Mathematical Quantum Theory
Exercise sheet 7
08.01.2020
Giovanna Marcelli
giovanna.marcelli@uni-tuebingen.de

Exercise 1. Let $P: \mathcal{B}(\mathbb{R}) \rightarrow \mathcal{L}(\mathcal{H})$ be a projection-valued measure. Let $\Omega, \Omega_{1}, \Omega_{2}$ be Borel sets. Prove the following properties.
(i) $P(\emptyset)=\mathbb{0}, P\left(\Omega^{\mathrm{c}}\right)=\mathbb{1}-P(\Omega)$ (where $\mathbb{0}$ is the null operator and $\mathbb{1}$ is the identity on \mathcal{H})
(ii) $P\left(\Omega_{1} \cup \Omega_{2}\right)=P\left(\Omega_{1}\right)+P\left(\Omega_{2}\right)-P\left(\Omega_{1} \cap \Omega_{2}\right)$
(iii) $P\left(\Omega_{1} \cap \Omega_{2}\right)=P\left(\Omega_{1}\right) P\left(\Omega_{2}\right)$
(iv) If $\Omega_{1} \subseteq \Omega_{2}$, then $\left\langle\psi, P\left(\Omega_{1}\right) \psi\right\rangle \leq\left\langle\psi, P\left(\Omega_{2}\right) \psi\right\rangle$ for all $\psi \in \mathcal{H}$.

Exercise 2. Let $F(z)$ be a Herglotz function. Suppose that it can be written as:

$$
\begin{equation*}
F(z)=\int_{\mathbb{R}} \frac{1}{\lambda-z} d \mu(\lambda) \tag{1}
\end{equation*}
$$

for $z \in \mathbb{C}^{+}$and where μ is a Borel measure. Prove that:

$$
\begin{equation*}
\mu((-\infty, \lambda])=\lim _{\delta \rightarrow 0^{+}} \lim _{\varepsilon \rightarrow 0^{+}} \frac{1}{\pi} \int_{-\infty}^{\lambda+\delta} \operatorname{Im} F(t+i \varepsilon) d t \tag{2}
\end{equation*}
$$

Rmk. This formula allows to recover the Borel measure from the function $F(z)$.
Hint. Recall:

$$
\begin{equation*}
\int_{\lambda_{1}}^{\lambda_{2}} \frac{\varepsilon}{(\lambda-t)^{2}+\varepsilon^{2}} d \lambda=\arctan \left(\frac{\lambda_{2}-t}{\varepsilon}\right)-\arctan \left(\frac{\lambda_{1}-t}{\varepsilon}\right) \tag{3}
\end{equation*}
$$

Then, use that (justify it):

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0^{+}}\left(\frac{1}{\pi} \arctan \left(\frac{\lambda_{2}-t}{\varepsilon}\right)-\arctan \left(\frac{\lambda_{1}-t}{\varepsilon}\right)\right)=\frac{1}{2}\left(\chi_{\left[\lambda_{1}, \lambda_{2}\right]}(t)+\chi_{\left(\lambda_{1}, \lambda_{2}\right)}(t)\right) \tag{4}
\end{equation*}
$$

Exercise 3. Let T be a self-adjoint operator, with resolvent $R_{z}(T)$. Suppose that, for $\psi \in \mathcal{H}$:

$$
\begin{equation*}
\left\langle\psi, R_{z}(T) \psi\right\rangle=\int \frac{1}{\lambda-z} d \mu_{\psi}(\lambda) \tag{5}
\end{equation*}
$$

Suppose that the measure μ_{ψ} is supported on $(-\infty, a] \cup[b, c] \cup[d, \infty)$, with $a<b$ and $c<d$. Let $\Omega=[b, c]$, and prove that:

$$
\begin{equation*}
\mu_{\psi}(\Omega)=\frac{1}{2 \pi i} \int_{\mathcal{C}_{\Omega}} d z\left\langle\psi, R_{z}(T) \psi\right\rangle \tag{6}
\end{equation*}
$$

where \mathcal{C}_{Ω} is a closed path in the complex plane enclosing Ω, which stays away from $(-\infty, a]$ and $[d, \infty)$.
Rmk. Denoting by P the projection-valued measure associated to $R_{z}(T)$ by the spectral theorem, using that $\langle\psi, P(\Omega) \psi\rangle=\mu_{\psi}(\Omega)$, Eq. (6) is equivalent to:

$$
\begin{equation*}
P(\Omega)=\frac{1}{2 \pi i} \int_{\mathcal{C}_{\Omega}} d z R_{z}(T) \tag{7}
\end{equation*}
$$

Hint. Recall residue theorem in complex analysis.

