Mathematical Quantum Theory

 Exercise sheet 3

 Exercise sheet 3
 12.11.2019
 Giovanna Marcelli
 giovanna.marcelli@uni-tuebingen.de

Exercise 1. Consider the free Schrödinger equation:

$$
\begin{equation*}
i \partial_{t} \psi_{t}=-\frac{1}{2} \Delta \psi_{t} \tag{1}
\end{equation*}
$$

with initial datum $\psi_{0}(x)=N^{-1} e^{-|x|^{2}}$ on \mathbb{R}^{d}, where $N=\pi^{\frac{d}{2}}$ is the normalization constant.
(i) Find the explicit solution of the equation, for all times.
(ii) Determine the expectation values of $\hat{x},|\hat{x}|^{2}, \hat{p},|\hat{p}|^{2}$ on ψ_{t}.
(iii) Let A be a bounded subset of \mathbb{R}^{d}. Compute:

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \mathbb{P}_{\psi_{t}}\left(X(t) \in t^{\alpha} A\right) \tag{2}
\end{equation*}
$$

discuss the cases $\alpha<1, \alpha=1, \alpha>1$.

Exercise 2.

(i) Consider the free Schrödinger equation on a finite interval:

$$
\begin{equation*}
i \partial_{t} \psi_{t}=-\frac{1}{2} \Delta \psi_{t}, \quad \psi_{0} \in C^{\infty}((0 ; L)) \tag{3}
\end{equation*}
$$

with periodic boundary conditions, $\psi_{t}(0)=\psi_{t}(L)$. Prove or disprove the existence of stationary states, that is of solutions such that $\psi_{t}(x)=\psi(x)$ for all times (besides the trivial case $\psi(x)=0$, of course).
(ii) Prove that all solutions of (3) with periodic boundary conditions are periodic in time: that is, there exists a time T such that $\psi_{t}=\psi_{t+T}$ for all t. How does T behave as a function of L ? What happens with Dirichlet $\left(\psi_{t}(0)=\psi_{t}(L)=0\right)$ or with Neumann $\left(\partial_{x} \psi_{t}(0)=\partial_{x} \psi_{t}(L)=0\right)$ boundary conditions?
(iii) Consider now the heat equation:

$$
\begin{equation*}
\partial_{t} \psi_{t}=\frac{1}{2} \Delta \psi_{t}, \quad \psi_{0} \in C^{\infty}((0 ; L)) \tag{4}
\end{equation*}
$$

with $\psi_{t}(0)=\psi_{t}(L)=A$. Compute $\lim _{t \rightarrow \infty} \psi_{t}(x)$.

Exercise 3. Let H be a Hermitian matrix, and consider the Schrödinger equation on a finite dimensional Hilbert space, say \mathbb{C}^{n} :

$$
\begin{equation*}
i \partial_{t} \psi_{t}=H \psi_{t}, \quad \psi_{0} \in \mathbb{C}^{n} \tag{5}
\end{equation*}
$$

Prove that the dynamics is recurrent (or almost-periodic): for any $\epsilon>0$ there exists $t_{\epsilon}>0$ such that

$$
\begin{equation*}
\left\|\psi_{t_{\epsilon}}-\psi_{0}\right\|<\epsilon \tag{6}
\end{equation*}
$$

This is the quantum analogue of Poincaré recurrence theorem in classical mechanics.
Hint. Use that, by Dirichlet's approximation theorem, for any real numbers $\lambda_{1}, \ldots, \lambda_{n}$ and for any natural number K there exists integers $p_{1}, \ldots, p_{n}, 1 \leq q \leq K$ such that

$$
\begin{equation*}
\left|\lambda_{i}-\frac{p_{i}}{q}\right| \leq \frac{1}{q K^{1 / n}} \tag{7}
\end{equation*}
$$

