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1 Introduction

1.1 The Schrodinger equation

Let us consider the evolution of one particle in R?, with d = 1,2, 3 the physically relevant
choices of the dimension d. We will assume the particle to be pointlike. We suppose that
the particle is exposed to the action of an external potential V : R — R.

In quantum mechanics, the state of the system is described by the wave function ¥(t, z),
Y : R x R? — C, square integrable:

ot = | 1otea)de =1 (1)

The physical interpretation of |¢)(t,z)|? is that of probability distribution for finding the
particle at (x,t). That is, the probability for finding the particle at the time ¢ in the region
AcRis:

Poa) = [ JottoPds (12)
A
The evolution of the particle is defined by the time-dependent Schrodinger equation:
0 h?
Zhai/)(taf) = _%Azw(tw{n) + V((E)QZ)(t,(E) = H¢(t795) ’ (13)

where 7i is called the (reduced) Planck constant, and it has the dimensions of an action,
[R] = [energy] x [time]. The Laplace operator is defined as:

d 62
Ap=> 2. (1.4)
j=1

2
8xj

The differential operator H is called the Hamiltonian of the system. The Schrédinger equa-
tion is an example of partial differential equation, and the discussion of existence and unique-
ness of solutions will be part of the present course.

Given a Hamiltonian H, the corresponding time-independent Schrédinger equation is:

Hy = By, (1.5)

where the (real) number F has the interpretation of energy of the system. A square inte-
grable solution of the time-independent Schrédinger equation is called an eigenstate of the
Hamiltonian H. Notice that if 1 is an eigenstate of H, then 1(t) = e~*#*"y is a solution of
the time-dependent Schrodinger equation.

Comparison with classical mechanics. Recall the motion of particle in classical
mechanics. The trajectory q(t) € R? of a classical particle is determined by Newton’s equa-
tion:

mi(t) = Fq(t)) = =VV(q®),  (¢(0),4(0)) = (o, do) - (1.6)

This second order ordinary differential equation can be rewritten as a first order differential
equation for the pair (p(t),q(t)), with p(t) = mgq(t) the momentum of the particle. The
Hamilton’s equation of motion for the particle is:

a (p()\ _ (—VVI(a(®)\ _ (—VH(q:p)
- 1 = ’ (17)

dt \q(t) 7 p(t) VyH(p,q)
with H(p,q) = % + V(q) the Hamiltonian of the particle. The Hamiltonian appearing
in the Schrédinger equation is called the canonical quantization of the classical Hamilto-
nian, obtained by replacing the position variable ¢ by a multiplication operator x, and the

momentum variable p by the differential operator —iiV .

Quantum mechanics is a more fundamental theory of nature than classical mechanics. A
natural question is to understand how classical mechanics emerges from quantum mechanics.

This question will be discussed later in the course, while introducing semiclassical analysis.



The main goal of this course is to develop the mathematical theory of the Schrodinger
equation, for one particle and for many particle systems. Notice that the Schréodinger equa-
tion is a linear evolution equation, in contrast to Hamilton’s equation of motion; this seems
to suggest that its mathematical study should be “easy”. This is not true, due to the fact
that the solution of the equation lives in an infinite dimensional space, and that the operator
H is unbounded.

2 Function spaces

In this section we shall introduce function spaces that will play an important role in the
mathematical formulation of quantum mechanics. We shall only review some basic results,
and we will refer the reader to [3| 5] for more details.

2.1 (% spaces

Definition 2.1. A multiindex o € Ng is a d-tuple o = (a1,...,0q), with a; € Ny, and
laf = 2?11 ;. For z € R we define:

olal

x® = wy? - ayl and 0y = 7833‘1)‘1 A (2.1)
Definition 2.2. Let A RY, ke Ny. We define:
Cck(A) = {f | f:A— C, 0%f is continuous for all o such that |a| < k} . (2.2)

Also, we denote by C¥(A) the restriction of C*(A) to functions with bounded derivatives:

Cr(A) = {f | fe C*(A) and there exists co > 0 such that V]a| < k sup |02 f(z)] < ca} .
€A
(2.3)

Remark 2.3. It turns out that the space C’{f(A) 1s a Banach space, if endowed with the
following norm:

k
Ifleray = D3 >, suplogf(a)]. (2.4)

n=0 a:|a|]=n zeA

We also define the space of C* functions with compact support.

Definition 2.4. Let:

supp(f) = {z € Dom(f) | f(x) # 0} (2.5)
be the support of the function f. Let A < R?, ke Ny. We define:

Ck(A) = {f | fe CF(A) s.t. supp(f) n A is compact,} (2.6)

Remark 2.5. C¥(A) c CF(A) < CF(A).

Example 2.6. (i) Let A=R, and f(z) = . We have f € C*(R). However, f ¢ C}°(R),
since f is unbounded. Also, f ¢ CF(R), since supp(f) = R.

(ii) Consider the “bump function”:

Flz) = { exp(—1/(1-2%) wze(-1,1) 27)

0 otherwise.

It is easy to see that all derivatives of f are continuous in x € R, and are compactly
supported in (—1,1). Thus, f € CP(R).



2.2 [P spaces
Definition 2.7. Let A € RY, measurable. Let pe R, 1 < p < co. We define:

LP(A) = {f | f:A—C, f measurable, L dz |f(2)P < oo} . (2.8)

Remark 2.8. The integral SA dx--- has to be understood as a Lebesgue integral. If the
function f is Riemann integrable, then it coincides with the standard Riemann integral.
More generally, one could replace dx by a Lebesque measure p(dx). In that case, we shall
denote the corresponding LP space by LP(A,du). One can check that LP is a vector space.

Besides being vector spaces, LP spaces are also Banach spaces, if endowed with the
following norm.

Definition 2.9. Let f € LP(A), 1 < p < 0. We define:

» 1/p
flercn o= ([ dels@r) " (29)
One can check that the map || - |1r(a) has the following properties.
@) [Afllzecay = A flLecay, A€ C.
(i) [flzrcay = 0= f(z) =0 ae.
(i) 1 + glzrea) < |l + Lol ay (Minkowki inequality).
These properties imply that | - | z»(4) is a semi-norm. The reason why it is not a norm is

that it is easy to imagine functions such that || f|z»4) = 0 and f(x) # 0 (take f to be zero
everywhere except at a point). To ensure that | -|»(4) defines a norm, one has to redefine L?
by identifying functions that differ on a zero measure set (e.g., on a countable set of points).
Given f e LP, we define an equivalent class of functions as

f={fell|f-f =0aec} (2.10)
We redefine L? as the set of the equivalence classes of functions f.

The L® space is defined as follows.

Definition 2.10.
L*(A):={f|f:A— C,f measurable ,3K > 0 s.t. |f(z)| < K a.e. }. (2.11)
A norm on L® is defined by taking the essential supremum of f:
Flecay o= inf {K | [f(@)] < K ae. in A}, (2.12)

Here we shall list some important facts about LP spaces, without proof. We refer the
reader to [3] for details. Whenever it does not generate ambiguity, we might replace |- | z»(a)

by | - Hp-

Theorem 2.11 (Completeness). Let 1 < p < o, and let f*, i = 1,2,3,--- be a Cauchy
sequence in LP(A):

T |~ 7], = 0. (2.13)
1,]J—00

Then, there exists fy € LP(A) such that
}E& Ifi = fllp =0 (2.14)

Remark 2.12. We use the notation f; — fy and we say that f* converges strongly to fy in
LP.

Another important property of LP spaces, for p < o0, is that their elements can be
approximated arbitrarily well by smooth, compactly supported functions. In other words,
CP(A) is dense in LP(A).

Theorem 2.13 (Approximation by C® functions.). Let f € LP(R?), 1 < p < 0. Then,
there exists a sequence of functions {f'}ien, f* € CL(RY) such that f* — f in LP.



2.3 Hilbert spaces

Let H be a vector space over C. A map {-,-): H x H — C is called a scalar product (or a
inner product) over H if:

(i) it is linear in its second variable, that is:

W, apr + B2) = alh, 1) + B, 2) (2.15)
(i) it is antisymmetric, that is:
W,y =, ¥) (2.16)
(iii) it is positive definite, that is:
@) =0 (2.17)
for all ¢ € H, with (¢,¢) = 0 if and only if ¥ = 0.

Every scalar product induces a norm on H, defined through:

Il = /<,y (2.18)

The triangle inequality for | - || follows from the Cauchy-Schwartz inequality

Ky, o) < |9l - (2.19)
In fact:

lv+el = V&+e,v+9

VY2 + I]? + 2Re(w, )

V12 + Iel? + 2l el

= o]+ el - (2.20)

If the vector space H equipped with the scalar product {,-) is complete, the pair (H,{:,-))
is called a Hilbert space.

N

Example 2.14. (a) The space C" equipped with the scalar product:
(x,yen = Y Ty, (2.21)
j=1

is a Hilbert space.

(b) The space (* of the square summable sequences (z;) jen, equipped with the scalar product:
o0

<.’1?,y>g2 = Z TjY; (222)
j=1

is a Hilbert space.

Example 2.15 (L? space.). In quantum mechanics, a special role is played by the space of
square integrable functions, L?>(A). This space turns out to be a Hilbert space, if equipped
with the following scalar product:

G = [ s Tg(a) (2:23)
It is easy to see that the scalar product {f,g) is well defined, for all f, g€ L*(A):
ol < [dli@le)
1 1
< 5 [wlr@P s [P

1 1
= 5HfHL2<A) + §||9HL2(A) <. (2.24)

Also, it is easy to see that Fq. fulfills the properties (i)—(iii) spelled above.



3 The free Schodinger equation

To start our mathematical study of the Schrédinger equation we shall consider the simplest
possible situation, corresponding to a free particle in R, We look for a solution 1/ : R x R —
C of the equation:

i0ub(t, ) = —%Arw(t,a:) , (3.1)

where we set i =1 and m = 1. A special solution can be found by separation of variables.
Consider first the time-independent Schrodinger equation:

— 5800() = 20() (32)

Then, a solution of Eq. (3.1)) is obtained by setting ¢ (t,z) = e "*¢(z). We are left with
finding a solution of the time-independent equation (3.2). A family of solutions for such
equation is given by the plane waves on R¢:

dr(x) = ek = gilkazitthaza) for ke RY . (3.3)

In fact: L2
1 )
— Apop(z) = 5(k;f oA k2t = %%(I) : (3.4)

Thus, we found a first solution of the free Schrédinger equation, Eq. (3.1):

k2 .
Yr(z,t) = e~ teihe (3.5)
However, the above solution does not make sense in quantum mechanics, since ¥(t,-) ¢
L?(R?) for all t:
fd:z: [ (t, 2)|? = +oo. (3.6)

Nevertheless, we can use the above unphysical solutions to construct physical solutions of the
Schrédinger equation, by using the fact that the Schrédinger equation is a linear equation:
a linear combination of solutions of Eq. is a solution of Eq. (3.1)). More precisely, we
shall consider solutions of the form:

zp(x,t):f (e, Ok = | pl)e=iC51=R) gps (3.7)

Rd Rd
Formally, ¥ (z,t) is a solution of Eq. (3.1]), with initial datum at ¢ = 0:
W(@,0) = o(z) = JM (k)™ dk (3.8)

The questions we will address here are: for which class of p(k) does the function (¢, z)
makes sense from a quantum mechanical viewpoint, namely (¢, -) € L?(R%)?

3.1 The Fourier transform on L'

We are now ready to introduce the Fourier transform for L' functions.

Definition 3.1. Let f € L'(R?). We define the Fourier transform f = Ff as

1
(2m)?

(F(k) = fk) = de e R £ (), k e R?. (3.9)

We define the inverse Fourier transform f = F~'f as:

-1 _ F _ 1 xeikw T
FHW =10 = o | e @) (310)



Remark 3.2. Since |[e"**| =1 and f € L'(R?), f and f are well defined:

IF ()] <

| aolf@) -

- 3.11
o 11 (311)

(2 )%
The next lemma will be useful to study the regularity properties of the Fourier transform.

Lemma 3.3. LetT c R be an open interval, and f : R4 xT' — C such that f(z,7) € L*(RY)
for allyeT. Let I(y S]Rd x,v)dx. Then, the following is true.

(a) If the map v — f(x,’y) is continuous for almost all x € R%, and if there exists a function
g € L'(R?) such that sup.p | f(z,7)| < g(x) for almost all x € R?, then I(v) is also
continuous.

(b) If the map v — f(x,7) is continuously differentiable for almost all x € R?, and if there
exists a function g € L'(RY) such that supcr [0+ f(z,7)| < g(x) for almost all x € R?,
then 1(7y) is also continuously differentiable. Moreover:

d'y dVJ f( ,fyd:c—J E (3.12)

Proof. The proof immediately follows from the dominated convergence theorem, see [3]. ®

Lemma has important consequences on the behavior of the Fourier transform.

Theorem 3.4 (Riemann-Lebesgue.). Let f € L'(RY). Then:

feOp®Y) = {feCRdH lim sup [f(z )|:o}. (3.13)

L |z|>R

Proof. The continuity immediately follows from Lemmal[3.3] The falloff at infinity will follow
from a result we will discuss later on. ]

Next, we will focus on the properties of the “nicest possible” functions, namely the
Schwartz functions. Later, we will come back on a more general class of functions, by using
approximation arguments.

Definition 3.5 (Schwartz functions.). The Schwartz space S(R?) is the set of functions
f e C®(RY) such that:
= 205 flloo < 0, (3.14)

for all multiindices «, B.

That is, the functions in S(R?) decay faster than any inverse polynomial in z, and the
same is true for all their partial derivatives. Obviously, if f € S then 2%0sf € S for all
multiindices o and 8. Also, S(R?) = LP(R%). Finally, the maps | - [o.5 : S — [0,00) are
norms.

Remark 3.6. Notice that C*(R?) = S(R?), which means that S(RY) is dense in LP(RY),
1<p<oo.

