-
alled maximal tori) of the 
orresponding group.

6.10 More on Lie algebras and related topi
s

With the reasoning of Se
tion 6.9 we know when we 
an go from irreps of a Lie algebra to

irreps of the 
orresponding Lie group. This was the last step in the pro
edure of Se
tion 6.8.

In the previous steps we used properties of J2
. In the following we dis
uss more generally

what happened in that step and mention a 
ouple of relevant notions.

De�nition: (representations of Lie algebras)

Let g be a Lie algebra and V a ve
tor spa
e. A representation φ assigns to ea
h X ∈ g a

linear map φ(X) : V → V s.t.

φ(i [X, Y ]︸ ︷︷ ︸
Lie bra
ket

) = [φ(X), φ(Y )]︸ ︷︷ ︸

ommutator

∀ X, Y ∈ g .

The i-de
oration 
omes from our 
onvention that G = exp(ig).
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Examples:

1. ad : g ∋ X 7→ adX with adX(Y ) = [X, Y ] de�nes a representation of g on g

adX(adY (Z))− adY (adX(Z)) = [X, [Y, Z]]− [Y, [X,Z]]

= [X, [Y, Z]] + [Y, [Z,X ]]

=
Ja
obi identity

−[Z, [X, Y ]]

= [[X, Y ], Z]

= ad[X,Y ](Z) ∀ Z ∈ g .

In a basis {Xj} of g the matrix elements of the representation matri
es are given by

the stru
ture 
onstants:

adXj
(Xk) =: i

∑

l

Xl (adXj
)lk

= [Xj , Xk] = i
∑

l

cljkXl .

2. From a rep Γ of a Lie group G we obtain (by di�erentiation) a rep dΓ of the Lie

algebra g,

dΓ(X) =
1

i

d

dt
Γ(eiXt)

∣∣∣∣
t=0

.

In this Se
tion the i-
onvention for the exponentiation is not optimal. . .

De�nition: (enveloping algebra)

Let g be a Lie algebra with basis {Xj}. The enveloping algebra E(g) 
onsists of formal

polynomials in the generators

∑

j

aj(iXj) +
∑

jk

bjk(iXj)(iXk) +
∑

jkl

cjkl(iXj)(iXk)(iXl) + . . . , aj, bjk, cjkl ∈ R ,

where iXjiXk and iXkiXj + iXl have to be identi�ed if [iXj, iXk] = iXl.

Remarks:

1. A representation φ of a Lie algebra then also yields a representation of the envelop-

ing algebra (
all it also φ), whereby the formal produ
ts and sums be
ome matrix

produ
ts and matrix sums.

2. A basis of the enveloping algebra is, e.g., given by those monomials in the generators

for whi
h the indi
es are non-de
reasing from left to right � all other monomials 
an

obtained by exploiting the Lie bra
ket. Examples for SU(2):

σ2σ1 = σ1σ2 − [σ1, σ2] = σ1σ2 − 2iσ3

σ1σ3σ2 = σ1(σ2σ3 − [σ2, σ3]) = σ1σ2σ3 − 2iσ1σ1
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De�nition: (Casimir operator)

C ∈ E(g) is 
alled Casimir operator if C 
ommutes with all elements of the enveloping

algebra, i.e. if

[C,A] = 0 ∀ A ∈ E(g) .

Example: J2 := J2
1 + J2

2 + J2
3 for SO(3) (
f. Se
tion 6.8).

Remarks:

1. In parti
ular a Casimir operator 
ommutes with all X ∈ g ⊆ E(g).

2. This implies eiXCe−iX = C ∀ X ∈ g, i.e. in the 
ases of Se
tion 6.8 and 6.9, where

G = exp(ig), we immediately 
on
lude gCg−1 = C ∀ g ∈ G.
3. gCg−1 = C ∀ g ∈ G is even true more generally, sin
e one 
an show:

• exp(ig) always 
ontains a neighbourhood of the identity in G.
• By taking (�nite) produ
ts eiXeiY eiZ . . . one rea
hes all g ∈ G0, the 
onne
ted


omponent of the identity.

4. If G is 
onne
ted, then for representations (of the Lie group, the Lie algebra and

the enveloping algebra) we thus have [dΓ(C),Γ(g)] = 0 ∀ g ∈ G, and a

ording to

S
hur's Lemma (Theorem 4) it follows that for irreps dΓ(C) is a s
alar multiple of 1.

In the exer
ise 
lass we will dis
uss the Killing form and a method for �nding one Casimir

operator for groups like SU(n) or SO(n).
2020-01-09
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7 Tensor method for 
onstru
ting irredu
ible represen-

tations of GL(N) and subgroups

7.1 Setting

In the following let V be 
omplex ve
tor spa
e with dimV = N , i.e. V ∼= CN
.

De�ne V ⊗n = V ⊗ · · · ⊗ V︸ ︷︷ ︸
n fa
tors

.

Form tensor produ
ts from |vj〉 ∈ V , j = 1, . . . , n:

n⊗

j=1

|vj〉 = |v1〉 ⊗ |v2〉 ⊗ · · · ⊗ |vn〉 ∈ V ⊗n .

General |v〉 ∈ V ⊗n
are linear 
ombinations of tensor produ
ts, and are 
alled tensors of

rank n.

• Representation Γ of GL(N) on V ⊗n
: De�ning representation γ on ea
h fa
tor,

g ∈ GL(N),

Γ(g)

n⊗

j=1

|vj〉 =
n⊗

j=1

γ(g)|vj〉 ,


ontinue by linearly to all of V ⊗n
(i.e. Γ = γ⊗n).

• Representation D of Sn on V ⊗n
: p ∈ Sn,

D(p)
(
|v1〉 ⊗ |v2〉 ⊗ · · · ⊗ |vn〉

)
= |vp−1(1)〉 ⊗ |vp−1(2)〉 ⊗ · · · ⊗ |vp−1(n)〉 ,

also 
ontinued by linearity to all of V ⊗n
.

D extends to representation of A(Sn).

Evidently,

Γ(g)D(p)|v〉 = D(p)Γ(g)|v〉
∀ p ∈ Sn (and also ∈ A(Sn), ∀ g ∈ GL(N) and ∀ |v〉 ∈ V ⊗n

.

Notation: Form now on, we omit Γ and D, i.e. we write, e.g.,

gp|v〉 = pg|v〉 .

In a basis. . . Choose a basis of V : |j〉, j = 1, . . . , N .

Form a produ
t basis of V ⊗n
:

|j1〉 ⊗ · · · ⊗ |jn〉 =: |j1 . . . jn〉 , jk = 1, . . . , N (k = 1, . . . , n) .
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General element |x〉 ∈ V ⊗n
:

|x〉 =
N∑

j1,...,jn=1

xj1...jn|j1 . . . jn〉 =
↑

summation 
onvention

xj1...jn |j1 . . . jn〉 .

Then, e.g., (with p ∈ Sn)

p|x〉 = xj1...jn|jp−1(1) . . . jp−1(n)〉
= xjp(1)...jp(n)

|j1 . . . jn〉 .

7.2 De
omposition of V ⊗n
into irredu
ible invariant subspa
es

with respe
t to Sn and GL(N)

7.2.1 Symmetry 
lasses

• Notation: Let (as in Se
tion 5)

� Θp
λ be a Young tableau

� epλ the 
orresponding Young operator

� Lλ = {reλ ; r ∈ A(Sn)} the minimal left ideal generated by eλ
(
f. Se
tion 5.4: eλ = eeλ. The other epλ also generate minimal left ideals, and

the 
orresponding irreps for �xed λ are equivalent.)

• Goal: In the following we will see:

� For �xed |v〉 ∈ V ⊗n
the subspa
e

{r|v〉 : r ∈ Lλ} = A(Sn)eλ|v〉

is invariant and irredu
ible with respe
t to Sn.

� For �xed epλ the subspa
e

{epλ|v〉 : |v〉 ∈ V ⊗n} = epλV
⊗n

is invariant and irredu
ible with respe
t to GL(N).

� We 
an 
hoose a basis |λ, α, a〉 of V ⊗n
s.t.

λ lables the so-
alled symmetry 
lass, given by a Young diagram,

α labels the irredu
ible invariant subspa
es w.r.t. Sn,
a labels the irredu
ible invariant subspa
es w.r.t. GL(N).

• For a �xed Young tableau the {epλ|v〉 : |v〉 ∈ V ⊗n} are 
alled tensors of symmetry Θp
λ.

• For a �xed Young diagram {r|v〉 : r ∈ Lλ , |v〉 ∈ V ⊗n} = A(Sn)eλV ⊗n
are 
alled

tensors of symmetry 
lass λ.
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• First 
onsider the subspa
e Tλ(α) = {r|α〉 : r ∈ Lλ} for �xed α:
Tλ(α) is either empty or

(i) Tλ(α) is invariant and irredu
ible under Sn and

(ii) the Sn irrep 
arried by Tλ(α) is given by the irrep 
arried by Lλ.

