Mathematical Quantum Theory
Exercise sheet 2
05.11.2019
Giovanna Marcelli
giovanna.marcelli@uni-tuebingen.de

Exercise 1. Consider the two-level system of the previous exercise sheet. Let $\sigma_{x}, \sigma_{y}, \sigma_{z}$ the Pauli matrices:

$$
\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \tag{1}\\
1 & 0
\end{array}\right), \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Let \hat{S} be the spin operator:

$$
\begin{equation*}
\hat{S}:=\left(\hat{S}_{x}, \hat{S}_{y}, \hat{S}_{z}\right), \quad \hat{S}_{i}=\frac{1}{2} \sigma_{i}, \quad i=x, y, z \tag{2}
\end{equation*}
$$

Given an observable O, its Heisenberg evolution is defined as:

$$
\begin{equation*}
O(t):=e^{i H t} O e^{-i H t} \tag{3}
\end{equation*}
$$

To understand the meaning of the Heisenberg evolution of O, simply notice that:

$$
\begin{equation*}
\langle\psi, O(t) \psi\rangle=\left\langle\psi_{t}, O \psi_{t}\right\rangle \tag{4}
\end{equation*}
$$

(a) Compute the Heisenberg evolution of the spin operator:

$$
\begin{equation*}
\hat{S}(t)=e^{i H t} \hat{S} e^{-i H t}, \quad H=-B \sigma_{x}, \quad B \in \mathbb{R} \tag{5}
\end{equation*}
$$

(b) Suppose now that H has the following general form:

$$
\begin{equation*}
H=-\vec{B} \cdot \hat{S}, \quad \vec{B} \in \mathbb{R}^{3} \tag{6}
\end{equation*}
$$

Let $\hat{S}(t)$ be the Heisenberg evolution of the spin operator with the Hamiltonian H. Prove that $\hat{S}(t)$ satisfies the following evolution equation:

$$
\begin{equation*}
\frac{d}{d t} \hat{S}(t)=\vec{B} \times \hat{S}(t) \tag{7}
\end{equation*}
$$

with \times the usual vector product. This equation implies that the spin operator precesses at the frequency $|\vec{B}|$. Hint. It might be useful to use the commutation relations of the Pauli matrices (check them):

$$
\begin{equation*}
\left[\sigma_{a}, \sigma_{b}\right]=2 i \sum_{c=x, y, z} \varepsilon_{a b c} \sigma_{c} \tag{8}
\end{equation*}
$$

where $\varepsilon_{a b c}$ is the Levi-Civita symbol, defined as

$$
\varepsilon_{a b c}:=\left\{\begin{align*}
1 & \text { if }(a, b, c) \text { is an even permutation of }(x, y, z) \tag{9}\\
-1 & \text { if }(a, b, c) \text { is an odd permutation of }(x, y, z), \\
0 & \text { if } a=b, \text { or } b=c, \text { or } c=a .
\end{align*}\right.
$$

Exercise 2. Let $n \in \mathbb{N}$ and $f \in L^{1}(\mathbb{R})$. Find conditions on the function f that imply the respective statements.
(a) $\hat{f} \in C^{n}(\mathbb{R})$.
(b) $\left.\sup _{k \in \mathbb{R}}| | k\right|^{n} \hat{f}(k) \mid<\infty$.
(c) $\hat{f} \in L^{1}(\mathbb{R})$.

Exercise 3. Let $\hat{\psi} \in \mathcal{S}\left(\mathbb{R}^{d}\right)$, and consider the function $\hat{\psi}_{t}(k):=e^{\left.i|k|\right|^{2} t} \hat{\psi}(k)$.
(a) Compute $\psi_{t}(x)=\left(\mathcal{F}^{-1} \hat{\psi}_{t}\right)(x)$.

Hint. Use that, by dominated convergence theorem:

$$
\begin{equation*}
\int_{\mathbb{R}^{d}} d k e^{i k \cdot x} e^{-i|k|^{2} t} \hat{\psi}(k)=\lim _{R \rightarrow \infty} \int_{\mathbb{R}^{d}} d k e^{i k \cdot x} e^{-i|k|^{2} t} e^{-\frac{|k|^{2}}{R^{2}}} \hat{\psi}(k), \tag{10}
\end{equation*}
$$

and recall how the product of functions behaves under Fourier transform.
(b) Show that $\psi_{t} \in L^{\infty}\left(\mathbb{R}^{d}\right)$ for all t, and compute $\lim _{t \rightarrow \infty} \psi_{t}(x)$.