Definition 3.7. We say that f, — f in S if lim, o | f — fala.sg — 0 for all a, 8 € Ng.

Proposition 3.8 (S is a metric space.). Convergence in S is equivalent to convergence with
respect to the metric:

= i 27"  sup M (3 15)
2 la+Bl=n LI = glas

Remark 3.9. Notice that ds(f,g) < 2



Proof. Let us first check that ds(f,g) is a metric. Positivity is trivial, and also symmetry:
ds(f,g) = ds(g, f). From the definition, we see that ds(f,g) = 0 implies || f — glo,o = ||f —
glw = 0, that is f = g. Also, the triangle inequality holds true: ds(f,g) < ds(f, h)+ds(h, g),
since | - |q,3 satisfies the triangle inequality and the function h(z) = x/(1 + ) is monotone
increasing and satisfies h(x +y) < h(z) + h(y). This shows that dg is a metric. Convergence
in § immediately implies convergence with respect to ds(f,g). On the other hand, suppose
that ds(fn, f) — 0. To prove convergence in S we use that, for all «, 5 there exists a constant
Ca,5 > 0 such that:

an_f|a,ﬁ < Ca,BdS(fnvf) . (316>

Therefore, convergence with respect to ds implies convergence in S. u

Theorem 3.10. The Schwartz space is complete.

Proof. Let (f,) be a Cauchy sequence in S. Then, (f,,) is a Cauchy sequence with respect
to the (semi-)norms || - [45. Also, convergence in S implies that %02 f,, — go s(x) in L
norm, with g, 3 € Cy(R?), the space of continuous, bounded functions. This last fact is
implied by the completeness of C},(R?) with respect to the | - |, norm, recall Remark

We are left with showing that g := goo € C*(R?), and that 2%0%g = g, 5. If so, g€ S
and ds(fm,g) — 0. For simplicity, let us consider the case d = 1. We would like to show that
g € C'(R) and that d,g = go,1. Higher derivatives and higher dimensions can be studied in
the same way. For f,, € S, we write:

o) = £0(0)+ [ Frn0) . (317
0
We know that f,, — ¢g and f}, — go1 uniformly. Therefore, the m — oo limit of Eq. (3.17))
is:
o) = 9(0)+ | gna)dy (318)
0
This proves that g € C'(R) with ¢ = go 1. n

Lemma 3.11 (Properties of F on S.). The maps F and F~' are continuous, linear maps
from S into itself. Moreover, for all a, 8 it holds:

((z’k)aa,f]-'f)(k) - (fag(—m)ﬁ f)(k) . (3.19)
Remark 3.12. In particular,
@f)(k) = i(Vef)(k)  and (Vo f)(k) = ikf(k) . (3.20)
Proof. Let f e S. Recall:
£ 1 —ik-x
f(k) = @n)i? fRd f(z)e *2dz . (3.21)

Then:

(2m) "2 ((ik)° O} FF) (k) =

S G R G RO R CES
Integrating by parts:
()2 (k) F) () = J]Rd e~ (30 (i) f(2)) da

= 0" (For(=in)’f) (k) . (3.23)



This shows that, in particular, F f € C*. Moreover:

A A ) (1+ [af?)?
_ apB R o 1 9N
[flas = Hk 8kaoo < 27r)d/2f |0y f(x)|<1+| |2)d dx
1 d o, J
TR L . e
< CZ sup i (3.24)

j=0 || +|B]=j

with m = max{|a|, | 8]} +2d, and for C' > 0 independent of f. Therefore, .7-'f €S. Eq. (3:24)
also shows that f, — f in S implies fn — f in §. In particular, Eq. can be used to
show that F : § — § is continuous, with respect to the topology 1nduced by ds(-,-). In fact,
suppose that f,, — f with respect to ds. Then, by Eq. , there exists Co.3 > 0 such
that:

1fa = Fla,

7ﬁd8(f7uf) . (325)
u

Theorem 3.13. The map F : S — S is a continuous bijection, with inverse F 1.

Proof. We will show that F~1oF = 15 (the same proof gives FoF~! = 1g). Since F1oF
and 1g are both continuous in &, it is sufficient to prove their equality on a dense subset of
S.

Lemma 3.14. C%(R?) is dense in S(R?).
Proof. (of Lemma |3.14]) Let:

[ exp(—=1/1—|z[*)+1) for|z| <1
Glz) = { 0 otherwise. (3.26)
Let f € S(RY), and let f,,(x) = f(z)G(x/n). Clearly, f, € C¥(R?). Moreover, lim,, o || fn —
o, = 0 for all a, S. u

Let us now come back to the proof of Theorem By Lemma [3.14] it is sufficient to
prove the claim of Theorem on C*(RY). Let f e C*(R?). Let us denote by W, = R?
a cube in R?, centered in the origin, with side 2m. Let us choose m large enough so that
supp(f) € W,,. Let K,,, = 7/mZ?. We can express the function f on W,, as the uniformly
convergent Fourier series:

fl@)= > fue*r, (3.27)

with Fourier coefficients:

(27r)d/2

fie = Vol J fz _mdx*m Rdf(x)e‘””dx: G (F)(k) . (3.28)

Therefore we have:

fla)y="> W(i)d. (3.29)

a2
v (2m)4/ m

The observation is that the right-hand side of Eq. (3.29) is a Riemann sum, over cubes of
volume (m/m)? and with k the center of the cube. Therefore, we have:

6ik~m T .
o) = Jim, 3 R () = s [ FNmean = (7 o 7))

W m (2w
(3.30)
This proves that F~1 o F = Low ray- L]

10



Proposition 3.15. Let f,g € S(R?). Then:

f@)g(z)de = | f(z)g(x)da . (3.31)
Rd Rd

Moreover,

172 = 1Flz - (3.32)
Proof. By Fubini’s theorem,

JRd (JW e*ik.wf(k)dk)g(x)dx = JRd (JRd 67ik-a:g(x)dx>f(k)dk ' (3.33)

Therefore 2m) Y2 dx f(z)g(x ) = (2m)%? Sdkg )f(k). This proves Eq. (3.33). To prove
Eq. , we use that Ff(z ), which can be easily checked. Thus, Eq. (3.32)
follows as a special case of Eq. - choosmg g(x) = Ff(x).
]
Example 3.16 (The Fourier transform of a Gaussian.). Let A > 0, and let g\(z) = exp ( —
)\@) be the Gaussian function. Then, we claim that:
R _a |k
k)= X\ —— . .34
aa(k) 2exp< 2)\> (3.34)

To prove Eq. , we proceed as follows. By scaling, it is enough to consider the case
2

A = 1. Also, since g1(x) = Hle exp (—%), it is enough to consider the case n = 1. We

have:

) = oo f dze~ioe= % — fd“ S fR), (335)

1
(2m)2

(m+zk)

where we defined f(k) = —+ {dve~

=y . By dominated convergence, we can differentiate
T) 2

under the integral sign:

(e+ik)?2 J (dx d —% =0. (3.36)

d dx Ny

%f(k) = JR 2n)’ (—(z + ik))ie = o)} i——e
This means that f(k) is a constant and, in particular, f(k) = f(0) = 1. This proves Eq.
3.97).

3.2 Solution of the free Schrodinger equation

Let us now come back to the Schrodinger equation for one free particle in R¢:

it ) = —%Axw(t, 7). (3.37)
Let us take the Fourier transform in both sides. Proceeding formally, we get:

0,0t k) = %|k|21/3(t,k) . (3.38)

The advantage of taking the Fourier transform is that now we are left with an ordinary
differential equation of the first order. The solution is:

A . 2 A~
Bt k) = e (0, k) | (3:39)
To get a solution of the original equation (3.37]), we have to take the inverse Fourier transform.
We get:
TR
Bt w) = (Fle 5 Fyo)(a) (3.40)
with initial datum (0, z) = ¥o(z). The next theorem shows that the above formal manip-
ulation can be made rigorous for a suitable class of regular initial data.

11



Theorem 3.17 (Existence of a unique global solution for the free Schrédinger equation.). Let
Yo € S(RY). Then, there exists a global solution 1 € C®(R;,S(RY)) of the free Schridinger
equation with (0, ) = 1o(x) for t # 0, given by the expression:

0(t.2) = s | o)y (341)

MOI"GOVGI‘, H?/J(t, ')HLQ(RL{) = ”'(/J()HLQ(]RL{).

Proof. To begin, notice first that, for ¢y € S, the expression (3.40) is well defined. Hence,
Eq. (3.40) is a solution of the free Schréodinger equation (3.37)). Next, we shall show that

P e Cm(Rt,S(Rd)) Let us start by showing that ¢ — ¢(t) is differentiable. Let: (t,z) :=
Lk ?

—i(F~1 “;l ~it Fapg)(z). Then, ¥(t, ) € S(RY). Furthermore, we claim that:
Yt +h) —¥(t)

iHo ‘ h

_ ij(t)Ha,ﬁ =0 (3.42)

with respect to any || - |a.5. By continuity of F and of F~!, this is equivalent to:

qut+h) () s
h

—Pt)| =0, (3.43)

h—>0 ‘ o,

for all o, 8. This follows from the smoothness of e~* kz * and from the decay of 1/10( ):

- A k|2 k|2
w(t + h) _ w(t) R B B e—z7(t+h) — e it @ —i@t
)—h v, = sk o b +iTy e )(fwo)(k)]
- 0 as h — 0. (3.44)

In the same way, one can prove that (t,z) € C*(R;, S(R?)) for any & > 1, and hence
that ¢ (t,r) € C°(Ry, S(R?)). The uniqueness of the solution for 1y € S follows from the
uniqueness of the solution of (3.38)). The formula follows from an explicit computation,
using that:
R 2 ™

lim e dr =4]—, (3.45)

R—0o0 R (6]
for all @ € C such that Rea = 0. Finally, the isometry in L? follows from the 1s0metry
property of the maps F and F~!, proven in Eq. 3.32), and from the fact that |e*”k| 42 = 1.
|

Remark 3.18 (Decay of the solutions of the Schrodinger equation.). The formula
immediately implies that:

[0l 1
t
Sup [Y(t, )| < (2mt)d2

—0 as t — o0. (3.46)

However, as we just proved, the L? norm stays constant. This means that the solution of the
Schrodinger equation spreads in space. One speaks about the “spreading of the wave packet”.

Definition 3.19 (Polynomially bounded functions.). Let C’P‘f)l(Rd) be the space of the poly-

nomially bounded smooth functions: g € C;?)Z(Rd) if g€ C*(RY) and if:

n(a)

0% ()| < Colz)™™ 1= Cy (1 + |z]?) 2 (3.47)

for all a.
Motivated by Lemma we introduce the notion of pseudodifferential operator.
Definition 3.20 (Pseudodifferential operator.). Let f € C2,(RY). Let My : S — S be

pol
the multiplication operator ¥(x) — f(x)(x). We define the pseudodifferential operator

f(=iVe): S — S as:
(f(=iVa)) (@) == (F ' MpFy)(x) = (FHf (k) Fy) () - (3.48)

12



Remark 3.21. Notice that the mapping My : S — S is continuous. The continuity of My
and of F implies the continuity of f(—iV,). For f(k) = k%, one naturally has f(—iV) =
(=i)l*lo. For polynomial functions f, the corresponding pseudodifferential operators are
differential operators.

Example 3.22 (Translations and the free propagator.). Let a € R and T, = e~"**. One
has T, € Cpy, and for ¢ € S(R?) one has:

1
(27)d/2

(To(—iV))(z) = Jdk e~k agikey (k)dk = J eF @) (k)dk = (z —a) .
(3.49)

The operator T,(—iV) is called the translation operator. Another example is Py(t, k) =

1
(27)d/2

kl2
e~"+t. One has Pi(t,-) € CFL,(RY) and hence:
Y(t, @) = (Pr(t, —iVa)iho)(2) - (3.50)
This operator is also called the free propagator, and one also writes:
Y(t) = er Aoty (3.51)

Example 3.23 (The heat equation and diffusion.). We can apply the previous theory to
solve the heat equation:

atf(th) = %Aacf(ta .’E) ) (352)
for £(0,-) = foe S(RY). Lett > 0. The solution of Eq. reads:
F(8) = €231 1(0) = W(t, ~iVa) fo | (3.53)

2
with W(t, k) = ez, Notice that W(t) € Cpy only fort = 0. In general, one cannot

lo}
establish existence of solutions of the heat equation for t < 0. However, if fo has compact
support, the corresponding solution of the heat equation ezists for all times.

Definition 3.24 (Convolutions.). Let f,g e S. We define the convolution f * g as:

(F+9)la) = | fla= oty (3.54)

Here we list some properties of the convolution operation.
Theorem 3.25. Let f,g,h € S. The following is true.
(i) (f*g)xh=[fx(gxh)and f+g=g=xf.
(ii) The map g — f =g from S to S is continuous.
(iii) It follows that:

Frg=0@m)"f g, (3.55)
and also J/‘B = (2m)"Y2f % §. Moreover, one has:
G(~iV)f = F(gf) = (2m) g f (3.56)

Proof. The properties (i) and (447) easily follows from the definition. Concerning (i), conti-
nuity follows from:

frg=@n)PPFfFg; (3.57)
that is, the convolution with f corresponds to the combination of Fourier transform, mul-
tiplication by f, and inverse Fourier transform. All these maps are continuous, and their
composition preserves continuity. Thus (i) holds true. u

Example 3.26 (The heat equation.). Consider:
1 _l=I?
W@ 2t (358)

The function G(t,x) is called the fundamental solution of the heat equation, and can be used
to construct more general solutions. In fact:

G(t,z) := (2m)~ VX (F W) (t,2) =

_la—y)?

f(t,x) = (W(t,—=iV,)fo)(x) = (G(t) * fo)(x) = W fRd e 2 foly)dy . (3.59)

13



3.2.1 Comparison between Schrodinger, heat and wave equations
To conclude this section, let us compare the free Schrodinger equation to the heat equation

and the wave equation. For simplicity, we shall consider the case d = 1.