Proof:

(i) Let |v〉 ∈ Tλ(α), then ∃ r ∈ Lλ s.t.

|v〉 = r|α〉
⇒ p|v〉 = pr︸︷︷︸

∈Lλ

|α〉 ∈ Tλ(α) ∀ p ∈ Sn ,

i.e. Tλ(α) is invariant under Sn. (�irredu
ible� follows from (ii))

(ii) Let {ri} be a basis of Lλ ⇒ {ri|α〉} is a basis of Tλ(α).

a) a
tion of Sn on Lλ: p ∈ Sn,

pri = rjΓ
λ(p)ji .

b) a
tion of Sn on Tλ(α): p ∈ Sn,

pri|α〉 = rjΓ
λ(p)ji|α〉 = rj |α〉Γλ(p)ji .

⇒ The representation matri
es on Tλ(α) are the same as on Lλ, and in parti
ular
Tλ(α) is irredu
ible.

7.2.2 Totally symmetri
 and totally anti-symmetri
 tensors

• Let Θλ=s = · · · , i.e. es = s is the total symmetriser of Sn,
Ls is one-dimensional.

⇒ For given |α〉 the subspa
e Ts(α) is one-dimensional = span(es|α〉).
These tensors are totally symmmetri
 (in all indi
es).

Ea
h Ts(α) 
arries the trivial representation of Sn.

Example: N = 2, n = 3 ⇒ es =
1
6
[e+ (12) + (13) + (23) + (123) + (132)]

There are 4 di�erent totally symmmetri
 tensors:

es|111〉 = |111〉 =: |s, 1, 1〉
es|112〉 = 1

3
(|112〉+ |121〉+ |211〉) =: |s, 2, 1〉

es|122〉 = 1
3
(|122〉+ |212〉+ |221〉) =: |s, 3, 1〉

es|222〉 = |222〉 =: |s, 4, 1〉

We denote the spa
e spanned by the tensors of symmetry 
lass s by T ′
s.
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• Totally anti-symmetri
 tensors (λ = a) exist only for n ≤ N , i.e. only up to rank N ,

Θλ=a = .

.

.

,

sin
e for n > N every basis ve
tor 
ontains at least

two identi
al indi
es, say jk = jl in |j1 . . . jn〉 ⇒ anti-

symmetrisation yields zero.

The Sn irrep on Ta(α) is sgn.

• Example: Tensors of rank 2 (n = 2) in N dimensions

es|ii〉 = |ii〉 i = 1, . . . , N

es|ij〉 =
1

2
(|ij〉+ |ji〉) i 6= j

⇒ N + N(N−1)
2

= 1
2
(N2 +N) totally symmetri
 tensors.

ea|ii〉 = 0 i = 1, . . . , N

ea|ij〉 =
1

2
(|ij〉 − |ji〉) i 6= j

⇒ 1
2
(N2 −N) totally anti-symmetri
 tensors (one for N = 2).

2020-01-14

7.2.3 Tensors with mixed symmetry

As an example 
onsider again tensors of rank n = 3 in N = 2 dimensions, and in parti
ular

Θλ=κ =
1 2
3

with eκ = [e + (12)][e− (13)]

From Se
tion 5.3 we know: Lκ = span(eκ, (23)eκ)

• First we 
hoose |α〉 = |112〉,
eκ|112〉 = [e + (12)][|112〉 − |211〉]

= 2|112〉 − |211〉 − |121〉 =: |κ, 1, 1〉 ,
(23)eκ|112〉 = (23)[2|112〉 − |211〉 − |121〉]

= 2|121〉 − |211〉 − |112〉 =: |κ, 1, 2〉 .
Then Tκ(1) := A(S3)eκ|112〉 = span(|κ, 1, 1〉, |κ, 1, 2〉) is invariant and irredu
ible

under S3 (
f. Se
tion 5.3).

• Now we 
hoose |α〉 = |221〉. Then
eκ|221〉 = 2|221〉 − |122〉 − |212〉] =: |κ, 2, 1〉 ,

(23)eκ|221〉 = 2|212〉 − |122〉 − |221〉] =: |κ, 2, 2〉 ,
is a basis for another 2-dimensional, irredu
ible invariant subspa
e Tκ(2).
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• |κ, 1, 1〉 and |κ, 2, 1〉 are tensors of symmetry Θκ and span the 2-dimensional subspa
e

T ′
κ(1) := eκV

⊗3
.

(i) T ′
κ(1) is invariant under GL(2), sin
e gp = pg ∀ g ∈ GL(2) and ∀ p ∈ S3 implies

geκ|v〉 = eκ g|v〉︸︷︷︸
∈V ⊗3

∈ T ′
κ(1) .

This argument required neither n = 3 nor N = 2, i.e. it is true in general.

(ii) T ′
κ(1) is irredu
ible under GL(2).

Proof: We expli
itly 
onstru
t the representation matri
es for g ∈ GL(2).

g|κ, 1, 1〉 = g(2|112〉 − |211〉 − |121〉)
re
all that g|112〉 = |ijk〉gi1gj1gk2 (sum over i, j, k)

= 2|ijk〉gi1gj1gk2 − |ijk〉gi2gj1gk1 − |ijk〉gi1gj2gk1
3× 8 = 24 terms

= |112〉 (2g11g11g22 − g12g11g21 − g11g12g21)︸ ︷︷ ︸
=2g11 det g

+ |211〉 (2g21g11g12 − g22g11g11 − g21g12g11)︸ ︷︷ ︸
=−g11 det g

+ |121〉 (2g11g21g12 − g12g21g11 − g11g22g11)︸ ︷︷ ︸
=−g11 det g

+ |221〉 (2g21g21g12 − g22g21g11 − g21g22g11)︸ ︷︷ ︸
=−2g21 det g

+ |122〉 (2g11g21g22 − g12g21g21 − g11g22g21)︸ ︷︷ ︸
=g21 det g

+ |212〉 (2g21g11g22 − g22g11g21 − g21g12g21)︸ ︷︷ ︸
=g21 det g

The remaining terms have to vanish sin
e T ′
κ(1) is invariant under GL(N).

= det g
(
|κ, 1, 1〉g11 + |κ, 2, 1〉(−g21)

)

Similarly one �nds

g|κ, 2, 1〉 = det g
(
|κ, 1, 1〉(−g12) + |κ, 2, 1〉g22

)
.

Hen
e the representation matri
es,

Γκ(g) = det g

(
g11 −g12
−g21 g22

)
,

are also ∈ GL(2) and every GL(2)-matrix shows up as Γκ(g). If the represen-

tation was redu
ible, all Γκ(g) would have a joint eigenve
tor � obviously they

don't, and thus the representation is irredu
ible. �
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• Similarly one �nds: |κ, 1, 2〉 and |κ, 2, 2〉 are tensors of symmetry Θ
(23)
κ and span the

2-dimensional subspa
e T ′
κ(2) := e

(23)
κ V ⊗3

, whi
h is also invariant and irredu
ible

under GL(2) and 
arries a representation that is equivalent to that 
arried by T ′
κ(1).

• The dire
t sum of subspa
es T ′
κ(a) (a = 1, 2) 
ontains all tensors of symmetry 
lass

κ with Θκ = .

• Complete redu
tion of the 8-dimensional spa
e V ⊗3
:

(re
all that Θs = and Θκ = )

V ⊗3 = Ts(1)⊕ Ts(2)⊕ Ts(3)⊕ Ts(4)︸ ︷︷ ︸ ⊕ Tκ(1)⊕ Tκ(2)︸ ︷︷ ︸ ← invariant under S3

= T ′
s ⊕

︷ ︸︸ ︷
T ′
κ(1)⊕ T ′

κ(2) ← invariant under GL(2)

T ′
s 
arries a 4-dimensional irrep of GL(2); under S3 it is the deri
et sum of 4 one-

dimensional subspa
es, ea
h 
arrying the trivial rep.

As a 
onvenient basis for V ⊗3
we 
an 
hoose:

� the 4 totally symmetri
 tensors |s, α, 1〉 with α = 1, . . . , 4 from Se
tion 7.2.2,

� the 4 tensors |κ, α, a〉 with α = 1, 2 and a = 1, 2.

7.2.4 Complete redu
tion of V ⊗n

The observations and results of Se
tion 7.2.3 generalise as follows (V ∼= CN
as before).

• V ⊗n

an be 
ompletely de
omposed into irredu
ible Sn-invariant subspa
es,

V ⊗n =
⊕

λ

⊕

α

Tλ(α) .

The λ-sum is only over Young diagrams with at most N rows (N = dimV ), (
f. the
dis
ussion of totally anti-symmetri
 tensors in Se
tion 7.2.2).

• A basis of Tλ(α) is given by the tensors |λ, α, a〉 with a = 1, . . . , dim(Tλ(α)).

The basis tensors 
an be 
hosen s.t. the representations matri
es for Sn on Tλ(α) are
identi
al for all α (whi
h belong to the to the same symmetry 
lass λ:

p|λ, α, a〉 = |λ, α, b〉Γλ(p)ba︸ ︷︷ ︸
independent of α

• The de
omposition of V ⊗n
into irredu
ible Sn-invariant subspa
es also leads to a

de
omposition into irredu
ible GL(N)-invariant subspa
es:

� The subspa
es T ′
λ(a), spanned by |λ, α, a〉 with �xed λ and a, are invariant (see

Se
tion 7.2.3) and irredu
ible (without proof) under GL(N).
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� The GL(N)-irreps 
arried by T ′
λ(a) for �xed λ do not depend on a, i.e. same

Young diagram, di�erent (standard) Young tableaux  equivalent irreps.

