Mathematical Quantum Theory Exercise sheet 5 29.11.2019 Giovanna Marcelli giovanna.marcelli@uni-tuebingen.de

Exercise 1.

- (i) Let $\{\psi_n\}_{n\in\mathbb{N}_0}$ be the eigenstates of the one-dimensional harmonic oscillator, with Hamiltonian $H = -\frac{1}{2}\partial_x^2 + \frac{\omega^2}{2}x^2$, with $\omega > 0$. Let $\Delta X_{\psi_n}, \Delta P_{\psi_n}$ be the variances of the position and of the momentum. Compute $\Delta X_{\psi_n} \Delta P_{\psi_n}$.
- (ii) Prove that, if |n m| > k with $k \in \mathbb{N}_0$:

$$\langle \psi_n, \hat{x}^k \psi_m \rangle = \langle \psi_n, \hat{p}^k \psi_m \rangle = 0 , \qquad (1)$$

with $\hat{p} = -i\partial_x$ the momentum operator.

Hint. Represent the operators \hat{x} , \hat{p} in terms of the creation/annihilation operators:

$$A_{\pm} = \frac{1}{\sqrt{2}} \left(\sqrt{\omega}x \pm \frac{1}{\sqrt{\omega}} \frac{d}{dx} \right) \,. \tag{2}$$

Exercise 2. Let $H = -\frac{1}{2}\Delta + \frac{\omega}{2}|x|^2$ be the Hamiltonian of the three dimensional harmonic oscillator. The eigenstates of this Hamiltonian are given by $\prod_{i=1}^{3} \psi_{n_i}(x_i)$, where $\{\psi_n\}_{n \in \mathbb{N}_0}$ are the eigenstates of the one-dimensional problem. Compute the eigenvalues of H, and determine their degeneracies:

$$\deg(E) :=$$
 number of independent eigenstates of H with energy E . (3)

Exercise 3. Consider a one-dimensional quantum systems with wave function $\psi = \sum_{n=0}^{N} c_n \psi_n$, where N is finite and $\{\psi_n\}_{n \in \mathbb{N}_0}$ are the eigenstates of the one-dimensional harmonic oscillator with Hamiltonian $H = -\frac{1}{2}\partial_x^2 + \frac{\omega^2 x^2}{2}$, with $\omega > 0$.

- (i) Compute $\langle \psi, x\psi \rangle$.
- (ii) Let ψ_t be the solution of the time-dependent Schrödinger equation generated by H. Express $\langle \psi_t, x\psi_t \rangle$ in terms of $\langle \psi, x\psi \rangle$.

Exercise 4. Let $\ell^2(\mathbb{N})$ be the space of square-summable sequences, with scalar product $\langle \varphi, \psi \rangle = \sum_{n \in \mathbb{N}} \overline{\varphi_n} \psi_n$. Let $T : \ell^2(\mathbb{N}) \to \ell^2(\mathbb{N})$ be the (right) shift operator:

$$T\varphi := (0, \varphi_1, \varphi_2, \ldots) . \tag{4}$$

Prove that $T \in \mathcal{L}(\ell^2(\mathbb{N}))$. Find the adjoint T^* .