The wave equation. The wave equation can be used to describe the motion of an
oscillating string of length L. Let f(x,t) be the wave deflection. The equation reads:

02 02
with boundary conditions:
f(t,0)=f(t,L)=0. (3.61)

The acceleration of the string at the point is x is proportional to the curvature at the same
point, and this explains why the string oscillates.

The heat equation. The temperature profile for the temperature f(x,t) in a rod of
length L, which temperature is kept to zero at both ends, satisfies the heat equation:

0 02

af(t’ IE) = @f(tvx) ) (3'62)

with boundary condition:
F(,0) = f(5,L) = 0. (3.63)
The rate at which the temperature changes at the position x is proportional to the curvature

at that point. Therefore, the temperature converges to the constant value f(x) = 0.

The Schrodinger equation. The motion of one free quantum particle in one dimension
is described by the Schrédinger equation:

Lpita) = i wit,a) (3.64)
PSSR LA '
with boundary condition:

Y(t,0)=¢(t,L)=0. (3.65)

As for the heat equation, it depends on the first time derivative. However, due to the presence
of the factor i, it gives rise to an oscillatory behavior of the solution. In fact, the function
(t, z) is now complex values, which we can picture as a time-dependent vector field in R2.
Even though the rate of change of the wave function is proportional to the curvature at the
point x, because of the 4 factor it is described by an orthogonal vector to ¥ (x). Therefore,
in general both the argument and the modulus of ¥(t, ) change in time.

3.3 Tempered distribution

The goal of this section is to extend the notion of partial differential equation to functions
that are not smooth, in fact not even differentiable in the standard sense. In particular, we
shall be interested in formulating the Schrédinger equation for initial data which are only in
L?(RY).

Definition 3.27. The elements of the dual space S'(R?) of S(R?) are called tempered dis-
tribution.

Remark 3.28. The dual space V' of a topological vector space V is the space of continuous
linear maps from V to C. For f € V and T € V', one defines the pairing of f and T as:

(£, T)vy =T(f). (3.66)

Example 3.29. Let us discuss some examples of tempered distributions.

14



(a) Let g:R% — C such that (1 + |z|?>)"™g(z) € LY(R?) for m € N. Then, the mapping
T,:S—C, f»—»f g(x)f(z)dx (3.67)
Rd

is linear and continuous, hence Ty € S'.

Proof. Let f, — fin S. Then,

im |Ty(fo =) < lim | fg(@)][fu(z) = f(z)dz

n— oo n—w0 Jpd

< @+ [l lim (3 )" o = Flleo = 0. (3.68)

|
(b) The delta-distribution is defined as:
0:S—>C,  fr0i(f):=f(0). (3.69)
Therefore, § € S’. One also writes:
50) = | o) @y o (3.70)
and:
J]Rd d(z —a)f(x)de = f(a) . (3.71)

The expression Eq. is formal: there exists no function § : R? +— C that
gives . Nevertheless, one can approzimate 6 € S’ by functions, more and more
“peaked” at a, such that in the limit Eq. holds true. For exzample, let g € L'(R)
with §dx g(x) = 1. Let:

gn(z) := nlg(nzx) . (3.72)
Then, by dominated convergence, for any continuous bounded function f, and in par-
ticular for all f € S, one has:

I T (0 =t [ @) de = i ( | 0,@)0)do+ | g,@)(7(@) - 70)do)
= SO+ Jim, | o))~ FO)dy = F(0) = 3(1) . (3.73)

In the last step we used that the argument of the integral converges to zero pointwise in
x, as n — o, and dominated convergence theorem to bring the limit inside the integral.

Next, we shall introduce the notions of weak and weak*® convergence.
Definition 3.30. Let V be a topological vector space and V' its dual.

(i) A sequence (my) inV converges weakly to m € V if:

lim T'(my) =T(m) , forallTeV'. (3.74)

n—0o0
One also writes w — liMy,—pMy = M 07 My — M.

(i) A sequence (T),) in V' converges in the weak® topology to T € V' if:
lim T,(m) =T(m), forallmeV. (3.75)

n—0o0

. . *
One also writes w* —lim, o0 T, =T or T, — T.

Theorem 3.31 (The adjoint map.). Let A: S — S be a linear and continuous map. Then,
the map
A:S -8, (A'T)(f) :=T(Af) forall feS (3.76)

1s weak® continuous. The map A’ is called the adjoint of A.
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Proof. One has A'T € §’, where A'T =T o A is a continuous map on S. To prove the weak*
continuity of A’ : &' — S', we proceed as follows. Let T, = T. Then, for each f € S:

lim (A'T,)(f) = lim T,(Af) = T(Af) = (AT)(f) . (3.77)

n—0o0
that is A'T), =5 A'T. [

Remark 3.32. Strictly speaking, the above proof only shows sequential continuity in S'.
This does not immediately imply continuity in S’, since the topology of S’ is not defined
through a metric. Nevertheless, the above argument can be repeated for a net on S, and net
continuity would imply continuity.

Next, we define the Fourier transform on &’

Definition 3.33. For T € S, the Fourier transform T € S' is defined as:

T(f):=T(f) foralfes. (3.78)

Remark 3.34. In other words, Fs/ := Fg. That is, the Fourier transform on S’ is defined
as the adjoint of the Fourier transform on S.

Lemma 3.35. The Fourier transform F : 8" — S’ is a weak* continuous bijection. More-
over, for fe S, Ty = Tf-

Proof. Since F : § — S is continuous, it follows from Theorem that F : &’ — &' is
weak*® continuous. Also, since (F~LFT)(f) = T(FF1f) = T(f), the Fourier transform on
S’ is also bijective, with inverse 1. Finally, let f € L'. Then:

A~

T1(9) = T/(0) = | f@)io)do = | f()g(a) dx = T5(9) (3.79)
where the second equality follows from Proposition [3.15] u

Example 3.36 (The Fourier transform of the §-distribution.). Let §(f) be the delta distri-
bution, §(f) = f(0). Then:

A . . 1 1

6(f) =6(f) = f(0) = ij(m)dx = j(%r)d/gf(f)dm =T,(f), (3.80)

with g = (21)~%? the constant function. That is, the Fourier transform of the delta distri-
bution is the constant function g.

Let us now introduce the notion of derivative on the space of distributions S’.

Definition 3.37 (The distributional derivative.). For T € §’, we define its distributional
derivative 09T € S as:

(2T)(f) = T((=1)™3 ) - (3.81)
Lemma 3.38. The distributional derivative 09 : 8" — S’ is weak® continuous and extends
the notion of derivative on S; that is, for g€ S we have:

00Ty = Thay - (3.82)

Proof. As an adjoint map, the derivative 0% is continuous thanks to Theorem [3:31} The
property Eq. (3.82)) follows from the integration by parts formula:

(@3T,)(f) = Ty((—1)lloaf) = fg(m)(—l)'“'a:ﬂx) dr = f (@) g(x) d = Toey (f) -

(3.83)
]

Example 3.39 (The derivative of the delta distribution.). It follows that:

(226)(f) = d((—n)og f) = (—1)l*lag £(0) . (3.84)

For the Heaviside function 0(x) = 1jg.) (%) on R one has: dg=5.
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Lemma 3.40. Let g € C7,. Then, (gT)(f) = T(gf) defines a weak® continuous map from
S’ to §'. In general, one cannot define the product of two distributions, but one can define
the product of a distribution and of a function in C’Z‘;l.

Proof. Exercise. L]

Lemma 3.41. Let g € S and g(x) = g(—=x). Then (g T)(f) := T(g = f) defines a weak*
continuous map from S’ to ', which extends the convolution on S: g Ty, = Tyyp, for he S.

Proof. Exercise. [

This result allows to prove the following theorem.

Theorem 3.42. S is dense in S’ in the weak® topology.

Proof. Let us give a sketch of the proof. We want to show that for all T € S’ there exists
(¢n) < S such that:
T, =T. (3.85)

Pn

We proceed as follows. Let (g,) = S such that (g, * f) — fin S (e.g., gn(z) = nég(nz),
with g € S and §g = 1.) Then, we write:

(=T = T(GusS)
= 1 [dvaal 01 0)

- jdy T(Guy) W) (3.86)

with §pn () = gn(- —y). Thus, we would be tempted to say that (g, «T) = Tg,, with

&n(y) = T(Gn,y). To prove this, we simply notice that &, € CS%I(Rd) (exercise), which

implies that &,f € S, and hence that it is an integrable function. Thus, by the weak®
continuity of the convolution, Lemma we just proved that for each T € S’ there exists
&n € Cpgy such that:

Te, =T (3.87)

To conclude, we would like to show that the sequence (&,) can be replaced by a sequence
(pn) in S. We proceed as follows. Let G(z) as in Eq. (3.26). Let: ¢, (z) = &,(2)G(z/n).
Then, being G(z/n) compactly supported, ¢, € S. Notice that T, (f) = T¢, (G(-/n)f). Fix
€ > 0. By what we just proved, for n large enough:

Te, (G(/m)f) = T(G(/m)f)| < /3. (3.58)

(Notice that the argument of the distributions is n-dependent. Nevertheless, this is not a
problem, since the | - 4,5 norms of G(-/n)f are all bounded uniformly in n.) Also, by the
continuity of T

TGN —T(| <23, (3.59)
where we used that G(-/n)f — f - 0in S, as n — oo. Finally, again by Eq. (3.87):
T(f) ~ Te, (1) < /3. (3.90)
All together, for any f € S and for any € > 0 there exists ng € N such that for n > ng:
Te, () = T, ()] < (3.9)
This, together with Eq. (3.87)), implies that:

T

Pn

o (3.92)
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Next, we discuss the solution of the free Schrodinger equation in the sense of distributions.
We say that ¢(t) € C*(R;,S’(R?)) is a distributional solution of the Schrédinger equation
if:

1

s = (3 A0)ss (399)

for all functions f € S(R?).
Proposition 3.43. Let o9 € S'. Then, there exists a unique, global solution (t) €
C*®(Ry, S’ (RY)) of the Schridinger equation, given by
1 —ilk2y
W(t) = Fle 5t Fyy . (3.94)

Proof. By Lemma and by the fact that F and F~! are maps from &' to S’, we know
that 1(t) € S'(R%). To conclude, we show that 1(t) is a solution of the Schrodinger equation
in the sense of distributions. Let f € S be a test function. Then:

Ao P
Za(}—e = F f0)s,s

ETIEN ) S
2 t%f Yf,%0)s,s0

e, 1
= (=Fe ' 'F 1§Afa¢0)5,5’

i ss =

= (Fe

1 e
(—iﬁf,f Yem "2 Fehy)s,sr

(.5 20(D)s.s (395)

The regularity in time of the mapping 1 (t) : S — C can be easily checked. ]

3.4 Long time asymptotics of the momentum operator

We have proven that, for iy € S, the solution of the free Schrédinger equation is given by:

Wit z) = dy 5 o (y) (3.96)

The probability for finding the quantum particle in the region A c R? is given by:
P(X(t) € A) — f lo(t, 2)[2 da . (3.97)
A

Next, we want to determine the “velocity distribution” of the quantum particle. Since the
velocity at a fixed time is not defined in standard quantum mechanics, we shall consider the
asymptotic speed for large times, which we define as:

lim P(@ € A) ‘= lim P(X(t) e tA) = lim | |(t,2) dx . (3.98)

t—00 t—00 t—o0 tA

Notice that choice of the origin of the reference frame does not play any role. To get an
expression for the above limit, we shall use the next lemma.

Lemma 3.44. Let 1(t) be the solution of the free Schridinger equation, with ¥(0) = ¢y € S.
Then:

0(t.2) = Zbalaft) + (k). (399)

with limy—o [7(£)] 2 = 0.
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Proof. We have, by Eq. (3.96)):

VD) = G Jeﬂ.%y(ei% - 1)1/’0(‘”) dy

: (3.100)
and hence:
r(t,z) = ——h(t,z/t) . (3.101)

To prove the claim on the L? norm, we proceed as follows:

Ir(t, )25 = J it ) o = j (e, /)2 die = j t, ) 2dy = j Wt )Py . (3.102)

Now, notice that h(t,z) — 0 pointwise as t — 00. Also, |h(t,2)|> < 4|¢po(x)|?. Therefore, by
dominated convergence theorem:

lim f |h(t,x)|?dr =0 . (3.103)
This concludes the proof. L]

Theorem 3.45. Let ¢(t,x) be a solution of the free Schridinger equation and let A < R?
measurable. Then:

X(t .
tli_)HngP(% e A) —: Jim P (tA) = L o (p)|2dp - (3.104)
Proof. By Lemma [3.44] we have:
1 N N
f [¥(t,z)[*dz = ] [¢o(z/t)*dz + R(t) = J Yo (p)*dp + R(t) , (3.105)
tA tA A

where, following the proof of the Lemma:

1 —_—
. _ . 2 . L
fim R() = Jim | () do+ Jim 2Re (td L ) ¢0(x/t)h(t7x/t)dx)

= Jim 2Re( L Jo)h(t,p)) (3.106)
By the Cauchy-Schwarz inequality we have:

lim f Gop)h(t,p)dp| < Jim oz lh(®)] 2 = 0. (3.107)

—0 tA t—0

]

Remark 3.46. o If we would not have set the mass m to 1, the probability in the left-
hand side of Eq. should have been replaced by P(mX (t)/t € A). Therefore,
the above result allows to control the asymptotic distribution of the momentum of the
quantum particle.

e The operator P := —iV, is called the momentum operator. The expectation value of
the momentum operator is given by:

EV(P) := (Y, Pty) = fRd Y(t,z)(PY)(t, z)dr = » b(t, p)p(t, p)dp = Jdelzﬁ(O,p)\de ,

(3.108)
where we used that |Y(t,p)| = |¥(0,p)|. Thus, the quantum mechanical expectation
value of the momentum operator is equal to its expectation value with respect to the
asymptotic momentum distribution.
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3.5 Properties of Hilbert spaces

Recall the definition of Hilbert space, given in Section In this section we shall spell out
some important properties of Hilbert spaces, that will play a role in the following discussion.