Proof: Let |x〉 ∈ Tλ(α) ⊆ T ′
λ. Then ∃ r ∈ A(Sn) with

|x〉 = reλ|α〉 .

For every g ∈ GL(N) we have (sin
e gp = pg ∀p ∈ Sn)

g(reλ)|α〉 = (reλ)g|α〉 ∈ Tλ(gα) ⊆ T ′
λ ,

i.e. g does not 
hange the symmetry 
lass (we already knew this sin
e

T ′
λ =

⊕
a

T ′
λ(a) is invariant under GL(N)), and thus

g|λ, α, a〉 = |λ, β, b〉Γλ(g)(βb)(αa)

(summing over the index pair (βb) � summation 
onvention).

Now we show that Γλ(g)(βb)(αa) is diagonal in the indi
es (a, b).
Let g ∈ GL(N), p ∈ Sn:

gp|λ, α, a〉 = g|λ, α, c〉Dλ(p)ca = |λ, β, b〉Γλ(g)(βb)(αc)Dλ(p)ca

and

pg|λ, α, a〉 = p|λ, β, c〉Γλ(g)(βc)(αa) = |λ, β, b〉Dλ(p)bc Γ
λ(g)(βc)(αa) .

Due to gp = pg the r.h.s.s are equal. For �xed α and β, instead of the Latin

indi
es we write a matrix produ
t:

Γλ(g)βαD
λ(p) = Dλ(p) Γλ(g)βα .

Sin
e this is true ∀ p ∈ Sn we 
on
lude with S
hur's Lemma (Theorem 4) implies

that Γλ(g)βα is a s
alar multiple of the identity, and thus i.e. Γλ(g)(βc)(αa) is
diagonal in the Latin indi
es. �

7.2.5 Dimensions of the GL(N)-representations

Essentially we already know the dimensions of the GL(N)-irreps: To ea
h Young diagram

Θλ 
orresponds an Sn-irrep D
λ
and a GL(N)-irrep Γλ. For the Sn-irreps we 
an determine

dimensions and multipli
ities (within V ⊗n
) using the methods of Se
tions 4.3.1 and 5.

A

ording to the 
onstru
tion in Se
tions 7.2.1�7.2.4 the multipli
ity of Dλ
is equal to the

dimension of Γλ and vi
e versa. Determining the dimensions in this way 
an be tedious,

and there are several other algorithms and formulae. . .
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Graphi
al rule: Consider a Young diagram, e.g. (i.e. S7), and the 
orresponding

normal Young tableau

Θλ =
1 2 3 4
5 6
7

.

Apply the Young operator eλ to |i1 . . . i7〉. (ik ∈ 1, 2, . . . , N , in general N 6= n; here n = 7)

Question: Whi
h starting ve
tors lead to linearly independent results?

Write the is into the Young diagram:

i1 i2 i3 i4
i5 i6
i7

(∗)

It was eλ = sλaλ (see Se
tion 5.3), and hen
e

(i) eλ|i1 . . . in〉 = 0 if in a 
olumn at least two numbers are identi
al.

(ii) eλvλ = sgn(vλ)eλ, and thus eλvλ|i1 . . . in〉 and eλ|i1 . . . in〉 are linearly dependent.

Therefore, it is su�
ient to 
onsider starting ve
tors |i1 . . . in〉 for whi
h the numbers in

ea
h 
olumn of (∗) are in
reasing.

2020-01-16

Now 
hoose the is s.t. the entries in ea
h row are non-de
reasing. (Here equal values are

allowed!)

One 
an show:

(i) The eλ|i1 . . . in〉 obtained in this way are linearly independent.

(ii) eλhλ|i1 . . . in〉 is a linear 
ombination of tensors already 
onstru
ted.

Due to hλeλ = eλ the eλ|i1 . . . in〉 are symmetri
 in all is that stand in the same row in

(∗). This restri
ts the number of basis tensors that 
an be 
onstru
ted from a �xed set

{i1, . . . , in} of indi
es.
With these rules we 
an determine the dimensions of the GL(N)-irreps, e.g. we have for

N = 2 (
f. Se
tion 7.2.3)

dimΓ = 2 and dimΓ = 4 ,

sin
e the allowed 
hoi
es are

1 1
2

and

1 2
2

as well as 1 1 1 , 1 1 2 , 1 2 2 and 2 2 2 .

For and N = 2 there is no allowed 
hoi
e for the distribution of the numbers 1 and 2.

(This is 
onsistent with the fa
t that there are no anti-symmetri
 tensors with n > N , 
f.

Se
tion 7.2.2.)
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We also �nd dimΓ = 2 for GL(2), sin
e 1 and 2 , and in general

dimΓ = N for GL(N) ,

where we write Γ for the de�ning representation, i.e.

V ⊗n = ⊗ · · · ⊗︸ ︷︷ ︸
n fa
tors

.

Finally we 
an express the result of Se
tion 7.2.3 as

⊗ ⊗ = ⊕ ⊕

2 · 2 · 2 = 4 + 2 + 2 ,

for N = 2! In the exer
ises we will also study N = 3 and higher.

The above method is 
onvenient for �xed N . In the exer
ises we will see a method using

birdtra
ks, whi
h yields the dimensions as fun
tions of N .

Further formulae for the dimensions of the GL(N)-irreps (without proofs):

dim(Γλ) =

(
N−1∏

k=1

1

k!

)
det
[
(λi
↑

number of boxes in row i of Θλ

+N − i)N−j
]
i,j=1,...,m

=

(
N−1∏

k=1

1

k!

)
N∏

i<j

(λi − λj − i+ j)

=
∏

ij

N + j − i
hij
↑

hook length of box i, j (see Se
tion 5.5)

(produ
t over all boxes of Θλ

i = row index, j = 
olumn index)

Ba
k to the example V ⊗3
, N = 2:

dim(Γ ) = det

(
4 1
0 1

)
= 4

=
2 + 1− 1

3
· 2 + 2− 1

2
· 2 + 3− 1

1
=

2

3
· 3
2
· 4 = 4

dim(Γ ) = det

(
3 1
1 1

)
= 2

=
2 + 1− 1

3
· 2 + 2− 1

1
· 2 + 1− 2

1
=

2

3
· 3 · 1 = 2

Remark: Using the tensor method one 
an 
onstru
t all(?) polynomial representations of

GL(N), i.e. reps for whi
h the elements of the representation matrix for g ∈ GL(N) are
polynomials in the the matrix elements of g. There are also other reps of GL(N), e.g.

g =

(
a b
c d

)
∈ GL(2) , Γ(g) =

(
1 log |ad− bc|
0 1

)
.
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7.3 Irredu
ible representations of U(N) and SU(N)

The irredu
ible representations of GL(N) (read GL(N,C), with dimension 2N2
as a real

manifold) from Se
tion 7.2.4 also restri
t to representations of subgroups, whi
h do not

need to be irredu
ible. They are, however, irredu
ible for U(N) (dimensionN2
) and SU(N)

(dimension N2−1) but in general not for O(N) and SO(N).

Idea behind this:

• The generators of GL(N) are the generators of U(N) 
omplemented by i times the

generators of U(N).  If one 
an blo
k-diagonalise the representation of the gen-

erators of U(N) one 
an also blo
k-diagonalise the generators of the 
orresponding

GL(N) rep.

• The generators of U(N) are the generators of SU(N) 
omplemented by a multiple of

the identity matrix.  If one 
an blo
k-diagonalise the representation of the gen-

erators of SU(N) one 
an also blo
k-diagonalise the generators of the 
orresponding

U(N) rep.

No su
h simple relation exists for O(N) or SO(N) (dimension N(N−1)/2 in both 
ases).

Already for V ⊗ V , whi
h under GL(N) de
omposes into symmetri
 and anti-symmetri


tensors, the 
orresponding SO(N) rep on the symmetri
 subspa
e 
ontains the trivial rep:

Choose a basis {|j〉} of V ; then |j〉⊗|j〉 (summation 
onvention) is invariant under SO(N):

g
(
|j〉 ⊗ |j〉

)
=
(
|k〉 ⊗ |ℓ〉

)
gkjgℓj =

(
|k〉 ⊗ |ℓ〉

)
δkℓ = |k〉 ⊗ |k〉 .

In the following we are interested in SU(N).

For SU(N) the two irreps 
orresponding to the Young diagrams (with row lenghts)

(λ1, . . . , λN) and (λ1+k, . . . , λN+k) are equivalent, e.g.

and .

for N = 5 and k = 1. (Proof: see Problems 45 & 46.) (For GL(N) they di�er by a

fa
tor of (det g)k, and det g = 1 for g ∈ SU(N).) In parti
ular, the Young diagram Θa = :̇

(N boxes) 
orresponds to the trivial representation, i.e. g 7→ 1 ∀ g ∈ SU(N). Tensors whi
h
transform under SU(N) in the trivial representation are 
alled SU(N) s
alars or SU(N)
singlets. These tensors do, however, transform under Sn in the totally anti-symmetri
 rep

(sgn).

