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Exercise 1. Let P : B(R) — L(#) be a projection-valued measure. Let ©, €, Q2 be Borel sets. Prove the following
properties.

(i) P(0) =0, P(Q°) =1 — P(Q) (where 0 is the null operator and 1 is the identity on H)
(i) P(Q1UQ2) = P() + P(Q22) — P(11 N Q)

(iii) P(Q21 NQ2) = P()P(Q2)

(iv) If © C Qa, then (1, P(21)4) < (1, P(Q2)) for all 1 € H.

Exercise 2. Let F(z) be a Herglotz function. Suppose that it can be written as:
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for 2 € C* and where p is a Borel measure. Prove that:
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Rmk. This formula allows to recover the Borel measure from the function F'(z).
Hint. Recall:

A2
3 o )\2 -1 )\1 —t
Al md}\ = arctan ( - ) — arctan ( - ) . (3)
Then, use that (justify it):
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Exercise 3. Let T be a self-adjoint operator, with resolvent R, (7). Suppose that, for ¢ € H:
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Suppose that the measure u is supported on (—oo,a]U[b, c]U[d, o0), with a < b and ¢ < d. Let Q = [b, ¢], and prove
that:

(¢, R-(T)¢) =
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where Cgq is a closed path in the complex plane enclosing €2, which stays away from (—oo,a] and [d, 00).

Rmk. Denoting by P the projection-valued measure associated to R,(T) by the spectral theorem, using that
(¢, P(Q)¥) = py (), Eq. (6) is equivalent to:
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Hint. Recall residue theorem in complex analysis.