Definition 3.47. Let H be a Hilbert space. A sequence (vy,) in H is called an orthonormal
sequence if {on, Pmy = Onm.

The next proposition is an immediate consequence of notion of orthogonality.

Proposition 3.48. Let (¢;)jen be a orthonormal sequences in H. For any 1 € M, let us
rewrite:

b= Zn]@j,@w + (1/) - imww)

= Yy (3.109)

Then, {n, ) =0 and:
Wy ) = (P ) + Wy Y - (3.110)
Proof. Exercise. [

Proposition implies the validity of two important inequalities, the Cauchy-Schwarz
inequality and the Bessel inequality.

Corollary 3.49. (a) Let (¢;);en be an orthonormal sequences in H. Let ¢ € H andn € N.
Then:

l)* = Z Kpj, W2 (Bessel inequality). (3.111)
j=1

(b) Let o, € H. Then:
Ko, )| < el , (Cauchy-Schwarz inequality). (3.112)

Proof. Eq. (3.111)) immediately follows from Proposition Eq. (3.112) follows from Eq.
(3.111)), after choosing v1 = ¢/||¢| and n = 1. u

Proposition 3.50 (Polarization identity.). Let H be a Hilbert space. Let v, € H. Then:

1
oy =1l + PI? = lo = 9l? —illp + il + il — iw]?) . (3.113)

Proof. Eq. (3.113)) follows from the following identity, valid for any sesquilinear forrrﬂ B :
X x X — C, with X a complex vector space:

1
B(z,y) = X(B(am—y,x—l—y)—B(m—y,x—y)—iB(x+z'y,x+iy)+iB(a:—iy,x—iy)) . (3.114)
]

Definition 3.51. An orthonormal sequence (;)jen in H is called an orthonormal basis if

for all e H:
P = {e5 ¥, - (3.115)
j=1

Remark 3.52. Notice that the series converges in H. In fact, by Bessel’s inequality,

D Koy I < Iwl® -
j=1

YA map B: X x X — C is called a sesquilinear form if it is linear in the second variable and antilinear in the
first variable.
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Thus, lim,, _, o Z?:l [{pj,)|? exists. Consider the sequence of partial sums (Z?:1<<pj, 1/)><pj).
Let n' > n. We have:

| i@jaﬂ’%f’j - i@p@%f = i KD (3.116)
j=1 j=1 j=n

which vanishes as n — 0. Hence, (Z?:1<<pj,1/)><pj) is a Cauchy sequence in H. Being H
complete, 317 1{pj, )p; € H.

Definition 3.53. A topological vector space is called separable if it contains a countable,
dense subset.

Proposition 3.54. A Hilbert space is separable if and only if it contains an orthonormal
basis.
Proof. Let (¢;) be a ONB. Then, the following set is a dense and countable subset of H:

N
spangiq{p; | j € N} := { Dila;+ib)p; INEN, a;,b€ Q} : (3.117)

j=1

Let us now prove the converse statement. Suppose that (¢;)jen is a dense and countable
subset of H. Let (p;)jes S (¢;)jen be a subset of linearly independent vectors in (¢;) e,
dense in H. This subset can be used to define a ONB, via the Gram-Schmidt method. =

Proposition 3.55. Let (¢;) be an orthonormal basis for H. Then, the following inequality
holds true:

lv|? = Z I<pj, )| (Parseval equality.) (3.118)

j=1

Proof. Eq. (3.118]) immediately follows from the definition and the continuity of the scalar
product:

N M
[l = Jim s, lim e v)er)
j=1 i=1

N M N
= gim tim (3 e Y e ey = Jim 3 el (3.119)
j=1 i=1 j=1

—o0 M—0
|

Remark 3.56 (/? as a coordinate space for a separable Hilbert space.). Let (¢;) = H be a
ONB. Then, the Parseval equality implies that the following mapping is an isometry:

U:H— %, @ ({pj,1))jen - (3.120)

. 2 . . o0 .
In particular, for each sequence c € £ we can associate a series Zj:1 cjp;, which converges
in norm:

e} 2 [e@]
H > Cj‘PjH = Y leP >0  as N —oo; (3.121)
j=N j=N

this means that U is also surjective, i.e. it is an isometric isomorphism. Therefore, each
separable Hilbert space is isometrically isomorphic to £? and each ONB generates an isometric
isomorphism. Thus, we can identify ¢2 as the coordinate space for separable Hilbert spaces
of infinite dimension.

Example 3.57. Consider L([0,27]). It is a separable Hilbert space, and a ONB is provided

by pr(z) = \/%e“”, keN. Let v € L%([0,27]), and consider its Fourier series:

Y=Y {or ek - (3.122)

k=—o0

The Fourier series provides an isometric isomorphism between £2 and L?.
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Proposition 3.58 (Characterization of an orthonormal basis.). An orthonormal sequence
(¢j)jer in H is an orthonormal basis of H if and only if:

{pj;0)=0 foralljel =1¢=0. (3.123)

Proof. Let (y;)jer be a ONB of . Suppose that {¢;,1)) = 0 for all j € I. Then, by
definition of ONB, Eq. (3.115), ¢ = 0. Let us now prove the converse implication. Let (¢,)
be an orthonormal sequence in H, and let ¢ € H. By Bessel’s inequality, we have, for all
neN:

PN (3.124)
j=1

Being the sequence n — 37, [(p;, ¢)[* nondecreasing and bounded, the n — oo limit
exists: limp, o0 21y [{pj, DI = Xer [{ps; ¢)[*. In particular, this implies that the series
2jer{®j: @)p; is convergent in H. Consider the vector:

b=0— Db 00 - (3.125)

jel

By construction, {1, ¢;» = 0 for all j € I. By assumption, this implies that ¢ = 0, hence:

¢ =Y oiyp;,  forall et (3.126)
jel
Therefore, {¢;}er is an ONB of H. This concludes the proof. u

Definition 3.59. Let M < ‘H. We define its orthogonal complement as:
Mt = {1/)€H|<g0,¢>:0 forallgaeM}. (3.127)

Remark 3.60. It follows that M n M+ = {0}. Also, being {p,-) linear and continuous, M+
is a closed subspace of M.

Theorem 3.61. Let M < H be a closed subspace of H. Then:
H=MoM". (3.128)

That is, every element v € H can be rewritten in a unique way as Y = @ + @+ with p € M
and ot e M+.

Proof. Let v € H. If 1) € M, or 1 € M=, there is nothing to prove. Suppose that ) ¢ M,
Y ¢ M*. Let (vg,) be a minimizing sequence:

: _ 2 — i _ 2
Jim ¢ —vpf” = inf [ —of". (3.129)

By using that || - |2 = (., -), we have:
[ —vl* = F(o) + [¢*,  F(v) := v - 2Re{y, v) . (3.130)

Therefore, limg_, o F(vg) = infyeps F(v) =: . Our preliminary goal is to show that vy — v
in M. To prove this, we write:

Fug) + F(u) = [ok|? = 2Re(y, o) + |u]* — 2Re {9, vr)

1
= 5 (Iow + vl + o = ) = 2Re @, 0% + v

2 1
= o E 5 e (v B + = ul?
+ 1 1
_ 2F(vk2Ul)+§Hvk7w|\2>2a+§\|kale2. (3.131)
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Since F'(vy), F(v;) — a as k,l — o0, we get that ||vy —v;| — 0. Being (vy) a Cauchy sequence,
and since H is complete, vy, — v in H. Also, since M is closed, v € M. By continuity of the
scalar product, a = F(v). Our next goal is to show that ¢» — v € M. If so, this provides
one decomposition ¢ = v + v', with v e M and v+ e M*.

Let v € M and let f(t) := F(v + t0). Then, by definition of v:

f(t)= Fv)=f(0), forallteR. (3.132)

Thus, ¢t = 0 is a minimum of f(¢). In particular, f/(0) = 0. Let us compute the derivative.
A simple computation shows that:

0= f'(0) =2Re{y) —v,0) . (3.133)
Replacing v with 0, we get the same identity but with Re replaced by Ran. Hence:
0=<p—v,0)y=0, for all o € M. (3.134)

In conclusion, 1) — v € M+, as claimed; thus, 1) = v+ L v. Let us now prove uniqueness of
the splitting. Suppose there exists vy, ve € M and vll, vzl such that:

Y =v +of = vy + vy (3.135)
Then, v; —vy = vy —vi, which means that v; —vs = 0 and v{ —vs = 0, since M n M+ = {0}.

3.6 The Fourier transform in L2

Definition 3.62. Let X and Y be two normed spaces. An operator L : X —'Y between X
and Y is called bounded if there exists C' < oo such that:

|Lxlly < C||x , forallze X. (3.136)

Proposition 3.63. Let X and Y be two normed spaces. Let L(X,Y) be the set of the
bounded linear operators from X to Y. Let:

HL”E(X,Y) = SUPHIHX=1HL37HY . (3137)

Then, | - |z(x,y) defines a norm on L(X,Y). Moreover, if Y is complete then L(X,Y) is
complete as well, that is it is a Banach space.

Proof. 1t is easy to check that | - |z(x y) defines a norm on £(X,Y). Let now prove that if
Y is complete then £(X,Y) is complete as well. Let (L,,) be a Cauchy sequence in £(X,Y):

|Ln = Lin| x,yy = 0 as n,m — oo. (3.138)
Then, (L,x) is Cauchy sequence in Y, since
Loz — Lmally < I1Zn — Lmlcoeyylzly - (3.139)

Being Y complete, L,z — y €Y, as n — o0. We define Lz := y. It is easy to show that L is
a linear operator. Let us prove that L is a bounded operator. By the Cauchy property, we
have, for all € > 0, for n, m large enough:

sup HLnZE - Lm'IHY <e. (3140)

] x=1
Therefore, dropping the sup and taking the m — oo limit:
|Lnz — Lx|ly <e=|Lz|y <C, (3.141)

uniformly in z, for all z such that |z|x = 1. This proves that L € £(X,Y). Due to the
arbitrariness of €, Eq. (3.141)) also proves that L, — L in £(X,Y). This concludes the
proof. L]
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Theorem 3.64. Let X and Y be two normed spaces. Let L : X — Y be a linear operator.
Them, the following statements are equivalent:

(i) L is continuous at 0.
(i) L is continuous.
(#ii) L is bounded.

Proof. (iii) = (i). In fact, let |z,|| — 0. Then, |Lz,| < |L||z.]| — 0.

Let us now show that (i) = (i). Let ||z, — 2| — 0 and let L be continuous at 0. Then,
|Layn — La| = [L(zn — z)| — 0.

Finally, let us prove that (i) = (ii4). Suppose that L is continuous but not bounded: that
is, there exists a sequence (x,) with |z,| = 1 such that |Lz,| = n. Then, let z, := m

It follows that ||z,| < %, but |Lz,| = 1, which contradicts continuity. u

Example 3.65 (Unbounded linear operators.). Let {op = {(z,) €' | INeN:z,, =0VYn >
N} be the space of finite sequences, equipped with the norm |z|pn = 3" |zn|. Then, the
operator T : Ly — {y such that x — Tx = (x1,229,3x3,...) is unbounded, since |Te,| = n
but |le,| = 1.

Theorem 3.66 (Extension of densely defined linear bounded operators.). Let Z < X be
a dense subspace of a normed space X and let Y be a Banach space. Let L : Z — Y be
linear and bounded. Then, L admits a unique linear and bounded extension L € L(X,Y)
with L } z= L and )

ILlccxvy = 1Ll ez, - (3.142)

Proof. Let * € X. Then, there exists a sequence (z,) < Z such that |z, — z|x — 0.
Being (z,,) convergent, the sequence (zy,) is also a Cauchy sequence. Thus, | Lz, — Lzp,|ly =
IL(zn, — zm)|ly < |L|lllzn — 2m|x, which means that (Lz,) is also a Cauchy sequence in
Y. Since Y is complete, Lz, — y € Y. Let us now prove that the limit y does not
depend on the choice of the sequence (z,) (provided it converges to x). Let (z],) be another
sequence in Z, such that ||z], — z|x — 0. Consider the new sequence z1, 2}, 22,25, .... By
assumption, also this new sequence converges to x, and by following the previous argument,
Lz, Lz}, Lzo, L2} ... converges to § € Y. But since every subsequence of a convergent
sequence converges to the same limit, we have y = lim Lz, = lim Lz], = ¢. Therefore, we
can define Lx := y. The linearity of L follows immediately from the previous construction.
The boundedness follows from:

|Lzly = lim [Lzn|y < lim [L]lzalx = |L]]z]x - (3.143)
n—0o0 n—0o0

Therefore, Lis bounded, and also continuous, by Theorem m Finally, the extension L of
L is unique: this follows from the fact that two continuous maps which coincide on a dense
subset are equal. [

Next, we shall extend the Fourier transform on L2.

Theorem 3.67 (The Fourier transform on L2.). The Fourier transform F : (S(R?), ||| z2) —
L2(RY) can be uniquely extended to a bounded linear operator on L?(R%). Moreover, for all
felL?:

IF fllze = 1flre (3.144)
and FF~ ' = F'F =1;..
Remark 3.68. Eq. (3.144]) takes the name of Plancherel’s theorem.

Proof. By Theorem [2.13] the space S is dense in L2. The extension of F to a bounded linear
operator on L? follows from Theorem Moreover, as proven in Theorem

FlFls=FF 1 ls=1s. (3.145)
Being F, F~!,1 continuous, and being S dense in L?, Eq. (3.145) holds as an identity on

L2, n
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Definition 3.69 (Unitary operator.). A bounded linear operator U € L(H1,Hz) is called
unitary if it is surjective and isometric, that is |Uy|u, = |¢|n, for all e Hy.