Irredu
ible representations of SU(2)

• de�ning/fundamental representation: , dimension 2

• trivial representation: , dimension 1

• N = 2 ⇒ the Young diagrams have at most 2 rows, i.e. every irrep is equivalent to

� either ,

e.g. ∼ ∼ ∼
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� or a one-row Young diagram, obtained by omitting all two-box 
olumns,

e.g. ∼ ∼ ∼

⇒ Besides we only have to one-row diagrams.

• Dimension of the irrep 
orresponding to a one-row diagram with k boxes:

1 ··· 1 1 , 1 ··· 1 2 , 1 ··· 2 2 , 2 ··· 2 2︸ ︷︷ ︸
k + 1 possibilities

. . . or using hook lengths:

∏

ij

N + j − i
hij

=
k∏

j=1

2 + j − 1

k − j + 1
=

(k + 1)!

k!
= k + 1

⇒ For SU(2) there is exa
tly one irrep for ea
h k ∈ N0, with dimension k + 1 (
f.

Se
tion 6.8, where we arrived at the same result by di�erent means.)

Irreps of SU(3)

• fundamental rep: , dimension 3

• triviale rep: , dimension 1

• N = 3 ⇒ all Young diagrams have at most 3 rows, more pre
isely, all irreps are

equivalent to either or a diagram with at most 2 rows, i.e. (λ1, λ2, 0) with

dim(Γλ) =
1

2
det



(λ1 + 2)2 λ1 + 2 1
(λ2 + 1)2 λ2 + 1 1

0 0 1


 =

1

2
(λ1 + 2)(λ2 + 1)(λ1 − λ2 + 1) .

7.4 Redu
ing tensor produ
ts in terms of Young diagrams

Given two irreps Γλ and Γλ
′
of GL(N), U(N) or SU(N) with Young diagrams Θλ and Θλ′ .

Task: Completely redu
e the produ
t rep Γλ ⊗ Γλ
′
.

[examples motivating the following rules℄

From what we have learned so far one 
an dedu
e the following graphi
al rule (without

proof):

1. Write the number i in all boxes of row i of Θλ′ .

2. Add the boxes of Θλ′ to Θλ, in the �rst step the 1s, in the se
ond step the 2s et
.
adhering to the following rules:

113



(a) In ea
h step the resulting diagram has to be a valid Young diagram and must

not have more than N rows.

(b) A number may not appear more than on
e in the same 
olumn.

(
) When reading the numbers row-wise from right to left beginning with the �rst

row, then the se
ond et
., there must never be more is than (i−1)s in this

sequen
e.

3. If two Young diagrams 
reated in this way have the same shape, we only 
ount them

as di�erent if the is are distributed di�erently.

4. For SU(N) 
olumns with N boxes 
an be omitted.

5. Consisten
y 
he
k: 
ompare dimensions on both sides of the equation!

Illustration of rule 3
:

⊗ 1 1
2 2

= . . . ⊕
1

1 2
2

1,2,1,2

⊕
�
�
�
��❅

❅
❅
❅❅

1
2 2

1

1,2,2,1

se
ond 2 
omes

before se
ond 1

⊕ . . .

Examples:

1. SU(2)

5⊗ 4 = (j=2)⊗ (j=3
2
)

= ⊗ 1 1 1

=

(
1 ⊕

1

)
⊗ 1 1

=

(
1 1 ⊕ 1

1
⊕

1 1

)
⊗ 1

= 1 1 1 ⊕ 1 1
1

⊕ 1
1 1

⊕
1 1 1

= ⊕ ⊕ ⊕
= 8⊕ 6⊕ 4⊕ 2

= (j=7
2
)⊕ (j=5

2
)⊕ (j=3

2
)⊕ (j=1

2
)

We obtained equivalent results in Problem 41 b) by di�erent means.
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2. SU(3)
Overbars in the following examples 
an be safely ignored; their meaning will be

explained in the next se
tion.

3̄⊗ 3 = ⊗ 1 = 1 ⊕
1

= 8⊕ 1

or 3⊗ 3̄ = ⊗ 1
2

=

(
1 ⊕

1

)
⊗ 2 = 1

2
⊕ 1

2
= 8⊕ 1

3⊗ 3 = ⊗ 1 = 1 ⊕
1

= 6⊕ 3̄

3⊗ 3⊗ 3 = (6⊕ 3̄)⊗ 3 =

(
⊕

)
⊗ 1 = 1 ⊕

1
⊕ 1 ⊕

1

= 10⊕ 8⊕ 8⊕ 1

8⊗ 8 = ⊗ 1 1
2

=


 1 ⊕

1
⊕

1


⊗ 1

2

=


 1 1 ⊕ 1

1
⊕

1

1
⊕ 1

1


⊗ 2

= 1 1
2

⊕
1 1

2
⊕ 1

1 2
⊕

1
1

2
⊕

1
2

1
⊕ 1

1 2

= ⊕ ⊕ ⊕ ⊕ ⊕

= 27⊕ 10⊕ 10⊕ 8⊕ 8⊕ 1

7.5 Complex 
onjugate representations

Observation: Sometimes dimΓλ = dimΓλ
′
for λ 6= λ′. This may be �a

idental� but

often it 
an be understood systemati
ally in terms of the following 
onstru
tion.

Example: Consider for N = 3.

Basis tensors: (anti-symmetri
 tensors of rank 2 in 3 dimensions)

|23〉 − |32〉 , |31〉 − |13〉 , |12〉 − |21〉 .
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A
tion of GL(3), e.g.

g(|12〉 − |21〉) = |ij〉(gi1gj2 − gi2gj1)
= |23〉(g21g32 − g22g31) + |32〉(g31g22 − g32g21)︸ ︷︷ ︸

=(|23〉−|32〉) det
( g21 g22
g31 g32

)

+ |31〉(g31g12 − g32g11) + |13〉(g11g32 − g12g31)︸ ︷︷ ︸
=(|31〉−|13〉) (−1) det

( g11 g12
g31 g32

)

+ |12〉(g11g22 − g12g21) + |21〉(g21g12 − g22g11)︸ ︷︷ ︸
=(|12〉−|21〉) det

( g11 g12
g21 g22

)
,

similarly for the other two basis elements. We �nd

Γ (g) =




det

(
g22 g23

g32 g33

)
(−1) det

(
g21 g23

g31 g33

)
det

(
g21 g22

g31 g32

)

(−1) det
(
g12 g13

g32 g33

)
det

(
g11 g13

g31 g33

)
(−1) det

(
g11 g12

g31 g32

)

det

(
g12 g13

g21 g23

)
(−1) det

(
g11 g13

g21 g23

)
det

(
g11 g12

g21 g22

)




= adj(g)T ,

with the adjun
t matrix adj(g). A

ording to Cramer's rule g−1 =
adj(g)

det g
, i.e.

Γ (g) = det g · (g−1)T .

Remark: This is true for arbitrary N > 2 and the Young diagram

:̇
(N−1 boxes).

For SU(3) we have det g = 1 and g−1 = g†, i.e. Γ (g) = g. We write = and also put a

bar over the dimension

2020-01-21

For GL(N), besides the de�ning rep g also (g−1)T , g and (g−1)T are N-dimensional irreps,

in general non-equivalent.

For SU(N), due to g† = g−1
, we have

(g−1)T = g and (g−1)T = g ,

i.e. at most two of the four irreps are non-equivalent. For SU(2), even g and g are equivalent,
see Problem 42; for N ≥ 3 they are are non-equivalent. In terms of Young diagrams one

obtains the 
omplex 
onjugate irrep by means of the following pro
edure.
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Complex 
onjugate representations for SU(N)

1. Consider a Young diagramm with at most N−1 rows. (The only m-row diagramm


orresponds to the trivial rep whi
h is identi
al to its 
omplex 
onjugate.)

2. Add boxes to the Young diagram s.t. it be
omes a re
tangle of height N and same

width as the original diagram.

3. Dis
ard the original boxes and turn the added boxes by 180◦ � this is the Young

diagram of the 
omplex 
onjugate rep.

Examples:

1. SU(3)

 ∗
∗

 = (see above)

2. SU(4)

 
∗ ∗

∗ ∗ ∗
∗ ∗ ∗ ∗

 =

3. SU(2) in general

···  
···

∗ ∗ ··· ∗  ··· = ···

This is 
onsistent with Problem 42, in whi
h we showed, by other means, that for

SU(2) every rep is equivalent to its 
omplex 
onjugate.

4. SU(3) in general

··· ···
···  

··· ···
··· ∗ ··· ∗

∗ ··· ∗ ··· ∗
 

··· ···
··· = ··· ···

···

i.e. (λ1, λ2) = (λ1, λ1 − λ2).
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8 Appli
ations in parti
le physi
s

8.1 Elementary parti
les

• In the standard model of parti
le physi
s there are 3 (4) for
es/intera
tions:

1. strong (nu
lear) for
e

2. ele
tromagneti
 for
e

3. weak (nu
lear) for
e

4. (gravitation)

(2. & 3. together: ele
tro-weak for
e)

• 3 (4) kinds of �elementary� parti
les:

1. leptons (e.g. ele
tron): spin

1
2
, do not intera
t via the strong for
e

2. hadrons (e.g. proton, neutron): intera
t via the strong for
e

3. parti
les whi
h �
arry� the for
es (e.g. photon, gluon): integer spin

4. Higgs boson

• Hadrons are 
omposed of smaller parti
les (quarks with spin

1
2
) and 
ome in two

kinds:

(a) baryons (∼ qqq, e.g. proton, neutron): spin = 1
2
, 3
2
, . . .

