Mathematical Quantum Theory Exercise sheet 7 08.01.2020 Giovanna Marcelli giovanna.marcelli@uni-tuebingen.de

Exercise 1. Let $P : \mathcal{B}(\mathbb{R}) \to \mathcal{L}(\mathcal{H})$ be a projection-valued measure. Let $\Omega, \Omega_1, \Omega_2$ be Borel sets. Prove the following properties.

- (i) $P(\emptyset) = \emptyset$, $P(\Omega^c) = \mathbb{1} P(\Omega)$ (where \emptyset is the null operator and $\mathbb{1}$ is the identity on \mathcal{H})
- (ii) $P(\Omega_1 \cup \Omega_2) = P(\Omega_1) + P(\Omega_2) P(\Omega_1 \cap \Omega_2)$
- (iii) $P(\Omega_1 \cap \Omega_2) = P(\Omega_1)P(\Omega_2)$
- (iv) If $\Omega_1 \subseteq \Omega_2$, then $\langle \psi, P(\Omega_1)\psi \rangle \leq \langle \psi, P(\Omega_2)\psi \rangle$ for all $\psi \in \mathcal{H}$.

Exercise 2. Let F(z) be a Herglotz function. Suppose that it can be written as:

$$F(z) = \int_{\mathbb{R}} \frac{1}{\lambda - z} d\mu(\lambda) , \qquad (1)$$

for $z \in \mathbb{C}^+$ and where μ is a Borel measure. Prove that:

$$\mu((-\infty,\lambda]) = \lim_{\delta \to 0^+} \lim_{\varepsilon \to 0^+} \frac{1}{\pi} \int_{-\infty}^{\lambda+\delta} \mathrm{Im}F(t+i\varepsilon)dt \;. \tag{2}$$

Rmk. This formula allows to recover the Borel measure from the function F(z). *Hint. Recall:*

$$\int_{\lambda_1}^{\lambda_2} \frac{\varepsilon}{(\lambda-t)^2 + \varepsilon^2} d\lambda = \arctan\left(\frac{\lambda_2 - t}{\varepsilon}\right) - \arctan\left(\frac{\lambda_1 - t}{\varepsilon}\right). \tag{3}$$

Then, use that (justify it):

$$\lim_{\varepsilon \to 0^+} \left(\frac{1}{\pi} \arctan\left(\frac{\lambda_2 - t}{\varepsilon}\right) - \arctan\left(\frac{\lambda_1 - t}{\varepsilon}\right) \right) = \frac{1}{2} \left(\chi_{[\lambda_1, \lambda_2]}(t) + \chi_{(\lambda_1, \lambda_2)}(t) \right).$$
(4)

Exercise 3. Let T be a self-adjoint operator, with resolvent $R_z(T)$. Suppose that, for $\psi \in \mathcal{H}$:

$$\langle \psi, R_z(T)\psi \rangle = \int \frac{1}{\lambda - z} d\mu_{\psi}(\lambda) .$$
 (5)

Suppose that the measure μ_{ψ} is supported on $(-\infty, a] \cup [b, c] \cup [d, \infty)$, with a < b and c < d. Let $\Omega = [b, c]$, and prove that:

$$\mu_{\psi}(\Omega) = \frac{1}{2\pi i} \int_{\mathcal{C}_{\Omega}} dz \, \langle \psi, R_z(T)\psi \rangle \,, \tag{6}$$

where C_{Ω} is a closed path in the complex plane enclosing Ω , which stays away from $(-\infty, a]$ and $[d, \infty)$.

Rmk. Denoting by P the projection-valued measure associated to $R_z(T)$ by the spectral theorem, using that $\langle \psi, P(\Omega)\psi \rangle = \mu_{\psi}(\Omega)$, Eq. (6) is equivalent to:

$$P(\Omega) = \frac{1}{2\pi i} \int_{\mathcal{C}_{\Omega}} dz \, R_z(T) \,. \tag{7}$$

Hint. Recall residue theorem in complex analysis.