Mathematical Quantum Theory
 Exercise sheet 6
 10.12.2019
 Giovanna Marcelli
 giovanna.marcelli@uni-tuebingen.de

Exercise 1. Let $H \in \mathcal{L}(\mathcal{H}), H=H^{*}$. Prove that $\left(e^{-i H t}\right)_{t \in \mathbb{R}}$ is a strongly continuous unitary group, generated by H. Then, prove the existence and uniqueness of the solution of the Schrödinger equation:

$$
\begin{equation*}
i \partial_{t} \psi_{t}=H \psi_{t}, \quad \psi_{0} \in \mathcal{H} \tag{1}
\end{equation*}
$$

Exercise 2. Consider one quantum particle confined in a box $[0 ; L]$. Consider the time-independent Schrödinger equation:

$$
\begin{equation*}
-\frac{1}{2} \Delta \psi=E \psi, \quad \psi \in C^{2}((0 ; L)), \quad \psi(0)=\psi(L)=0 \tag{2}
\end{equation*}
$$

(a) Find the solutions $\left(\psi_{n}\right)_{n \in \mathbb{N}}$ and the corresponding energies $\left(E_{n}\right)_{n \in \mathbb{N}}$
[Hint. Look for linear combinations of sine and cosine.]
(b) Compute the variances $\Delta \hat{x}_{\psi_{n}}$ and $\Delta \hat{p}_{\psi_{n}}$ for the n-th eigenstate ψ_{n}.

Exercise 3. Consider the one-dimensional quantum harmonic oscillator, with Hamiltonian $H=-\frac{1}{2} \Delta+\frac{1}{2} \omega^{2} x^{2}$. Let $\psi_{0} \in \mathcal{S}(\mathbb{R})$ be the ground state. For any $\alpha \in \mathbb{C}$, define the coherent state as:

$$
\begin{equation*}
\psi(\alpha)=\exp \left\{\alpha A_{+}-\bar{\alpha} A_{-}\right\} \psi_{0} \tag{3}
\end{equation*}
$$

where $A_{ \pm}$are the creation/annihilation operators.
(a) Let A, B be linear operators on $\mathcal{S}(\mathbb{R})$, noncommuting in general. Suppose that $[A, B]$ commutes with A and B : $[[A, B], A]=[[A, B], B]=0$. Then, it follows that:

$$
\begin{equation*}
e^{A+B}=e^{A} e^{B} e^{-\frac{1}{2}[A, B]} \tag{4}
\end{equation*}
$$

Using (4), rewrite $\psi(\alpha)$ as a linear combination of eigenstates $\left(\psi_{n}\right)_{n \in \mathbb{N}}$ of the harmonic oscillator.
(b) Prove that $\Delta \hat{x}_{\psi(\alpha)} \Delta \hat{p}_{\psi(\alpha)}$ is minimal.
[Hint. Rewrite \hat{x} and \hat{p} in terms of the creation/annihilation operators.]
(c) Consider the time evolution $\psi_{t}=e^{-i H t} \psi(\alpha)$. Compute $\left\langle\psi_{t}, \hat{x} \psi_{t}\right\rangle,\left\langle\psi_{t}, \hat{p} \psi_{t}\right\rangle$, and compare with the solution of the equation of motion of the classical harmonic oscillator.
(d) Compute the energy $\left\langle\psi_{t}, H \psi_{t}\right\rangle$.
(e) Let $\mathbb{P}_{\psi_{t}}(P(t) \in A)$ be the probability that the momentum of the particle belongs to the set $A \in \mathbb{R}$:

$$
\begin{equation*}
\mathbb{P}_{\psi_{t}}(P(t) \in A)=\int_{A} d k\left|\hat{\psi}_{t}(k)\right|^{2} \tag{5}
\end{equation*}
$$

Use the computation of item (d) to conclude that for any $\varepsilon>0$ there exists $L_{\varepsilon}>0$ large enough such that for all times $t \in \mathbb{R}$:

$$
\begin{equation*}
\mathbb{P}_{\psi_{t}}\left(P(t) \in\left[-L_{\varepsilon}, L_{\varepsilon}\right]\right)>1-\varepsilon \tag{6}
\end{equation*}
$$