(b) mesons (∼ q̄q, e.g. pionen): spin = 0, 1, 2, . . .

• lepton number:

L =





1 for leptons

−1 for anti-leptons

0 otherwise

• baryon number:

B =





1 for baryons

−1 for anti-baryons

0 �otherwise�

quarks: B = 1
3
, anti-quarks: B = −1

3
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8.2 SU(2) isospin

• experimental observation: Among hadrons we �nd sets (�multiplets�), with approxi-

mately the same mass (= eigenvalue of H),

e.g. proton p and neutron n (baryons): mp ≈ mn ≈ 940MeV or

the three pions (mesons): mπ0 ≈ mπ+ ≈ mπ− ≈ 140MeV.

• theoreti
al explanation:

� The strong for
e (essentially) determines the masses, and it is independent of

the ele
tri
al 
harge.

� The (small) mass di�eren
es (within a multiplet) 
ome from the ele
tro-weak

for
e.

• The degenerate states should transform in an irrep of an �internal� symmetry group,

whi
h is initially unknown.

 Find a group whi
h explains the observed parti
le (mass) spe
trum,

i.e. degrees of degenera
y = dimensions of irreps.

• Consider �rst p and n and de�ne an obje
t with two 
omponents, the nu
leon,

N =

(
p
n

)
.

� Lives in a 2-dimensional spa
e, 
alled �isospin�-spa
e.

� Consider SU(2)-transformations on this spa
e, with generators I1, I2, I3.

� p has I3 =
1
2
, n has I3 = −1

2
(by de�nition)

� The Hamiltonian for the strong for
e 
ommutes with all 3 generators, i.e.

[H, ~I ] = 0 .

We say the strong for
e is invariant under SU(2)
isospin

.

� N transforms in the 2-dimensional fundamental rep, or doublet rep (I = 1
2
) of

SU(2)
isospin

.

� Ele
tri
al 
harge Q is then given in terms of isospin by Q = I3 +
1
2
.

• Other hadrons transform in di�erent irreps of SU(2)
isospin

,

e.g. the pions form an isospin triplet (I = 1) with
π+ : I3 = 1
π 0 : I3 = 0
π− : I3 = −1 .

� ele
tri
al 
harge doesn't �t to formula above  postulate hyper
harge Y (later

U(1)) with

Q = I3 +
1
2
Y .

The nu
leon (p and n) has Y = 1, the three pions have Y = 0.
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• Di�erent isospin multiplets are 
hara
terised by di�erent values of quantum numbers

related to the strong for
e (B, Y , I, J = spin, P = parity).

For all parti
les within a multiplet these numbers are identi
al.

• H invariant under SU(2)
isospin

does not only have 
onsequen
es for masses, but also,

e.g., for 
ross se
tions (via the Wigner-E
kart theorem and SU(2)-Clebs
h-Gordan

oe�
ients).

8.3 SU(2) �avour

. . . whi
h, essentially, is still SU(2)
isospin

, but on the level of quarks.

• Hadrons are 
omposed of quarks, whose intera
tion (strong for
e) is des
ribed by

quantum 
hromodynami
s (QCD).

• In nature we �nd 6 quark-��avours� (u, d, s, c, b, t),
of whi
h 2 are `very light' (u, d), one �light� (s), and 3 `heavy' (c, b, t).

• In experiments at low energies one observes only parti
les 
onsisting of u and d.
 First 
onsider only Nf = 2, i.e. a 2-dimensional �avour spa
e.

• The reason for the isospin invarian
e of hadron masses is, that for mu = md the QCD

Lagrangian is invariant under SU(2)
�avour

transformations, i.e. the internal symmetry

group is SU(2)
�avour

.

• The 2-dimensional fundamental rep of SU(2)
�avour

a
ts on

q =

(
u
d

)
up quark (I3 =

1
2
, Y = 1

3
⇒ Q = 2

3
) ,

down quark (I3 = −1
2
, Y = 1

3
⇒ Q = −1

3
) ,

i.e. q transforms as an doublet under SU(2)
�avour

(I = 1
2
, Y = 1

3
).

(Thus, initially �avour is the same as isospin.)

• In the quark model the two nu
leons have �quark 
ontent�

p ∼ uud (I3 =
1
2
, Y = 1 ⇒ Q = 1)

n ∼ udd (I3 = −1
2
, Y = 1 ⇒ Q = 0)

(∼ means we don't 
are about permutations of quarks at the moment,

i.e. we now 
onsider produ
t states of the form ⊗ ⊗ .

Here denotes the 2-dimensional fundamental rep with I = 1
2
and Y = 1

3
.

• Parti
les within a multiplet transform in an irrep  de
ompose the produ
t:

⊗ ⊗ =
(

⊕
)
⊗ = ⊕ ⊕ = ⊕ ⊕
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in terms of dimensions,

2⊗ 2⊗ 2 = 4⊕ 2⊕ 2

or in terms of the isospin quantum number I,

1
2
⊗ 1

2
⊗ 1

2
= 3

2
⊕ 1

2
⊕ 1

2
.

In Se
tion 8.4 we will see:

� The doublet

(
p
n

)

orresponds to a linear 
ombination of the two doublets (I =

1
2
, Y = 1) on the r.h.s.

� The 4-dimensional irrep (I = 3
2
, Y = 1) 
orresponds to the ∆-baryons.

• Mesons 
onsist � a

ording to the quark model � of one quark and one anti-quark. The

latter we obtain by applying the so-
alled 
harge 
onjugation operator C = UK. Here

U is a unitary operator, and K is the (anti-unitary) operator of 
omplex 
onjugation:

(We don't 
are about U here � it a
ts on degrees of freedom whi
h here play no role.)

Ku =: ū Kd =: d̄

Consider an SU(2) transformation of the quark doublet:

(
u′

d′

)
= g

(
u
d

)
⇔

(
ū′

d̄′

)
= g

(
ū
d̄

)
,

i.e. the �anti-doublet�

(
ū
d̄

)
transforms in 2

Sin
e for SU(2) 2̄ is equivalent to 2, we 
an also 
ombine ū and d̄ into a doublet in

su
h a way that it transforms in 2: With h = ( 0 −1
1 0 ) ∈ SU(2) we have (
f. Problem 45)

g = h−1gh(
ū′

d̄′

)
= h−1gh

(
ū
d̄

)

h

(
ū′

d̄′

)
= g h

(
ū
d̄

)

and thus h

(
ū
d̄

)
=

(
−d̄
ū

)
transforms in the same way as

(
u
d

)
,

i.e. as an isospin doublet with

(
−d̄
ū

)
(I3 =

1
2
, Y = −1

3
⇒ Q = 1

3
) ,

(I3 = −1
2
, Y = −1

3
⇒ Q = −2

3
) ,

(Here we assumed, that Y 7→ −Y under 
harge 
onjugation.)
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Now de
ompose

⊗ =
↑(
u
d

)
⊗

↑(
−d̄
ū

)
= ⊕

or 2 · 2 = 3 + 1 (dimensions)

or

1
2
⊗ 1

2
= 1⊕ 0 (isospin).

Constru
t multiplets as at the end of Se
tion 7.2.2. There we had:

triplet = {|11〉, 1√
2
(|12〉+ |21〉), |22〉}, and singlet =

1√
2
(|12〉 − |21〉).

� The isospin-triplet (I = 1, Y = 0) des
ribes the the pions:

I3 = 1 : π+ = −ud̄

I3 = 0 : π0 =
1√
2
(uū− dd̄)

I3 = −1 : π− = dū

These states are invariant under u↔ −d̄, d↔ ū.

� The singlet is the anti-symmetri
 linear 
ombination of states whi
h are tensor

produ
ts of states with I3 =
1
2
und I3 = −1

2
, i.e.

1√
2
(uū− d(−d̄)) = 1√

2
(uū+ dd̄) .

In Se
tion 8.4 we will see that this des
ribes the ω meson.

8.4 SU(3) �avour and the quark model

• At higher energies one also observes the strange quark.

 Consider now Nf = 3, i.e. a 3-dimensional �avour spa
e with internal symmetry

group SU(3)
�avour

.

• additional quantum number: strangeness S, with Y = S +B

B I I3 Y S Q

u 1
3

1
2

1
2

1
3

0 2
3

d 1
3

1
2
−1

2
1
3

0 −1
3

s 1
3

0 0 −2
3
−1 −1

3
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• QCD pro
esses leave S (and thus Y ) invariant.

• The QCD-Lagragian (or Hamiltonian) is only invariant under SU(3)
�avour

, if mu =
md = ms. Due to mu ≈ md < ms, this symmetry is not exa
t, but broken to

SU(2)I × U(1)Y .
⇒ No perfe
t degenera
y, but �small� mass di�eren
es between hadrons within an

SU(3) multiplet (
f. Problem 53: Gell-Mann-Okubo formula for the baryon de
u-

plet).