Remark 3.70. By the polarisation identity, it immediately follows that U “preserves angles”,
that is:

U, Uppp, = by opny for all o, € Hy. (3.146)

Remark 3.71. The Fourier transform F : L?> — L? is unitary.

As an application of the Fourier transform in L2, consider the propagator of the free
Schrodinger equation, defined in Eq. (3.50). By extending the Fourier transform to L2, the
free propagator can also be extended to an operator on L?:

P(t): LARY) > LARY), Pi(t) = Fle 5t F. (3.147)

It follows that P¢(¢) is a unitary operator, for all t € R. Moreover, it satisfies the following
composition property:

Pi(s)Py(t) = Fle s FF e it F = Frlemi GHOF — ps 4 1) . (3.148)

Therefore, one says that P; : R — £(L?) is a unitary group. In the next section we will show
that the function:
U(t) = Bi(t)o, o€ L*(RY) (3.149)

solves the Schrédinger equation in the L? sense. Before doing that, let us first check that
Y:R—LXRY), o= 9(t) = Plt)vo (3.150)

is continuous. By dominated convergence:
2 k2, 2 A
I(6) — w(to) e = [(Re) = Ptto))le = [ |e 0 e[ Ju(h dk — 0 (3.151)
R

as t — tg. This proves the continuity of ¥ (t). Let us now check differentiability. Again by
dominated convergence, we see that ¢ : R — L2(R9) is differentiable if and only if:

k|40 (k)2 (3.152)

is integrable, that is when |k|2¢o(k) € L2(R?). To conclude, let us discuss the continuity
properties of the unitary group P. In particular, let us consider |P(t) — Pr(to)||z(z2), with
| - |z(z2) defined in Proposition 3.63] We have:

Pi(t) — P, oy = *i%t, figto — fi%ti 71‘72150 -9 1
|Pe(t) — Pr(to)|cz2) = |le e = sup |e e =2, (3.153)

L(L?)  keRrd

where we used that F is unitary, and that it leaves L? invariant. Therefore, the unitary
group P is not continuous with respect to the topology of the bounded operators. However,
one might have continuity with respect to different topologies.

Definition 3.72. Let (A,,) be a sequences in L(H) and A € L(H).
(a) We say that A,, converges to A in norm if:

Jim A, = Al =0 (3.154)

One writes also lim,_,» A, = A or A, — A.

(b) We say that A,, converges strongly (or pointwise) to A if:

lingo |Ant) — Ay =0 for all ¢ € H. (3.155)

One writes also s —lim,_,o A, = A or A, > A.
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(c) We say that A,, converges weakly to A if:

nli_r)rgo [{p, (A, — A))| =0 for all v, € H. (3.156)

One writes also w— lim,_,o0 Ay = A or A, — A.

Remark 3.73. These notions of convergence verify the following chain of implications:
norm convergence = strong convergence = weak convergence. (3.157)

The reverse implications are in general not correct.

3.7 Unitary groups and their generators

In this section we shall discuss in which sense ¥(t) = Pi(t)yo with 1y € L? solves the free

Schrodinger equation:
d

71—

dt

As we have seen in the previous section, t(t) is differentiable in the strong sense if |k|2(t) €
L?. Moreover, the distributional derivative:

P(t) = —%Aw(t) . (3.158)

! L
—5A() = F-9() (3.159)
is in L2 if and only if |k|2¢(t) € L2. Also,
K2 (E) = [kf2e™ 5 " < L° (3.160)

if and only if |k|2¢ € L2. Therefore, if the initial datum satisfies |k|2¢o € L2, then |k|2¢)(t) €
L? for all times, and 1 (¢) solves the Schrodinger equation in the L? sense: Eq. (3.158)) holds
as an identity between L? functions.

Definition 3.74 (Sobolev spaces.). Let m € Z. The m-th Sobolev space H™(RY) = S'(R?)
is the set of distributions f € S'(R?) such that f is a measurable function and:

(1+ |k[>)% feL*(RY) . (3.161)

For m > 0, it follows that H™ < L2.

Remark 3.75. Let us consider again the propagator of the free Schrodinger equation:
L2
Pr:R— L(L?), te Pt)=F lei5tF. (3.162)

It satisfies the following properties:
(a) Py(t) is unitary for all t € R.
(b) Py is strongly continuous: t — Py(t)y is continuous for all 1 € L.
(¢) Py has the group property: Pi(s)P(t) = Pyt + s) for all s,t € R.
Moreover,
(d) For all g € L?, 1(t) = Pplo is a solution in the sense of distributions.
(e) For all o € H? = L2, (t) = Pp(t)bo is a solution in the L* sense: the map R 5t —
W»(t) € L? is differentiable and the derivative satisfies:

d

. 1
i () = =3 Au() (3.163)

where —3 Ay(t) € L,

The items (a) — (¢) motivate the following definition.
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Definition 3.76 (Strongly continuous one-parameter group.). A family U(t), t € R, of
unitary operators U(t) € L(H) is called a strongly continuous one-parameter group if:

(i) U:R— L(H), t — U(t) is strongly continuous.
(is) U(t+s) =U@)U(s) for allt,s and moreover U(0) = 1.
The items (d) — (e) motivate the following definition.

Definition 3.77 (Generator of a unitary group.). A densely defined linear operator H with
domain D(H) € H is called a generator of a strongly continuous unitary group if:

(i) D(H) ={ye H|t— U@)Y is differentiable}.
(ii) For all € D(H) it follows that i-LU(t)¢ = U(t)H.
Example 3.78 (The free Hamilton operator.). Consider the free Hamilton operator:

Hy = —%A with D(Hy) = H*(R?) (3.164)

is the generator of the unitary group Py(t). This can easily be checked from the definition
, and from the fact that FF~' = F~'F = 1.

Proposition 3.79 (Properties of the generators.). Let H be a generator for U(t). Then:
(i) D(H) is invariant under U(t), that is U(t)D(H) = D(H) for all t € R.
(i) H commutes with U(t), that is:

[H,U@#)]y == HU®#)Y —U(t)Hy =0 for allp € D(H). (3.165)
(iii) H is symmetric, that is:
(Hip, o) =W, Hp)  for all p,¢p € D(H). (3.166)

(iv) U is uniquely determined by H.
(v) H is uniquely determined by U.

Proof. (i) We notice that the map s — U(s)U(t)y) = U(s + t)v is differentiable if and
only if the map s — U(s)y = U(—t)U(s + t)¢ is differentiable. The derivative of the
first map at s = 0 is: (—4)U(t)Hv. The derivative of the second map at s = 0 is:
(—i)U(—t)U(t)Hy. Thus, ¢ € D(H) if and only if ¢ € U(t)D(H).

(i) Let ¢ € D(H). Then:

U HY = V()i Us) |amo= i UDU ()6 o= iU (U (00 [smo= HU(1)
(3.167)
To get the third equality we used that U(t)U(s) = U(t+s) = U(s)U(t), and that U (t)¢
is in D(H), by what we proved before.

(iii) By unitarity, {1, @) = (U(t)y,U(t)p) for all 1, ¢ € H. Therefore,

0

L0y = SO, U D) = (HUW, Ult)p) + U0, ~HU (1))
KU H, Ult)9) — KU (0, U0 H) = HY, @) — i, Hoy . (3.168)

(iv) Suppose that U (t) is generated by H. Then, by symmetry of H:

Slo® - Tl = 25 (10 - Rewow, T0w))
= —2Re ((—iHU W), T(t)) + U )Y, —iHO (1))
= —2Re ({HU (), D00y - iU )Y, HT (1))
= 0, (3.169)
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for all 1 € D(H) (for the second term, we actually use that U(t)D(H) = D(H)). Eq.
(3.169) together with U(0) = U(0) = 1, implies that U(t) [ pay= U(t) I pay for all

t € R. Moreover, from D(H) = H (recall that, by definition, the generator H is densely
defined in H), we conclude that U = U on H.

(v) This is an immediate consequence of the definition of H.
|

Example 3.80 (Translations as unitary groups on L?). (a) Let T(t) : L*(R) — L*(R)
with ¥ — (T(#)Y)(z) := Y(x —t) be the group of translations. It follows that T(t) is
a strongly continuous unitary group, generated by Dy = —i%, with domain D(Dgy) =
H(R).
(b) The definition of the translations on L?([0,1]) is a bit more delicate. Let 0 <t < 1
and 0 € [0,27). We define:

(T ()1) () :—{ eief((;:ttl 1) iéfx_ffio(’)‘l] (3.170)

This definition allows to define the translation to the right for all t = 0. Intuitively,
whatever “exits the interval [0,1] from the right”, “comes back from the left” with a
phase factor €. One can easily check that Ty(t) is unitary, and that it satisfies the
group composition property. However notice that for 8 # 6" one has Ty(t) # Ty (t) for
t # 0: different phase factors produce different translation groups. Thus, according to
Proposition[3.79, these groups must have different generators.

However, for t small enough the function (Tp(t)1)(x) does not depend on 0: how can
this be, if the generators of Ty, Ty (t) differ for different 0, 0'? The difference lies in
the domains of Dy, which differ for different values of 0. One has Dy = —i%, with
domain:

D(Dy) = {tp € H'([0,1]) | €(1) = 1(0)} . (3.171)

One can check that D(Dy) is invariant under Ty(t), and that Dy is the generator of
Ty. Here, H*([0,1]) is the local Sobolev space, defined as follows:

H'([0,1]) := {¢ € L*([0,1]) | such that there exists ¢ € H'(R) with ¢ jo11= ¥} .
(3.172)
As we will prove later H'(R) = C(R), which means that the pointwise constraint in the
definition of D(Dy) makes sense.

Remark 3.81. The operator —i% equipped with the mazximal definition domain Dp.,p =
H([0,1]) does not generate any unitary group, since H* is not invariant under Ty. The
same is true if one chooses a too small domain, for instance D = {¢ € H([0,1]) |

$(0) = ¥(1) = 0}.
Remark 3.82. For 1, p e H([0,1]) it follows that:

Wimige)y = | T -ig o) = i@ - FOR0) + | do (i ve)e()

0 0
NEEY —— . d
= —iW@)e) = p(0)p(0) +(~i 0. (3.173)
That is, the operator fi% on Dyax is not symmetric. As we shall see later, this implies
that fi% is not a generator. Instead, 71‘% on Dy and on Dy, is a symmetric operator,

since the boundary term in Eq. (3.173)) vanishes. However, fi% is a generator only if
defined on Dy. The symmetry of the operator is a necessary but not sufficient condition to
define the generator of a unitary group.

Before discussing further how to characterize the generator of a unitary group, we con-
clude this section by discussing a regularity result for functions in Sobolev spaces.

Lemma 3.83 (Sobolev.). Let £ € Ny and f € H™(R?) with m > ¢+ 4. Then, f e C*(R?)
and 0° f € Coo (RY) for all |a| < £.
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Proof. We will prove that k® f(k) € L*(R%) for all a € N¢ with |a| < £. Then, 0*f € C,(R%)
follows thanks to the Riemann-Lebesgue lemma, Theorem [3.4

From the definition of H™ one has (1+|k|2)™/2f(k) € L*(R%), and therefore for all o € N¢
with |a| < £

R4 5
= fRd(1+ ‘k|2)m/2|f(k)|(1+|k‘2)[72m dk
" ; 1/2
= ‘k|2) 2f(k)HLZ(]R“l) (J]Rd (1+ ‘k|2)M—g dk) , (3.174)

where in the last step we used the Cauchy-Schwarz inequality. The last integral is finite if
and only if 2(m — ¢) > d. u

4 Selfadjoint operators

4.1 The Hilbert space adjoint

Let V and W be normed spaces and A € L(V,W). Then, the dual spaces V' and W’ are
Banach spaces and one can define the adjoint operators A’ : W/ — V'’ for w’ € W":

(Aw")(v) :=w'(Av)  forallveV. (4.1)

Therefore, A’ € L(W', V') and from the Hahn-Banach theorem one also has | A’| = ||A|. For
Hilbert spaces, it follows that H’ =~ H, which means that if A € £(H) then A’ € L(H’) can
also be seen as an operator in £(#H). We shall clarify these points in the following.

Theorem 4.1 (Riesz). Let H be a Hilbert space and T € H'. Then, there exists a unique
Y € H such that:

T(p) = U1, o) , for all p € H. (4.2)

Proof. Let T' € H'. We would like to prove that T' can be understood as a “projection” over
a vector ¢ € H. If so, we can think M := Ker(T) as being the orthogonal complement of
. Since T is continuous, M is closed. If M = H then T = 0 and ¥ = 0 provides the
required vector.

Suppose that M # H. Then, we claim that M~ is one dimensional. Let v, 1, € M+\{0}.

Let o := ;gﬁf% We have:

T(ho — ap1) = T(ho) — aT' (1) = 0. (4.3)

That is, 19 — ayp; € M n M+ = {0}, which proves that 1)y = a1/, and hence that M+ is
one-dimensional. Now, by Theorem [3.61] for any ¢ € H there is a unique splitting:

Y =9M+ oMt =M+ o, i>¢0 ) (4.4)
%ol
where the last step follows from the fact that dim(M~+) = 1. Now, let 97 := ﬂ)’fﬁ’g . We
e (o, @) T ()
) P
T(e) = Tlon + o bo) = o o)y = o) (4.5)

where the second equality follows from the linearity of T, and from the fact that o, € Ker(T).
This proves the claim (4.2)). The uniqueness follows from the definition of scalar product. ®

Riesz Theorem, together with the next proposition, shows that % and H’ are isometrically
isomorphic. In other words, H is selfdual.
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Proposition 4.2 (Selfduality of Hilbert spaces). Consider the map:
JH->H o Jpi={p). (4.6)
J is a linear map. Moreover, J is an isometry:

1@l = leln - (4.7)

Remark 4.3. Theorem proves that H and H' are isomorphic. Proposition proves
that the isomorphism that associates to an element of H an element of H' is an isometry.

