Mathematical Quantum Theory
 Exercise sheet 8
 15.01.2020
 Giovanna Marcelli
 giovanna.marcelli@uni-tuebingen.de

Exercise 1. Let \mathcal{H} be a finite dimensional Hilbert space, and let A be a Hermitian matrix. By the spectral theorem:

$$
\begin{equation*}
\langle\psi, A \psi\rangle=\int d \mu_{\psi}(\lambda) \lambda \tag{1}
\end{equation*}
$$

Use Cauchy theorem for analytic functions to rewrite the measure μ_{ψ} in terms of the resolvent of A.

Exercise 2. Let $\mu_{\psi, \varphi}$ be the unique complex measure such that, for $z \in \mathbb{C} \backslash \mathbb{R}$:

$$
\begin{equation*}
\left\langle\varphi, R_{z}(H) \psi\right\rangle=\int d \mu_{\psi, \varphi}(\lambda) \frac{1}{\lambda-z} \tag{2}
\end{equation*}
$$

The existence of this measure has been proven in class, thanks to Herglotz theorem and using the polarization identity. The uniqueness is a consequence of Stieltjes formula (previous exercise sheet). Also, as proved in class, for any Borel set Ω we have $\mu_{\psi, \varphi}(\Omega)=\langle\psi, P(\Omega) \varphi\rangle$, for a suitable operator $0 \leq P(\Omega) \leq 1$. We also proved that $P\left(\Omega_{1} \cap \Omega_{2}\right)=P\left(\Omega_{1}\right) P\left(\Omega_{2}\right)$. To prove that $P(\cdot)$ is a PVM, show that:
(i) $P(\mathbb{R})$ is the identity on \mathcal{H},
(ii) P is strongly σ-additive.

Hint. (i) Suppose $P(\mathbb{R}) \neq 1$. Then, for any $\psi \in \mathcal{H}$, write $\psi=P(\mathbb{R}) \psi+\varphi$ with $\varphi=(1-P(\mathbb{R})) \psi$, which is $\neq 0$ by assumption. We will show that this gives rise to a contradiction. As proven in class, $P(\Omega)$ is a projection for any Borel set Ω; hence, $\varphi \in \operatorname{ker} P(\mathbb{R})$. Therefore, for any $\xi \in \mathcal{H}, d \mu_{\xi, P(\mathbb{R}) \varphi}=0$, which implies

$$
\begin{equation*}
\left\langle\xi, R_{z}(H) \varphi\right\rangle=0 \tag{3}
\end{equation*}
$$

Here we used that, as we have seen in class, $d \mu_{\xi, P(\Omega) \varphi}(\lambda)=\chi_{\Omega}(\lambda) d \mu_{\xi, \varphi}(\lambda)$, for any Borel set Ω. Use Eq. (3), together with the fact that $R_{z}(H)$ is a bijection from \mathcal{H} to $D(H)$ to prove that $\varphi=0$.
(ii) To begin, prove that, for sequences of orthogonal projectors $\left(P_{n}\right)$, weak convergence is equivalent to strong convergence:

$$
\begin{equation*}
\left\langle\psi, P_{n} \psi\right\rangle \rightarrow 0 \Longleftrightarrow P_{n} \psi \rightarrow 0 \quad \text { strongly. } \tag{4}
\end{equation*}
$$

To prove (ii), let $\Omega=\bigcup_{j=1}^{\infty} \Omega_{j}$, with Ω_{j} disjoint. Take P_{n} to be $\sum_{j=1}^{n} P\left(\Omega_{j}\right)$ with Ω_{j} disjoint. To prove that P_{n} is an orthogonal projection, recall that $P\left(\Omega_{j}\right) P\left(\Omega_{j^{\prime}}\right)=P\left(\Omega_{j} \cap \Omega_{j^{\prime}}\right)$. Then, prove that $P_{n} \rightarrow P(\Omega)$ weakly, by using the σ-additivity of Borel measures.

Exercise 3. Let A and B be two densely defined operators, such that $A \subset B$. Prove that $B^{*} \subset A^{*}$.
Hint. The condition $A \subset B$ is equivalent to $\Gamma(A) \subset \Gamma(B)$, with Γ the graph of the operator. Recall that $\Gamma\left(A^{*}\right)=$ $(W \Gamma(A))^{\perp}$, with $W\left(\varphi_{1}, \varphi_{2}\right)=\left(-\varphi_{2}, \varphi_{1}\right)$. How does the inclusion relation behave after taking the orthogonal complement?

Rmk. Let $(H, D(H))$ be a self-adjoint operator, and let P be the PVM provided by the representation of its resolvent. Let Φ be the functional calculus generated by P. The above result is what we need to prove that if $H \subset \Phi(\lambda)$ (as we did in class), then $H=\Phi(\lambda)$.