Remark: The generators of SU(3) (a basis for the 8-dimensional Lie algebra su(3)
� tra
eless Hermitian 3× 3 matri
es) 
an be 
hosen s.t. (σj are the Pauli matri
es)


 σj

0
0

0 0 0


 , j = 1, 2, 3, and

1√
3



1 0 0

0 1 0

0 0 −2




are among them. The �rst 3 generate SU(2)I whereas the last one generates U(1)Y .

• The de�ning rep 3 of SU(3)
�avour

a
ts on

q =



u
d
s


 .

• Mesons 
onsist of one quark and one anti-quark (whi
h transforms in 3̄). Thus,

de
ompose

⊗ = ⊕

or 3⊗ 3̄ = 8⊕ 1 ,

i.e. we expe
t multiplets of approximately (mass-)degenerate mesons 
onsisting of

8 parti
les or one parti
le, respe
tively.

• Experimentally one �nds: The lightest (i.e. ground state) mesons do a
tually form

an o
tet and a singlet (together also 
alled nonet), with quantum numbers B = 0
and JP = 0−. J is the usual spin.
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� pseudos
alar meson-o
tet (s
alar sin
e J = 0, pseudo sin
e P = −1):

I3

Y

•
1

π+

(ud̄)

•
K+

(us̄)•
K0

(ds̄)

•π−

(dū)

•K−
(sū)

• K̄0

(sd̄)

••π
0
(uū,dd̄)

ψ8 (uū,dd̄,ss̄)

1
I = 1

2
, m = 496MeV

I = 1, m = 137MeV

I = 0, m see below

I = 1
2
, m = 496MeV

(mass di�eren
es due to mass of strange quark)

� pseudos
alar meson-singlet: ψ1 with I = Y = 0.

• It's slightly more 
ompli
ated. . .

� Consider all 3 states with I3 = Y = 0:

∗ π0
is the I3 = 0 state of the isospin-triplet, i.e. π0 = 1√

2
(uū− dd̄).

∗ ψ1 is the SU(3)-singlet state, i.e. ψ1 =
1√
3
(uū+ dd̄+ ss̄).

∗ ψ8 is the SU(3)-o
tet, isospin-singlet state.
orthogonal to both π0

and ψ1, ψ8 =
1√
6
(uū+ dd̄− 2ss̄).

� ψ1 and ψ8 have the same quantum numbers (I = 0 and JPC = 0−+
).

∗ If it was only for the strong intera
tion (QCD) then ψ1 and ψ8 would be

physi
al states (transforming in di�erent irreps of SU(3)).

∗ Due to the ele
tro-weak for
e these states 
an mix.

η(548MeV ) = ψ8 cos θ − ψ1 sin θ

η′(958MeV ) = ψ8 sin θ + ψ1 cos θ

The physi
al states (parti
les) are η and η′. θ is 
alled nonet mixing angle

(experimentally observed value (?) θ = −24.6◦).

• Furthermore, there are exited qq̄-states (rotation, vibration et
.)

The �rst �exited� meson-nonet has quantum numbers B = 0 and JP = 1−.
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� ve
tor meson-o
tet: (quark 
ontent as above)

I3

Y

•
1

ρ+

•
K∗+

•
K∗0

•ρ−

•K∗− • K̄∗0

••ρ
0

ψ′
8

1
I = 1

2
, m = 892MeV

I = 1, m = 776MeV

I = 0, m s.u.

I = 1
2
, m = 892MeV

� ve
tor meson-singlet: ψ′
1 with I = Y = 0.

As above ψ′
1 and ψ

′
8 mix, with θV = 36◦ (almost �ideal� mixing):

φ(1020MeV) = ψ′
8 cos θV − ψ′

1 sin θV ≈ ss̄

ω(782MeV) = ψ′
8 sin θV + ψ′

1 cos θV ≈
1√
2
(uū+ dd̄)

i.e. mρ0,ρ+,ρ− ≈ mω︸ ︷︷ ︸
no s-quark

< mK∗0,K∗+,K∗−,K̄∗0︸ ︷︷ ︸
one s-quark

< mφ︸︷︷︸
two s-quarks

.

• Baryons 
onsist of 3 quarks. Thus, de
ompose

⊗ ⊗ = ⊕ ⊕ ⊕

or 3⊗ 3⊗ 3 = 10
↑
S

⊕ 8
↑
MS

⊕ 8
↑
MA

⊕ 1
↑
A

.

with S = tensors that are totally symmetri
 under S3, i.e. under quark ex
hange,

MS = tensors with mixed symmetry (symmetri
 under ex
hange of the �rst two

quarks ∗),
MA = tensors with mixed symmetry (anti-symmetri
 under ex
hange of the �rst

two quarks, ∗),
A = totally anti-symmerti
 tensors.

∗ This is di�erent from what we get with Young operators for standard tableaux (sym-

metri
 under 1↔ 2 and 1↔ 3, resp.), i.e. here we take linear 
ombinations of those
states.

We thus expe
t multiplets of (almost mass) degenerate baryons, 
onsisting of 1, 8 or

10 parti
les.
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• Experimentally one �nds: The lightest (i.e. ground state) baryons form an o
tet and

a de
uplet:

� baryon-o
tet (B = 1, JP = 1
2

+
):

I3

Y

•
1

Σ+

(uus)

•
p
(uud)•

n
(udd)

•Σ−

(dds)

•Ξ−
(dss)

• Ξ0
(uss)

••(uds)Σ0

Λ

1
I = 1

2
, m = 939MeV

I = 1, m = 1193MeV

I = 0, m = 1116MeV

I = 1
2
, m = 1318MeV

� baryon-de
uplet (B = 1, JP = 3
2

+
):

I3

Y

• Ω−(sss)

• Ξ∗0(uss)

•Σ
∗+

(uus)1

•
∆++

(uuu)
•
∆+

(uud)
•
∆0

(udd)
•
∆−

(ddd)

•Σ
∗−

(dds)

•Ξ∗− (dss)

•Σ
∗0

(uds)

1
I = 3

2
, m = 1232MeV

I = 1, m = 1385MeV

I = 1
2
, m = 1530MeV

I = 0, m = 1672MeV

• What about the singlet and the se
ond o
tet?

� Baryons are fermions, and thus their total wave fun
tion (in spa
e, spin, �avour

and 
olour) have to be totally anti-symmetri
.

� Baryons are 
olour-singlets, i.e. they transform in the trivial rep of SU(3)

olour

,

whi
h is the sgn rep of S3. ⇒ The 
olour part of the wave fun
tion is totally

anti-symmetri
 (under ex
hange of the quarks).

� In the ground state orbital angular momentum is zero, i.e. the spatial part of

the wave fun
tion is totally symmetri
.

⇒ The spin-�avour part has to be totally symmetri
.
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� For the spins of the 3 quarks in a baryon we have (Young diagrams for SU(2)
spin

)

⊗ ⊗ = ( ⊕ ) ⊗ = ⊕ ⊕ = ⊕ ⊕

or

2⊗ 2⊗ 2 = 4
↑
S

⊕ 2
↑
MS

⊕ 2
↑
MA

SU(2)
spin

,

i.e. we have to 
ombine

(10
↑
S

⊕ 8
↑
MS

⊕ 8
↑
MA

⊕ 1
↑
A

)
�avour

and (4
↑
S

⊕ 2
↑
MS

⊕ 2
↑
MA

)
spin

.

� This leads to the following possibilities for (SU(3), SU(2))-multiplets:

S : (10, 4), (8, 2),

MS : (10, 2), (8, 4), (8, 2), (1, 2),

MA : (10, 2), (8, 4), (8, 2), (1, 2),

A : (1, 4), (8, 2).

Here the totally symmetri
 o
tet (8, 2)S 
orresponds to the linear 
ombination

(8, 2)S =
1√
2
[(8

↑
MS

, 2
↑
MS

) + (8
↑
MA

, 2
↑
MA

)] ,

and similarly for the other 
ombinations.

� Only the totally symmetri
 spin-�avour multiplets (10, 4) and (8, 2) lead to to-

tally symmetri
 wave fun
tion for the baryons.

⇒ In the ground state we have only one o
tet and the de
uplet, but no singlet

and no se
ond o
tet. (In exited states, however, they 
an show up.)

• Alternative perspe
tive:

� Ea
h quark lives in 6-dimensional spin-�avour spa
e (3 
olours, 2 spin proje
-

tions).

 approximate SU(6) spin-�avour symmetry.

� De
omposition into SU(6)-irreps:

6⊗ 6⊗ 6 = 56S ⊕ 70MS
⊕ 70MA

⊕ 20A .

� The 56-dimensional irrep of SU(6) indu
es a rep of SU(3)
�avour

. The latter is

redu
ible and we �nd

56S =
ր

dim = 10 · 4

10
3
2 ⊕

տ
dim = 8 · 2

8
1
2 .

This 
orresponds to the baryon-de
uplet (spin

3
2
) and to the baryon-o
tet (spin

1
2
).
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8.5 Gell-Mann-Okubo formula

• Within an SU(3)
�avour

-multiplet masses of parti
les within the same isospin-multiplet

are almost identi
al, but for di�erent Y (or S) mass di�eren
es 
an be larger.

Reason: mu ≈ md < ms ⇒ SU(3)
�avour

is broken to SU(2)I × U(1)Y .