Proof. The linearity of J immediately follows from its definition. Let us now prove Eq. (4.7]).
We have:

ol = sup 172
heH (e iEn

e
AT

since (i, )| < [ipll¥]l by Cauchy-Schwanz inequality and (s, ) = ]2, .

Definition 4.4 (Hilbert space adjoint). Let A € L(H). The Hilbert space adjoint operator
A* . H — H is defined as:

A* = J AT (4.9)
Proposition 4.5. For A€ L(H) it follows:
W, Apy = (A%, ) for allh,peH. (4.10)

This relation defines A* uniquely.

Proof. By the definition of A* it follows that:

W, Apy = Jip(Ap) = A'Jap(p) = JT A Jp(p) = JA*P(p) = (A%, @) . (4.11)

Also, the map ¢ — (1, Ap) is continuous and linear. Therefore, by Theoremthere exists
a unique vector 1 € H with (¢, Ap) = (n, ¢) for all p € H. This proves uniqueness of A*. =
Theorem 4.6 (Properties of the Hilbert space adjoint). Let A, B € L(H) and A € C. Then:
(i) (A+ B)* = A* + B* and (A\A)* = \A*.
(i) (AB)* = B*A*.
(iii) |A*] = [ Al.
(iv) A** = A.
(v) [|AA*| = |A*A| = |AJ?.
(vi) Ker A = (RanA*)*+ and Ker A* = (Ran A)*.

Proof. (i) — (4i7) follows immediately from the definition of Hilbert space adjoint. The
property (iv) follows from:

(b, Apy = (A%, o)y = {p, A%y = (A*¥* @ )y = (b, A% ) for all p,pe H.  (4.12)

The property (v) follows from:

| Ap|? = (Ap, Apy = {p, A*Ap) < |o|*|A* A, (4.13)
therefore:

Al = s [Apl? < [[A*A] < |A*[]A] = A]* - (4.14)
ol
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To conclude, the property (vi) follows from:

peKerA < Ap=0

> (@, Apy=0 forallpeH (4.15)
— (A%, py=0 forallypeH (4.16)
«— e (RanA*)"t. (4.17)

[

Example 4.7. Let T : (> — (2 be the right shift, (x1,72,...) — (0,21, 22,...). We have:
e} o0
(&, Tyy = Y w951 = Y, wjy; = (T*z,y) (4.18)
j=2 j=1

with T* the left shift operator, (x1,x2,...) — (x2,x3,...). Notice that the rightshift is
isometric, but not surjective and hence not unitary. It follows that T*T = 1, but TT* # 1.

Proposition 4.8. U € L(H) is unitary if and only if U* = U~ L.

Proof. Suppose that U is unitary. Then:

(U*U¢ =, 0) = (U, Up) =<th,pp =0 for all ih,p € H. (4.19)

Therefore, U*U = 1. Since U is surjective, for any ¢ € H there exists ) € H such that
Uy = ¢. Also, UU*p = UU*Uvy = Ut = . This implies that UU* = 1. That is,
U*=U""%

Suppose now that U* = U~!. Then, U is surjective, and moreover:

U, Uy =U*Ugp, ) = U Up, %) = {p, %) - (4.20)
This proves that U is unitary. L]

Definition 4.9 (Bounded selfadjoint operator). A € L(H) is called selfadjoint if A = A*.
Proposition 4.10. Let A€ L(H). Then:

A s selfadjoint <= A is symmetric. (4.21)
Proof. The proof immediately follows from Proposition [4.5 L]

Remark 4.11. In general, for unbounded operators the implication < does not hold true.

Theorem 4.12 (Bounded generator.). Let H € L(H) with H* = H. Then, the operator
o0 .
it (—iHt)™
o = 3 L (4.22)

defines a unitary group with generator H, with D(H) = H. Moreover, the map R — L(H) :
t — et s differentiable.

Proof. Exercise. L

of a subspace D(T') < H together with a linear operator T : D(T) — H. If D(T) =
we say that T is densely defined.

(b) An operator (S, D(S)) is called an extension of (T, D(T)) if D(S) > D(T') and S | p(ry=
T. We say that T < S.

(¢) An operator (T, D(T)) is called symmetric if for all p,v € D(T) it follows that:

oy Toyn = Tp, 0w - (4.23)

Definition 4.13 (Unbounded operators.). (a) An unbounded operator is a pair (T, D(T))
H

)
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Example 4.14. The free Hamilton operator Hy = —1A on D(Hy) = H?(R?) is a symmetric
unbounded operator, densely defined.

As we have seen in Example the solution of the Schrodinger equation generated
by a symmetric operator H might leave D(H), if D(H) is chosen too small. We would
like to understand what is exactly missing to imply that a given symmetric operator is the
generator of a unitary group. Let (Hy, D(Hp)) be a symmetric operator, and let (Hy, D(H))
be a symmetric extension. Suppose that the equation:

d

S e) = Hib(r) (4.24)

with initial datum ¢ (0) € D(Hy) has, at least for small times, a solution () that belongs
at least to D(H7) but not to D(Hy). The question we ask is where does 1(t) go after leaving
D(H,). For ¢ € D(Hy) < D(H,) it follows that:

(Hip(t), ) = (o (t), Hip) = C(t), Hop) - (4.25)

Therefore, if 1(t) does not belong to D(Hp), then it is at least in the domain of the adjoint
operator H, defined as follows.

Definition 4.15 (The adjoint operator). Let T be a densely defined linear operator on a
Hilbert space H. Then, the domain D(T*) of the adjoint operator T* is defined as:

D(T*):={eH|IneHs.t.{,Toy=_{n,¢yVoe D(T)}. (4.26)

Since D(T') is densely defined, n is uniquely defined and we define, for all ¢ € D(T*):
T* . D(T*) > H, e T :=n. (4.27)

Remark 4.16. By Theorem[{.1], Definition[{.15 is equivalent to:

D(T*):={y et | p— &), Tp) is continuous on D(T).} (4.28)
Proposition 4.17. (T*, D(T*)) is a linear (not necessarily densely defined) operator and:
(b, Ty ={T*p,py  for allp € D(T*) and p € D(T). (4.29)
Proof. Tt immediately follows from Definition 4.15 u
Definition 4.18 (Self-adjoint operator). Let (T, D(T)) be a densely defined linear operator.

If D(T*) = D(T) and T = T* holds true on D(T), then we say that (T, D(T)) is a selfadjoint
operator.

Example 4.19. In order to clarify the above definition, let us come back to Ezample [3.80
(a) Let us consider first Dy = fi% with:
D(Dmin) = {p € H'([0,1]) | 9(0) = ¢(1) = 0} . (4.30)

For ¢ € D(D,in) we have:

0 Poin) = [ T~ ico@) = [ o (~iv@)ew) = (it
= () (431)

provided %w e L2([0,1]), which is implied by ¢» € H'([0,1]). Therefore, one has
D(D#. )= HY([0,1]) 2 D(Dmin) which implies that D,y is not selfadjoint.

min

(b) Let Dy = —i-L with:

D(De) = {p € H'([0,1]) | e”(1) = 0(0)} - (4.32)
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One has, for ¢ € D(Dy):

f: Ao 9@)  — ip(a))
i(EOp(0) - T[TV + |

<1/% DGC)O>

1

d d
e (=gt ele) = (igoene)
= e, (4.33)
provided that 1 € H'([0,1]) and that:

- YO) _e) _ g
0)p(0) —¥(1)e(l) =0 — —t =1 = . 4.34
$(0)p(0) = (1)p(1) e (4.34)
It follows than that D(D}) = D(Dy) and that D} = —iZt = Dy. That is, Dy is
selfadjoint.

Theorem 4.20 (Generator of a unitary group). A densely defined operator (H, D(H)) is a
generator of a unitary group U(t) = e~ if and only if H is selfadjoint.

Remark 4.21. The Spectral Theorem, to be stated later, will imply that every selfadjoint
operator generates a unitary group. The converse implication, that is that every unitary
group is generated by a selfadjoint operator, is called the Stone Theorem. Both will be proven
later; Theorem [{.20 will then follow as an immediate corollary.

Definition 4.22 (Direct sum of Hilbert spaces). Let Hi and Ha be two Hilbert spaces. Then,
their direct sum is defined as:
Hl @7‘[2 = Hl X 7‘[2 s (435)

equipped with the scalar product
oy rams = o1, Yu, + {2, Yaimu, - (4.36)

Remark 4.23. (H1 @ Ha,{:, D en,) s a Hilbert space.

Definition 4.24 (Graph of an operator, closed operator, closure). (a) The graph of a lin-
ear operator T : D(T) — H is the space:

(T) = {(p,To) e HOH | pe DT cHOH . (4.37)

(b) An operator T is called closed if T(T) is a closed subspace of H®H.

(¢c) An operator T is called closable if it admits a closed extension. In this case, the smallest
closed extension T is called the closure of T'.

Remark 4.25. [t is easy to see that:
I(T) =T(T) . (4.38)

Remark 4.26. Therefore, an operator T is closed if for every sequence (p,) < D(T) such
that @, — ¢ and T, — n in H, then p € D(T) and Ty = 1.

Theorem 4.27 (The adjoint of an operator is always closed.). Let (T, D(T)) be densely
defined. Then, T* is closed.

Proof. We shall show that I'(7%*) is a closed subspace of H@®H. To do this, let us first notice
that:

(W) eD(T*) <= & Tp)= {9y forallpeD(T)
= W,Tey—{n,py=0 for all p € D(T) (4.39)

= n), (=T, 0)nen =0  foralloe D(T).  (4.40)

Let us introduce the unitary map:

W :HOH —>HOH: (p1,02) — (—pa,01) . (4.41)
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Therefore, we rewrite Eq. (4.39) as:

(,n) e D(T™) <= {(&,n), O)nen =0 for all ¢ € W(I(T)). (4.42)
That is, T'(T*) = (W(T'(T)))*. Being the orthogonal complement a closed set, it follows
that T'(T*) is closed and hence that T* is a closed operator. u

Proposition 4.28 (Extension of symmetric operators via their adjoint). A densely defined
operator T' is symmetric if and only if T < T*.

Proof. If T is symmetric, it follows that D(T) < D(T*), because for every ¢ € D(T) one
can set n = T =: T*¢). Conversely, if T < T*, then for every ¢ € D(T) < D(T*) we have
@, Ty = (T*¢, ) = (T, ) for all ¢ € D(T). .

Remark 4.29 (Symmetric operators are closable). Since for symmetric operators one has
T cT* and T* is closed, then the symmetric operators are always closable.

Remark 4.30. For general symmetric operators T', the identity T = T* does not have to be
true. In fact, it is not difficult to see that T is symmetric, while T* may not be.

Proposition 4.31. Let T be densely defined and T < S. Then, S* c T*.

Proof. With the notation of the proof of Theorem one has I'(S*) = (WT'(S))*. Since
T < S, one has I'(T") < I'(S), and also WI'(T) ¢ WT'(S). Hence:

0(S*) = (WI(S))*t ¢ (WI(T))* = T(T*) . (4.43)
]
Proposition 4.32. Let T be densely defined and closable. Then, T* is also densely defined.

Proof. We shall prove that D(T*) is dense in H by showing that D(T*)* = 0. Let n €
D(T*)*. Then (recall that the orthogonal complement is a closed set):

(n,0) e I(T*)* = (WI(T))* = WI(T) . (4.44)

Since WI'(T') = {(=T'p,¢) | ¢ € D(T)}, there exists a sequence () in D(T) with ¢, — 0,
such that —T'p,, — 1. Being T closable, we have that 70 = n = 0. L
Proposition 4.33. Let T densely defined and closable. Then:

(a) T** =T.

(b) (T)* = T* = T***,
Proof. Being W unitary, it follows that for every subspace M < H @ H then W (ML) =
(W(M))*.

(a) We already know that T'(T*) = (WT'(T))*. Replacing T' with T* we have:

D(T**) = (WD(T*))" = (W((WT(T))"))* = WeW (D(T)™) = —I(T) = -I(T) = I'(T) .
(4.45)
(b) Thanks to the previous equality it turns out that T = e, Moreover,
D(T*) = (WI(T))* = WI(T) = (WL(T))* = I(T*).. (4.46)
|
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4.2 Criteria for symmetry, selfadjointness and essential selfadjoint-
ness

Selfadjoint operators play an important role in quantum mechanics, since they are the only
operators that can generate time evolution. Nevertheless, we would like to have criteria that
allows to check whether a given operator is selfadjoint. Before doing this, let us discuss a
simple criterion to determine whether an operator is symmetric.

Lemma 4.34 (Criterium for symmetry). Let T be a linear operator on a complex Hilbert
space ‘H. Then:

{p, TeyeR forallpe D(T) <= T is symmetric. (4.47)

Proof. The fact that T is symmetric immediately implies that (¢, Tp) € R, since {p, Tp) =
(T, ). Let us now prove the converse implication. Suppose that {(p,Ty) € R for all
w € D(T). We would like to show that

(o, TY) = (T,  for all 1, € D(T). (4.48)
Consider the identity:
(p, Ty = (4.49)
i(@ T+, T(e+v)) = =¥, T(p —v)) — e + i), T(p + ih)) + ip — i), T(p — iY))))

Let us take the complex conjugate of both sides, recalling that, by assumption, (¢, Ty) € R
for all ¢ € D(T"). We have:

(o, Ty = (T, 0y = (4.50)

i(@ + U, T(p+9)) —Lp =, T(p =) + o + i), T(p + iv)) — i — i), T(p — i)))) -
Therefore, interchaging 1 with ¢:

(T, ) = (4.51)
1(<<ﬂ U, T(e+v) = =¥, T(p =) + iKY +ip, T(Y +ip)) — i —ip, T (¢ — ip)))

4
1
=1+, T(e+ ) (o =9, T = ¥)) + Kty — , T(i) — ) — i) + 9, T(W) + ¢)))
= (p, T
where the last step follows by comparison with Eq. (4.49)). L]

Example 4.35. (i) Let f : R — C measurable. Consider the multiplication operator
(Ap)(z) = f(x)Y(x), for all p € D(Ay) = {¢p € L*(R) | f € L*(R)}. We then have

that Ay is a symmetric operator if and only if f(x) is real valued.
Let us compute the adjoint of A?, To begin, notice that D(Ay) is dense in L*>(R). This
follows from C¥(R) = D(Ay) < L*(R). The adjoint operator on D(Ay) is given by:
(A7) (@) = f(x)(z) - (4.52)
Thus, A? = Ay if and only if f is real valued.
(ii) Consider the distributional Laplacian —A on H*(RY). For all ¢ € H*(R?) < L?(RY):

(P, =AYy = (Fp, F — AF T Fy) = Jdk lh(k)|*k> e R . (4.53)

Hence, —A is a symmetric operator.

