Mathematical Quantum Theory
Exercise sheet 5
29.11.2019
Giovanna Marcelli
giovanna.marcelli@uni-tuebingen.de

Exercise 1.

(i) Let $\left\{\psi_{n}\right\}_{n \in \mathbb{N}_{0}}$ be the eigenstates of the one-dimensional harmonic oscillator, with Hamiltonian $H=-\frac{1}{2} \partial_{x}^{2}+\frac{\omega^{2}}{2} x^{2}$, with $\omega>0$. Let $\Delta X_{\psi_{n}}, \Delta P_{\psi_{n}}$ be the variances of the position and of the momentum. Compute $\Delta X_{\psi_{n}} \Delta P_{\psi_{n}}$.
(ii) Prove that, if $|n-m|>k$ with $k \in \mathbb{N}_{0}$:

$$
\begin{equation*}
\left\langle\psi_{n}, \hat{x}^{k} \psi_{m}\right\rangle=\left\langle\psi_{n}, \hat{p}^{k} \psi_{m}\right\rangle=0, \tag{1}
\end{equation*}
$$

with $\hat{p}=-i \partial_{x}$ the momentum operator.
Hint. Represent the operators \hat{x}, \hat{p} in terms of the creation/annihilation operators:

$$
\begin{equation*}
A_{ \pm}=\frac{1}{\sqrt{2}}\left(\sqrt{\omega} x \pm \frac{1}{\sqrt{\omega}} \frac{d}{d x}\right) . \tag{2}
\end{equation*}
$$

Exercise 2. Let $H=-\frac{1}{2} \Delta+\frac{\omega}{2}|x|^{2}$ be the Hamiltonian of the three dimensional harmonic oscillator. The eigenstates of this Hamiltonian are given by $\prod_{i=1}^{3} \psi_{n_{i}}\left(x_{i}\right)$, where $\left\{\psi_{n}\right\}_{n \in \mathbb{N}_{0}}$ are the eigenstates of the one-dimensional problem. Compute the eigenvalues of H, and determine their degeneracies:

$$
\begin{equation*}
\operatorname{deg}(E):=\text { number of independent eigenstates of } H \text { with energy } E \text {. } \tag{3}
\end{equation*}
$$

Exercise 3. Consider a one-dimensional quantum systems with wave function $\psi=\sum_{n=0}^{N} c_{n} \psi_{n}$, where N is finite and $\left\{\psi_{n}\right\}_{n \in \mathbb{N}_{0}}$ are the eigenstates of the one-dimensional harmonic oscillator with Hamiltonian $H=-\frac{1}{2} \partial_{x}^{2}+\frac{\omega^{2} x^{2}}{2}$, with $\omega>0$.
(i) Compute $\langle\psi, x \psi\rangle$.
(ii) Let ψ_{t} be the solution of the time-dependent Schrödinger equation generated by H. Express $\left\langle\psi_{t}, x \psi_{t}\right\rangle$ in terms of $\langle\psi, x \psi\rangle$.

Exercise 4. Let $\ell^{2}(\mathbb{N})$ be the space of square-summable sequences, with scalar product $\langle\varphi, \psi\rangle=\sum_{n \in \mathbb{N}} \overline{\varphi_{n}} \psi_{n}$. Let $T: \ell^{2}(\mathbb{N}) \rightarrow \ell^{2}(\mathbb{N})$ be the (right) shift operator:

$$
\begin{equation*}
T \varphi:=\left(0, \varphi_{1}, \varphi_{2}, \ldots\right) . \tag{4}
\end{equation*}
$$

Prove that $T \in \mathcal{L}\left(\ell^{2}(\mathbb{N})\right)$. Find the adjoint T^{*}.