• Assumption: The SU(3)-breaking term is a small perturbation,

H = H0 +H ′ ,

with H0 invariant under SU(3)�avour
H ′

only invariant under SU(2)I ×U(1)Y

• In Problem 53 we show using perturbation theory:

� H ′
transforms like the ψ8-state of the o
tet rep of SU(3) (
f. Se
tion 8.4).

� For the masses of baryons within a multiplet one �nds the Gell-Mann-Okubo

formula

m = a+ bY + c
(
I(I + 1)− 1

4
Y 2
)

with a, b, c 
onstant within a multiplets. (In in Problem 53 we restri
t our

attention to re
tangular Young diagram, in parti
ular the de
uplet; then there

is no c.)

• This formula predi
ted the mass (of the then unknown) Ω−
-parti
le, whi
h was found

a few years later with a mass within less than 1% of the predi
tion.
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6 Lie groups (
ontinued)

6.11 Roots and weights

Remark: Additive quantum numbers (examples: J3 (spin), I3 (isospin), Y hyper
harge)

How did we draw the diagrams for the hadron multiplets in Se
tion 8.4? We added that

I3- and Y -values for the quarks 
ontributing to a hadron. This was justi�ed be
ause these

values are eigenvalues of the two 
ommuting generators. . .

Let G be a Lie group with Lie algebra g, let Γ1
and Γ2

be reps of G with 
orresponding

reps dΓ1,2
of g. Consider Γ = Γ1 ⊗ Γ2

. Then

dΓ(X) = dΓ1(X)⊗ 1+ 1⊗ dΓ2(X)

sin
e

dΓ(X) =
1

i

d

dt
Γ(eiXt)

∣∣∣
t=0

=
1

i

d

dt

(
Γ1(eiXt)⊗ Γ(eiXt)2

) ∣∣∣
t=0

=
1

i

(
d

dt
Γ1(eiXt)⊗ Γ2(eiXt)

) ∣∣∣
t=0

+
1

i

(
Γ1(eiXt)⊗ d

dt
Γ2(eiXt)

) ∣∣∣
t=0

= dΓ1(X)⊗ Γ2(e) + Γ1(e)⊗ dΓ2(X) .

If ψ and ϕ are eigenve
tors of dΓ1(X) and dΓ2(X), respe
tively, say

dΓ1(X)ψ = λψ , dΓ2(X)ϕ = µϕ ,

then

dΓ(X)ψ ⊗ ϕ = (λ+ µ)ψ ⊗ ϕ .
(Same for (Young-)symmetrised tensor produ
ts, i.e. for linear 
ombinations of tensor

produ
ts with permuted fa
tors.)

Re
all: Representation theory of SU(2),

f. Se
tion 6.8 � where we a
tually started with SO(3),
generators / basis for su(2): (sj =

1
2
σj with the Pauli matri
es σj)

s1 =
1

2

(
0 1
1 0

)
, s2 =

1

2

(
0 −i
i 0

)
, s3 =

1

2

(
1 0
0 −1

)
,

with [sj , sk] =
∑

ℓ iεjkℓsℓ. De�ne

s+ = s1 + is2 =
1

2

(
0 1
0 0

)
, s− = s1 − is2 =

1

2

(
0 0
1 0

)
,

and 
on
lude that

[s3, s±] = ±s± , [s+, s−] = 2s3 .
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Consider a rep, dΓ(s•) =: J•, with

J3|m〉 = m|m〉 .

Then

J3J±|m〉 = (J±J3 + [J3, J±])|m〉 = (J±m± J±)|m〉 = (m± 1)J±|m〉
The numbers m are 
alled weights, and with J± we 
an raise and lower the weights if

J±|m〉 6= 0. If Γ is an irrep, then it is �nite-dimensional, and then there has to be a highest

(and lowest) weight, s.t. when we apply J+ (J−) it vanishes. This essentially �xed the

representation theory of SU(2).

Continue with SU(3),
generators / basis for su(3): Xj =

1
2
λj with the Gell-Mann matri
es

λk =


 σk

0
0

0 0 0




for k = 1, 2, 3, λ4 =



0 0 1
0 0 0
1 0 0


 , λ5 =



0 0 −i
0 0 0
i 0 0


 ,

λ6 =



0 0 0
0 0 1
0 1 0


 , λ7 =



0 0 0
0 0 −i
0 i 0


 , λ8 =

1√
3



1 0 0
0 1 0
0 0 −2


 .

X1, X2, X3 generate an SU(2) subgroup � and so do X4, X5,
1
2
(
√
3X8+X3) as well as

X6, X7,
1
2
(
√
3X8−X3). Consequently we de�ne

I± = X1 ± iX2 , U± = X6 ± iX7 , V± = X4 ± iX5 ,

I3 = X3 and keep X8 .

In physi
s one rather de�nes Y = 2√
3
X8 for histori
al reasons. Then

[I3, I±] = ±I± , [I3, U±] = ∓1
2
U± , [I3, V±] = ±1

2
V± ,

[X8, I±] = 0 , [X8, U±] = ±
√
3
2
U± , [X8, V±] = ±

√
3
2
V± .

For a rep Γ 
hoose basis ve
tors as simultaneous eigenve
tors of dΓ(X3) and dΓ(X8), say

dΓ(I3)|i3, x8〉 = i3|i3, x8〉 , dΓ(X8)|i3, x8〉 = x8|i3, x8〉 .

By a slight abuse of notation we omit dΓ in the following, i.e.

I3|i3, x8〉 = i3|i3, x8〉 , X8|i3, x8〉 = x8|i3, x8〉 .

Now

I3I±|i3, x8〉 = (i3 ± 1)I±|i3, x8〉 , X8I±|i3, x8〉 = x8I±|i3, x8〉 ,
I3U±|i3, x8〉 = (i3 ∓ 1

2
)U±|i3, x8〉 , X8U±|i3, x8〉 = (x8 ±

√
3
2
)U±|i3, x8〉 ,

I3V±|i3, x8〉 = (i3 ± 1
2
)V±|i3, x8〉 , X8V±|i3, x8〉 = (x8 ±

√
3
2
)V±|i3, x8〉 .
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Now 
all the pairs (i3, x8) =: ~m weight ve
tors or simply weights (in our diagrams for

hadron multiplets we indi
ated the positions of their tips as dots).

By applying reps of I±, U± and V± we 
an shift the weights by

~α1 = (1, 0) , ~α2 = (−1, 0)
~α3 = (−1

2
,
√
3
2
) , ~α4 = (1

2
,−

√
3
2
)

~α5 = (1
2
,
√
3
2
) , ~α6 = (−1

2
,−

√
3
2
) ,

respe
tively. The ve
tors ~αj are 
alled root ve
tors or simply roots. We 
olle
t them in a

root diagram:

~α2 ~α1

~α5

~α6

~α3

~α4

We 
all roots positive (negative), if their �rst 
omponent is positive (negative); same

for weights. (If there was a root with vanishing �rst 
omponent, we would 
all it posi-

tive/negative a

ording to the sign of the se
ond 
omponent.) Hen
e ~α1, ~α4 and α5 are

positive.

Sin
e irreps are �nite-dimensional, there 
an be only �nitely many weights for an irrep.

Therefore, there has to be a highest (lowest) weight, whi
h 
annot be raised (lowered) by

adding positive (negative) roots.

Maybe explain here that [I+, U−] = 0 sin
e there is no root ve
tor pointing in

the same dire
tion as ~α1+~α4?

The adjoint rep: another route to roots. In the adjoint rep (rep of the Lie group on

its own Lie algebra) we label 
an label also the basis ve
tors by generators,

adXj︸︷︷︸
dΓ(Xj)

Xk
↑

|. . .〉

= [Xj , Xk]︸ ︷︷ ︸
|...〉

(Sin
e we write generators as matri
es, the bra
ket on the r.h.s. is a matrix 
ommutator.)

Now

adI3I3 = [I3, I3] = 0 , adX8I3 = [X8, I3] = 0 ,

i.e. the weight ve
tor for the basis ve
tor 
orresponding to I3 is (0, 0); similarly the weight

ve
tor 
orresponding to X8 is also (0, 0). Thus, the weight diagram for the adjoint rep of

SU(3) has two points at the origin. Try to raise or lower weights from there, e.g.
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adI3adI±I3 = [I3, [I±, I3]] = [I3,∓I±] = ±[I±, I3] = ± adI±I3 ,

adX8adI±I3 = [X8, [I±, I3]] =↑
Ja
obi id.

−[I±, [I3, X8]︸ ︷︷ ︸
=0

]− [I3, [X8, I±]︸ ︷︷ ︸
=0

] ,

i.e. applying I± 
hanges the weight by (±1, 0) � of 
ourse! We have to add the root ve
tor

~α1,2, as for any other rep (if the result is non-zero); similarly for U± and V±. This already
yields a weight diagram with eight (the dimension of su(3)) points, i.e. repeated attempts

to raise or lower indi
es have to yield zero in the adjoint rep if the 
orresponding root

ve
tor would lead to a new point.

i3

x8

•
1

••

•

• •

•

√
3
2

We 
an also verify expli
itly that repeated appli
ation of the same raising or lowering

operator to (0, 0) always yields zero,

adI±adI±I3 = [I±, [I±, I3]] = [I±,∓I±] = 0 ,

same if we repla
e I3 by X8 and/or I± by U±/V±.