Sometimes, one has to deal with non-closed symmetric operators. Of course, these oper-
ators cannot be self-adjoint (self-adjoint operators are always closed). The relevant question
here is whether the closure of a symmetric operator is selfadjoint.
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Definition 4.36 (Essentially selfadjoint operator). A symmetric, densely defined operator
is called essentially selfadjoint if its closure is selfadjoint.

Corollary 4.37. A symmetric, densely defined operator T' is essentially selfadjoint if and
only if T* is symmetric. In this case T = T* and T is the unique selfadjoint extension of T

Proof. Suppose that T* is symmetric. We would like to show that (T)* = T, that is T is
essentially selfadjoint. By Proposition (b), (T)* = T*, hence it is enough to check that
T* = T. By Theorem T* is closed. Moreover, being T' symmetric, by Propositionm
T < T*. Thus, T ¢ T*. To conclude, we would like to show that 7% < T. We claim that
T*** < T** 1If so, by Proposition we have: T* = T*** < T** = T which proves
that T* < T and hence that 7% = T. The claim T*** < T** follows from the fact that, for
T symmetric, T** < T*. In fact: by Proposition (b), we have T* = (T)*; since T is
symmetric and densely defined, (T')* o T, by Proposition m finally, Proposition m (a)
implies that T = T*#*.

Now, suppose that T is essentially selfadjoint. Then, T is selfadjoint, and in particular
symmetric. Moreover, T* is symmetric as well, since, by Propositionm7 T = (T)* =T,
where the last equality follows from the definition of essential selfadjointness.

To conclude, we have to show that T is the unique selfadjoint extension of T. Suppose
that S is another selfadjoint extension of 7. Then, T < S implies that T < S = S (since,
by Theorem [4.27] selfadjoint operators are closed). The reverse implication follows from

Proposition S=S*cT*=T,4e. S=T. L

Definition 4.38. Let (T, D(T)) be a selfadjoint operator. A subspace Dy < D(T), dense in
H, is called core of T if (T, Dyg) is essentially selfadjoint, that is if:

Tlp,=T. (4.54)

Remark 4.39. Equivalently, Dy is a core for (T, D(T)) if and only if Dy is dense in D(T)
with respect to the graph norm:

Iy = 1Tel3 + el - (4.55)

Example 4.40. (a) As we have seen in E:cample the operator (—i-L. D) is sym-
metric but not selfadjoint. Let us check whether it is essentially selfadjoint. To do so,
let us compute the closure of the operator, and check whether the closure is selfadjoint.

Being T = fi% symmetric on its domain, we know that T = T** < T*. Therefore,
_ i — d
for allyp € D(T*) = H'([0,1]) and all p € D(T), recalling that T < T* = —i4-:

W, =iy~ (i, ) = ilp(O)F0) — pFM],  (456)

which implies that (0) = ¢(1) = 0 (because ¥ € D(T*) = H'([0,1]) does not need
to satisfy any boundary condition). We conclude that D(T) < {1 € D(T*) | ¥(0) =
(1) = 0} = Dypin. On the other hand, it is easy to check that every ¢ € H*([0,1])
with ¥(0) = (1) = 0 is also in D(T**) = D(T). In fact, for any 1 € Dy and any

p € D(T*) = H([0,1]), integrating by parts:

b, T*p) = (3, —i%@ = <—i%w7 o) =:{n,¢), (4.57)

with n € L*(R) given by —i%w. Therefore, D(T) = Dyin, and Tt = —i%w for all
€ D(T). Hence, T is a symmetric operator on D, but not selfadjoint; that is
(T, Dyin) is not essentially selfadjoint.

(b) We already know that (7i%,D9) is selfadjoint. Hence, it is in particular essentially
selfadjoint.
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The distinction between closed symmetric operators and self-adjoint operators may seem
just a technicality, but it is actually very important. The spectral theorem, which plays
a very important role in quantum mechanics, only holds for selfadjoint operators, not for
general closed symmetric operators. Similarly, only selfadjoint operators, and not general
closed symmetric operators, generate a unitary evolution. Unfortunately, while it is easy to
check whether an operator is symmetric, it is much more difficult to decide whether it is
selfadjoint; we need criteria to prove selfadjointness. The basic criterium is stated in the
following theorem.

Theorem 4.41 (Criteria for seldadjointness). Let (H,D(H)) be densely defined and sym-
metric. Then, the following statements are equivalent:

(i) H is selfadjoint.
(i) H is closed and Ker(H* + i) = {0}.
(iii) Ran(H t1i) =H.
Proof. (i) = (i1). Let H be selfadjoint. Then, H is closed (since H* is closed, Theorem
4.27). Let o4 € Ker(H* +4). Then, Hp1 = Fip,. Since the eigenvalues of a symmetric
operators are always real, it follows that ¢4 = 0.
(#4) = (#i1). This implication will be postponed to the next lemma.
(#i1) = (i). Being H symmetric, it follows that H < H*, by Proposition We are
left with showing that H* < H. To this end, let ¢ € D(H*). Then, by the assumption
Ran(H + i) = H, there exists ¢ € D(H) such that

(H* —i) = (H —1)p . (4.58)
By H ¢ H*, it also follows that:
(H* — iy = (H* — i), (4.59)

that is ¢ — ¢ € Ker (H* — 7). As the next lemma will show, this implies that ¢ — ¢ = 0,
that is ¢ = ¢ € D(H), which shows that D(H*) c D(H). Also, by Eq. (4.58), H = H* on
D(H), which concludes the proof. u
Lemma 4.42. Let (T, D(T)) be densely defined. Then:

(a) For all z € C it follows that Ker(T* + z) = Ran (T +Z)*. In particular:

Ker(T* £2)={0} < Ran(T tz)=H. (4.60)

(b) If T is closed and symmetric, then the sets Ran (T + 1) are closed.
Remark 4.43. Let us check how this lemma allows to conclude the proof of Theorem -
Let us check that (i1) = (iii). Eq. implies that: Ker(H* +1i) = {0} = Ran(H t1i) =
H. Finally, being H closed and symmetric, item (b) above implies that Ran H is closed. This
proves the implication (ii) = (ii7).

To conclude the proof of the implication (iii) = (i) above, we have to show that (iii)
implies that Ker(H* — i) = {0}. Since Ran(H +1i) < Ran(H +1i), and Ran(H +1i) = H
by assumption, Eq. implies that Ker(H* — i) = {0}, which concludes the proof of
Theorem [{.71]

Proof. (of Lemma [4.42]) To prove (a), notice first that (T + z)* = T* + z. Then:

YpeRan (T +2)t = (&), (T+2)p)=0 forall pe D(T)
«— YeD(T*) and (T*"+2)p=0
— yYeKer(T*"£2z). (4.61)
This proves (a). Let us now prove (b); we start by choosing +i. The proof for —i is exactly the

same. For symmetric T, it follows that (¢, Ty = (T, ) = {3, Ty), that is (¢, T) € R.
Therefore, for any ¢ € D(T):

(T + i)y

(T + i), (T + i)y = |TY)? + [¢]* — 2Re i, TY)
179 + ¢ = |v]* (4.62)
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Therefore, T + i is injective and (T + i)~! : Ran(T + i) — D(T) exists and it is bounded.
Let (¢,) be a sequence in Ran (T + i) such that 1, — . Let ¢, = (T +1i)"'¢,. The
boundedness of (T +i)~! implies that v, is a Cauchy sequence, which therefore converges
to ¢ € H. Being T closed, T'(T) is a closed set; therefore, the sequence (@, ¥,) € T'(T + 1)
converges to (p, 1) = (¢, (T +14)p) € T(T + 1), which shows that ¢ € Ran (T + 7). u

Remark 4.44. Suppose that H is nonnegative, that is (1), Hy) = 0 for allyp € D(H). Then,
it is not difficult to see that the condition for selfadjointness Ran(H + i) = H in Theorem
4. 41| can be replaced by Ran(H + 1) = H.

From Theorem [4.41] we also obtain criteria for essential selfadjointness.

Corollary 4.45 (Criteria for essential selfadjointness). Let H be densely defined and sym-
metric. Then, the following statements are equivalent:

(i) H is essentially selfadjoint.
(ii) Ker(H* + i) = {0}.
(i1i) Ran(H i) =H.
Proof. Exercise. L

Example 4.46. (a) Let us give a simple proof of the fact that the operator H = fi% on

Dinin = {tb € H([0,1]) | (1) = 9(0) = 0} is not essentially selfadjoint, based on
Corollary[{.45. The equation:

H¥py = —i——py = Fipy (4.63)

4
dx
is solved by @+ = eX% which lies in D(H*) = H'([0,1]). Therefore, Ker(H* i) # {0},
which disproves essential selfadjointess.

(b) For Hy = —A on CX(R?) it follows that D(HF) = H*(R?) and the equation
Hyptr = —Apy = Fipy (4.64)

has no solution in H?, since —A is a symmetric operator. Therefore, Ker (H§ +i) = {0}
and Hy is essentially selfadjoint on CZ(R?).

To conclude this section, let us prove that (—A, H*(R%)) is a selfadjoint operator. We
could use Theorem by checking that I'(—A) is closed. An easier proof will be provided
by the following lemma.

Lemma 4.47. Let U : H1 — Ha be a unitary operator, and (H,D(H)) be a selfadjoint
operator on Hy. Then, (UHU*, UD(H)) is selfadjoint on Hs.

Proof. Exercise. L]

Let Hy = Ho = L2(RY), H = —A and D(—A) = H?(RY). Choose U = F, the Fourier
transform on L?(RY). Then, UHU* = F — AF~1 = Ay with f = k? (multiplication
operator). Being f measurable and real valued, selfadjointness immediately follows from

Example

4.3 Selfadjoint extensions

If a symmetric operator is nonnegative, there is a simple way of constructing a selfadjoint
extension via the Friedrichs extension.

Definition 4.48. A densely defined linear operator (T, D(T')) on a Hilbert space H is called
nonnegative, T > 0, if:

qr(¥) ==, Ty =0 for all+ e D(T). (4.65)

It is called positive, T > 0, if qr(¢) > 0 for all ¢ € D(T).
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Remark 4.49. The functional qr(-) is called the quadratic form associated to T.
Remark 4.50. Lemma implies that every nonnegative operator is symmetric.

Proposition 4.51. Let (T, D(T)) be a densely defined, linear, nonnegative operator. Given
P, € D(T), let {p, V) := (o, Ty +{p, ). Then, (-, )r defines a scalar product on D(T).

Proof. Exercise. [

Remark 4.52. Therefore, |- |7 := +/{:, )1 defines a norm on D(T'). Being T nonnegative,
we have [¢|F = (¥, Ty = b, 9 = [4]*.

Definition 4.53. The completion Hr of D(T) is the set of equivalence classes of sequences
in D(T) which are Cauchy with respect to the || - |7 norm. Two sequences (¢y,), (prn) belong
to the same equivalence class in Hr if | — @n|T — 0.

Remark 4.54. If a sequence is Cauchy with respect to the || - |r norm, it is also Cauchy
with respect to the | - | norm (recall Remark[{.59).

Proposition 4.55. Let [(¢n)nen] € Hr, such that @, — ¢ € H. The map [(¢n)nen] — @ is
well defined and injective.

Proof. Let us start by proving that the map is well defined. Let (¢,,), (¢,,) be two sequences
in Hr, with |, — ¢¥,|r — 0. That is, the two sequences belong to the same equivalence
class, and have the same limit ¢ in H since, by Remark ln —tn| — 0. Thus, the map
[(©n)nen] — @ is well defined.

Let us now prove that the map is injective. Suppose that (¢,,), (¢n) are two sequences
in Hr. Suppose that they converge to the same limit, |¢, — ¥,| — 0. Then, we claim that
l¢n — ¥nl|T — 0, that is they belong to the same equivalence class. This follows from:

P = Oy hn — On — (Um — m))T + n — Py Ym — Om)T (4.66)
[Vn = onlT|¥n — €n — (m — @m)lr + (T + 1) (¥n — @n)l|Ym — omll
CH'(/}n — ¥n — (’(/}m - (pm)HT + H (T + 1)(wn - @n)Hme - (pmH )

where we used that every Cauchy sequence is bounded and that 7" is a symmetric operator.
For any € > 0, by choosing n,m large enough, C|v,, — ©n, — (¥m — om)|r < /2. Also, for
any n we can choose m large enough so that |[(T +1)(¢n — @n)||[|¥m — ¢m| < €/2. Therefore,
[¢n = @nll7 <, that is on = ¥nlr — 0. .

[9n — ¢nlF

NN

Remark 4.56. (i) This proposition is useful because it allows to identify Hr with a sub-
space Q(T) < H, by associating to each equivalence class [(pn)n] its limit ¢ € H.
Obviously, D(T) < Q(T) < H (every element of D(T) is the limit of a sequence in Hr:
Just take the constant sequence).

(i) The scalar product (-, )y, originally defined on D(T), can be naturally extended to
Q(T). This is done by using the continuity of the scalar product on H, and the fact
that every element of Q(T) is the limit of a sequence in D(T). (Exercise).