The weight diagram of the de�ning rep is �xed by the diagonal elements of I3 and X8.

i3

x8

•s− 1√
3

•u•d
1

2
√
3

1
2

−1
2

← de�ning rep


omplex 
onjugate

of de�ning rep

→
i3

x8

• s̄1√
3

•ū • d̄
− 1

2
√
3

1
2

−1
2

For the 
omplex 
onjugate of the de�ning rep we have to 
onsider

eiX = e−iX = ei(−X) ,

i.e. X 7→ −X ; for our basis we have X1,3,4,6,8 7→ −X1,3,4,6,8 and X2,5,7 7→ X2,5,7, and in

parti
ular (I3, X8) 7→ (−I3,−X8), whi
h �xes the weight diagram.

Point out highest/lowest weights in all weight diagrams.
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6.12 From roots to the 
lassi�
ation of semi-simple Lie algebras

De�nition: (simple Lie group/algebra)

A Lie group G is 
alled simple if it is 
onne
ted, non-abelian, and has no nontrivial normal

Lie subgroups. A Lie algebra g is 
alled simple if it is non-abelian and has no non-trivial

ideals.

Remarks:

1. The Lie algebra of a simple Lie group is simple.

2. If g is a simple Lie algebra then dim g ≥ 2.

De�nition: (semi-simple Lie algebra)

A Lie algebra g is 
alled semi-simple if it is a dire
t sum of simple Lie algebras.

Remarks:

1. The Killing form of a semi-simple Lie algebra is non-degenerate.

2. Every Lie algebra is a semi-dire
t sum of something (its radi
al, i.e. its maximal

solvable ideal � whatever that is) and a semi-simple Lie algebra.

The semi-simple Lie algebras 
an be 
lassi�ed 
ompletely by root their root systems.

In this �nal le
ture I 
an only give a brief sket
h of how this 
omes about.

De�nition: A Cartan subalgebra of h of a semi-simple Lie algebra g is a maximal 
ommu-

tative subalgebra h with adH diagonalisable ∀H ∈ h; dim h is 
alled the rank of g. The rank

is the maximal number of linearly independent, 
ommuting, diagonalisable generators.

Weights

• Let G be a Lie group with Lie algebra g.

• Let H1, . . . , Hℓ be a basis for h (i.e. ℓ is the rank of G), hen
e

[Hj, Hk] = 0 ∀ j, k = 1, . . . , ℓ .

The Hj are 
alled Cartan generators; they are simultaneously diagonalisable.

• The eigenvalues mj of Hj to a joint eigenve
tor are 
olle
ted in a weight (ve
tor)

~m = (m1, . . . , mℓ).

• The weights for a �xed irrep are 
olle
ted in a weight diagram (with possible degenera-


ies, 
f. the SU(3)-o
tet). The number of weights in weight diagram is the dimension

of the irrep. We 
an label basis ve
tors of irredu
ible subspa
es by weights: |λ, ~m〉.

• For SU(N) the generators are tra
eless (same for SO(N)).
⇒ The sum of all weights in a weight diagram is

~0 (for SU(N) or SO(N)).

• A weight is 
alled positive (negative) if its �rst non-vanishing 
omponent is positive

(negative).
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• Example: SU(3), 
f. Se
tion 6.11

� generators X1, . . . , X8

� 
ommuting (Cartan) generators: X3, X8 (rank 2)

� fundamental weights: (weight ve
tors of the de�ning rep)

~m1 = (1
2
, 1
2
√
3
) , ~m2 = (−1

2
, 1
2
√
3
) , ~m3 = (0,− 1√

3
) ,

noti
e: ~m1 + ~m2 + ~m3 = ~0 (see Se
tion 6.11 for the weight diagram)

• Relation to Young diagrams:

SU(N) has rank N−1. For the irrep Γλ with Young diagram Θλ the weight diagram


an be 
onstru
ted as follows:

� Label the boxes of Θλ by j = 1, . . . , n (i.e. let n be the number of boxes of Θλ).

� Consider all ways in whi
h we 
an write numbers ij = 1, . . . , N into the boxes

of Θλ, s.t. (
f. Se
tion 7.2.5)

∗ numbers within rows are non-de
reasing, and

∗ numbers within 
olumns are in
reasing.

� The weight ve
tors are then given by

~Mλ
i1···in =

n∑

j=1

~mij

with the fundamental weights ~mij (
f. the remark on additive quantum numbers

at the beginning of Se
tion 6.11).

Example: SU(3)-o
tet, i.e. Θλ =

� 8 possibilities

1 1
2

1 2
2

1 3
2

1 1
3

1 2
3

2 2
3

1 3
3

2 3
3

� 
orresponding weight ve
tors and weight diagram

~M112 = ~m1 + ~m1 + ~m2 = (1
2
,
√
3
2
)

~M122 = ~m1 + ~m2 + ~m2 = (−1
2
,
√
3
2
)

~M132 = ~m1 + ~m3 + ~m2 = (0, 0)

~M113 = ~m1 + ~m1 + ~m3 = (1, 0)

~M123 = ~m1 + ~m2 + ~m3 = (0, 0)

~M223 = ~m2 + ~m2 + ~m3 = (−1, 0)
~M133 = ~m1 + ~m3 + ~m3 = (1

2
,−

√
3
2
)

~M233 = ~m2 + ~m3 + ~m3 = (−1
2
,−

√
3
2
)

i3

x8

•
1

••

•

• •

•

√
3
2
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Roots

• Let g be an n-dimensional semi-simple Lie algebra of rank ℓ.

• Re
all (from Se
tion 6.11) that in the adjoint rep we label both, reps of generators

as well as basis ve
tors by generators,

adXj︸︷︷︸
dΓ(Xj)

Xk
↑

|. . .〉

= [Xj , Xk]︸ ︷︷ ︸
|...〉

,

for whi
h we no introdu
e the shorthand notation

Xj|Xk〉 = |[Xj, Xk]〉 .

• Basis states 
orresponding to Cartan generators have weight zero,

Hj|Hk〉 = |[Hj, Hk]〉 = 0 .

• The remaining n − ℓ basis states we 
all |E~α〉, labelled by their non-zero weights α
(non-zero sin
e [Hj , E~α] 6= 0 for at least one j). The |E~α〉 
an always be 
hosen as

simultaneous eigenstates of the Cartan generators (without proof),

Hj|E~α〉 = αj |E~α〉 ⇔ [Hj , E~α] = αjE~α . (∗)

So far I 
on
ealed that we a
tually have to 
onsider 
omplex/
omplexi�ed Lie algebras

in this whole dis
ussion, but re
all (Se
tion 6.11) that for SU(2) and SU(3) the raising
and lowering operators were 
omplex linear 
ombinations of generators.

Now (∗) implies

[Hj, E
†
~α] = −αjE†

~α

i.e. we 
an 
hoose them s.t.

E†
~α = E−~α . (+)

• The n− ℓ ve
tors ~α = (α1, . . . , αℓ) are 
alled root ve
tors or roots, i.e. the roots are

the non-trivial weights of the adjoint rep.

� Due to (+) the number of roots is always even.

� One 
an show that the roots are non-degenerate.

• The E~α a
t as raising/lowering operators,

HjE~α|E~β〉 = (E~αHj + [Hj , E~α])|E~β〉 = (E~αβj + αjE~α)|E~β〉 = (βj + αj)E~α|E~β〉 ,

i.e.
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(i) E~α|E~β〉 is proportional to |E~α+~β〉 if ~α+~β is also a root,

[E~α, E~β] is proportional to E~α+~β if ~α+~β is also a root,

(ii) [E~α, E−~α] is a linear 
ombination of the Hj

(iii) [E~α, E~β] = 0 if ~α+~β is neither

~0 nor a root.

In parti
ular, if ~α is a root then 2~α 
annot be a root (sin
e [E~α, E~α] = 0).

• Now one 
onsiders the Ja
obi identity for E~α, E−~α, E ~kα+~β and . . . after 
al
ulating

along for while . . . one �nds the 
ondition

(~α, ~β)

(~α, ~α)
=
ν

2
for some ν ∈ Z .

Here the s
alar produ
t essentially shows up as

(~α, ~β) =

ℓ∑

j,k=1

αj tr(HjHk)βk ,

and one 
an show that the generators 
an be 
hosen s.t.

tr(HjHk) = δjk , tr(E~αE−~α) = tr(E~αE
†
~α) = 1 .

Inter
hanging the roles of ~α and

~β, one, of 
ourse, also �nds

(~α, ~β)

(~β, ~β)
=
µ

2
for some µ ∈ Z .

Together the two 
onditions imply

(~α, ~α)

(~β, ~β)
=
µ

ν
and cos2 θ =

(~α, ~β)2

(~α, ~α)(~β, ~β)
=
νµ

4
,

where θ is the angle between ~α and

~β. For 0 < θ ≤ 90◦ there are only four solu-

tions to the se
ond equation: 30◦, 45◦, 60◦, 90◦ (i.e. π
6
,

π
4
,

π
3
,

π
2
). The �rst 
ondition

�xes the 
orresponding length ratios, and together with some more symmetry 
on-

ditions/restri
tions this makes possible a 
omplete 
lassi�
ation of root systems and

thus of semi-simple Lie algebras.
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