Definition 4.57. The subspace Q(T') is called the form domain T. The extension of the
quadratic form qr to Q(T) is defined as:

qr(¥) ==, = [I* for all e Q(T), (4.67)
where (-, -1 is the extension of the scalar product induced by T to Q(T) x Q(T).
Remark 4.58. If 1 € D(T), then qr(v) = {, TY).
Theorem 4.59 (Friedrichs extension). Let (T, D(T)) be a linear, symmetric, densely defined
operator, bounded from below by v: {1, Ty =~ for all v € D(T). Let:

D(T) = D(I*)nQ(T~7)
Ty = T*y  forallye D(T). (4.68)

Il

Then:
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(i) T is an estension of T, and T > .
(i) T is selfadjoint.
(iii) T is the only selfadjoint extension of T with D(T) < Q(T — 7).

Proof. For simplicity, we shall set v = 0. If not, replace T' by T' — v in what follows.

(i)

We claim that T < T'. By Proposition we have that T' < T%*. Since D(T*) o D(T)
and Q(T) > D(T), then D(T) < D(T). Moreover, T = T on D(T), since T = T* on
D(T). This proves that T < T. Let us now prove that 7' > 0. Let ¢ € D(T), and
(n) € D(T) such that ¢, — ¢ and (¢,,) is Cauchy in || - | 7. Then:

W, Ty = lim (o, Ty . (4.69)
We further write:

Wn, TY) =, T*Y) (4.70)
(Tpn, )

Ttpns hm) + {Tn, % — Y

T, pm) + T (Wn — Ym), Ym) + Tn, Y — hpy = T+ I+ 111

Clearly, I > 0. Pick € > 0. Consider II. We have, for n, m large enough:

|H| < H77[}n - meTHd)mHT < (4.71)

=
2 )
where we used that (¢,,) is Cauchy in |- | and that every Cauchy sequence is bounded.
Consider now III. We have, for m large enough:

I < |[vn = Yzl — | < (4.72)

<
5
Therefore, (1, TH@ = 0.

Let us now show that 7T is selfadjoint. We shall use Theorem (ii). Being T >0, T
is symmetric. Our goal is to show that Ran (T'+ 1) = H (recall Remark [4.44)). Recall:

D(T’) ={eQT)|IneH st. Y, Toy=_n,py forall pe D(T)}, (4.73)

where the vector 7 is unique (by density of D(T) is H). From the definition {-, -)p, this
is equivalent to:

D(T)={yeQ(T) | et st o)r={p) forallpeDT)}. (4.74)

Also, being D(T') dense in Q(T):

D(T)={veQ(T)|IneH st. &oyr=¢) forallpeQT)},  (4.75)

where now {-,-) is the extension of (-, »r to Q(T) x Q(T) (see Remark |4.56). By
definition, T = T*¢ = n — ¢ for all » € D(T), that is:

(T+1)=1. (4.76)

We will show that for every n € H there exists ¢ such that Eq. holds true, i.e.
that Ran (T + 1) = H, as claimed. For any n € H, the map Q(T) 3 ¢ — (n,¢) is a
bounded linear functional on Q(T'), with respect to | - || and hence to | - |7. Thus, by
Riesz theorem (Theorem [4.1)), there exists £ € Q(T) such that (n, ) = (£, ¢)r for all
¢ € Q(T). Comparing this equation with Eq. 1' we find that £ € D(f’) Also,

by Eq. (4.76), we have (T + 1)¢ = 1, which shows that Ran (T + 1) = H; therefore,
Theorem and Remark imply that T is selfadjoint.
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(iii) To conclude, let us prove uniqueness of the selfadjoint extension. Suppose that T is
another selfadjoint extension of T' with D(T') < Q(T'). Let ¢ € D(T ) and o e D(T) c

D(YA“) Then:
(oo (T + 1)) = (T + D,y = (T + Vg, 10y = &, (T + D) = b, opr = <w,z¢>T .)
4.77
By density of D(T) in Q(T) and continuity of the scalar product, taking the complex
conjugate: R R
(B +1)6,0) = (bdpr for all 1, € D(T). (4.78)

This implies that ¢ € D(T), since ¢ € Q(T) and (1, ©)r = (1, ¢) holds for all <p €
D(T) = D(T), with 5 = (I'+ 1)y. Thus, D(T) < D(T). Moreover, by Eq. (£76),
(T + 1)y = n: therefore, Tt = T for all ¢ € D(T ) In other words, T<T. By taklng

the adjoint, and recalling Proposition we also have T% < T* but then T' = T
since 7% = T and T = T*.

4.4 From quadratic forms to operators

Theorem [4.59| shows how to construct a selfadjoint extension of a nonnegative operator using
the quadratlc form associated with the operator. Later, we will be interested in defining a
selfadjoint operator given a certain quadratic form.

Proposition 4.60. Let Q < H, let s(p, 1) be a sesquilinear form on Q x @, with quadratic
form q(vp) = s(v,v). Suppose that q is real valued and that q is semibounded: there exists
v € R such that q(v) = v|¢|?. Let:

(W, 0)q 1= 5(th,0) + (L =), ) . (4.79)
Then, {-,-yq is a scalar product on Q.
Proof. Exercise. L]

Remark 4.61. Recall that a map s(-,-) : Q x Q — C is called a sesquilinear form if it is
linear in the second variable and antilinear in the first variable.

We would like to know whether (-,-), can be thought as the scalar product generated
by an operator T with quadratic form ¢r = ¢ and form domain @ = Q(T). This is true,
provided we make some assumptions on q.

Definition 4.62. A real valued quadratic form q is called closable if for any sequence (V) <
Q such that |, | — 0 and which is Cauchy with respect to | - |, then |inlly — 0.

Remark 4.63. This is the analog of the property that allowed us to identify H with Q(T) <

H, recall E'q..

Let H, be the completion of @ with respect to | - ||q. For closable g, this space can be
identified with a subspace of H, that we shall denote by Q.

Definition 4.64. The extension of q to Qg is called the closure of q. The quadratic form is
called closed if Qq = Q.

Theorem 4.65. For every densely defined, closed, semibounded form q : Q — R there is a
unique selfadjoint operator T such that Q = Q(T) and q = qr. If s is the sesquilinear form
associated with q, then:

D(T) = {6 eQ|IneH st s(,9) =gy forall pe Q) (4.80)
and T =n.
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Proof. For simplicity, we assume that ¢ > 0 (that is, v = 0). Since @ is dense, T is well
defined (there cannot be two different 71, 12 with s(v, ) = (1, @) = (n2, @) for all p € Q).
By construction, we have gr(¢) = q(¢) for all ¢ € D(T). It follows that T is symmetric and
nonnegative. Proceeding as in the proof of Theorem we find that Ran (T'+ 1) = H and
hence T is selfadjoint. Uniqueness is proven again as in the proof of Theorem u

Definition 4.66. A quadratic form is called bounded if |q(1))| < C|[v|?. The norm of q is
given by:

lgll = sup |q()] . (4.81)
=1

Remark 4.67. For bounded quadratic forms, the norm induced by {-,-), is equivalent to
the standard norm. In this case, we obtain Hy, = H and the operator T associated with
q is bounded, by the Hellinger-Toeplitz theorem (every symmetric operator defined on the
full Hilbert space H is bounded). Together with the polarization identity, it is not difficult to
check that a closed semibounded form q is bounded if and only if the corresponding selfadjoint
operator T is bounded. In this case, |T| = |q|. In particular, it follows that:

|A] = sup [, Ay)| (4.82)
e

for all symmetric operators.

5 The spectral theorem

5.1 The spectrum

Definition 5.1 (Resolvent, resolvent set and spectrum). Let (T, D(T')) be a linear operator
on H. We define the resolvent set of T as:

p(T):={2eC| (T —=2):D(T) —>H is a bijection with continuous inverse.} (5.1)
For z € p(T') we define the resolvent of T' at z as:
R.(T):=(T—2)" eL(H). (5.2)
The spectrum of T is defined as the complement of the resolvent set:

a(T) :=C\p(T) . (5.3)

Remark 5.2. For closed operators, the continuity requirement in Fq. can be dropped.
This is a consequence of the closed graph theorem, stating that a linear map T : X — Y
between two Banach spaces X, Y is continuous if and only if T is closed.

Proposition 5.3. If T is not closed, then p(T) = &.

Proof. Suppose that (T'—z) : D(T') — H is a bijection. Then, (T — z) is invertible, and it is
not difficult to see that I'(T') = T'(T — z) = I'((T — 2)~!) (modulo switching the order of the
pairs in the definition of graph). Thus, if I'(T) is not closed, I'((T' — z)~!) is not closed as
well. This means that there exists (¢,,) = H such that o, — 0 but lim,, (T —2)"1¢, # 0.
Therefore, (T — z)~! is not continuous. Hence, p(T) = . u

Definition 5.4. Let (T, D(T)) be a closed, linear operator. Then, its spectrum o(T) is
partitioned according to the following criteria:
(a) 0,(T):={2eC|T —2z isnotinjective}
is called the point spectrum, and it coincides with the set of eigenvalues of the operator.
(b) 0o(T):={2€C|T —z is injective, not surjective, with dense range}
is called the continuous spectrum.
(¢c) o,(T):={z€C|T—=z is injective, not surjective, with no dense range}

is called the residual spectrum.
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Remark 5.5. In conclusion, for closed operators:

o(T)=0,(T)vo(T)vo(T), (5.4)
and if dimH < o then o(T') = 0,(T) is the set of eigenvalues.
Example 5.6. (i) Consider the position operator I, with domain:

D(x) = {¢ € L*(R) | 2¢/(2) € L*(R)} (5.5)

defined via & : 1 — x1p. It follows that (& — )t is the multiplication by the function
(x — 2)71, which is bounded for all z € C\R. Therefore, o(&) = R.
The map (& — \) has a dense range for all X € R. To see this, for all 1 € L? we define:

Y
P T XRDA-F A ) (5.6)

Then, (x — N, — 1 in L%, and hence the range of x — \ is dense. Therefore,
o(2) = o.(2) =R.
(ii) Let U € L(H) unitary. Then, o(T) = o(UTU ™). This follows from the fact that T — z

is bijective if and only if U(T — 2)U~! = UTU ! — z is bijective.

Therefore, the momentum operator p = —i% on L?(R) has real continuous spectrum,

a(p) = 0.(p) =R, since p = F2F ' and the Fourier transform is unitary.

Theorem 5.7 (Properties of the resolvent and of the spectrum). Let (T, D(T')) be a densely
defined operator on a Hilbert space H. Then:

(a) p(T) is open, that is the spectrum o(T) is closed.
(b) The resolvent map:

p(T) > LH), 2z RA(T):=(T—2)"" (5.7)

is analytic, that is R,(T) can be written locally as a pointwise convergent series with
coefficients in L(H).
(c) If T € L(H), then |z| < |T|| for all z € o(T). In particular, the spectrum is compact.
(d) For z,w € p(T) the first resolvent identity holds true:

Ro(T) = Ru(T) = (2 = w)Ru(T)R=(T) . (5.8)
In particular, the resolvents commute:
Ry(T)R:(T) = Ro(T)Ru(T) - (5.9)
The proof of this theorem is based on the following proposition.

Proposition 5.8 (Neumann series). Let X be a Banach space and T € L(X) with |T| < 1.
Then, 1 — T is continuously invertible and:

-7t => 1", (5.10)

and:
ja-D) M <@-J7h". (5.11)
Proof. Exercise. L]

Proof. (of Theorem [5.7})
(a) Let zg € p(T) and |z — 29| < | R4, ||t Then,

T—z=T—-z2—(2—20) =T —2)(1— (2= 20) R, (T)) . (5.12)

Then, the next proposition implies that |(z — z9)R.,| < 1, which means that 1 —
(z — 20) R, is continuously invertible, and hence (7' — z) is continuously invertible.
Therefore, z € p(T).
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(b) Thanks to the Neumann series :

o8]
R. = (1—(z—20)R.,) 'Rey = > (2 — 20)"RLT, (5.13)

n=0
where the coefficients RZt! belong to L£(H).

(¢) Let |z| > ||T'|. Then, 1 — % is invertible, and T — z as well. Therefore, z € p(T).
(d) We have:

Theorem 5.9 (Spectrum of a selfadjoint operator). Let (H, D(H)) be a selfadjoint operator.
Then, o(H) R and for all z € C\R:

1

— )7t < .
07 =7 < s

(5.15)

Proof. Let z = A+ i, with A, u € R and p # 0. Then, (H — X)/u is selfadjoint on D(H)
and, by Theorem
H—- )\
Ker (T - z) = Ker (H — A — ip) = {0} (5.16)

and: H—)
Ran (T_ —i) — Ran (H — A —ip) = H . (5.17)

Eq. (5.16) implies that H — z : D(H) — H is injective, while Eq. (5.17) implies that it is
surjective, Therefore, H — z : D(H) — H is a bijection. Moreover, the inverse is bounded,
since:

[(H =X —ip)pl* = [(H = N[ + |up]? = pw? 0] (5.18)
which implies that |(H — 2z)7!| < 1/|p|. Therefore, z € p(H). m

Lemma 5.10. Let T : D(T) — H be a symmetric operator, and suppose that o(T) < R.
Then, T is selfadjoint.

Proof. If o(T) c R, then T'— z : D(T) — H is a bijection for all z € C\R. In particular,
Ran(T — z) = H; being T symmetric, Theorem implies that it is selfadjoint. ]

Remark 5.11. Therefore, Theorem and Lemma [5.10 imply that a symmetric operator
T is selfadjoint if and only if o(T) < R.

Lemma 5.12. Let T : D(T) — H be a closed, densely defined operator. Then,

| R (D) = dist(z,0(T)) ™" (5.19)
for all zy € C.
Remark 5.13. If T is bounded, we have {z € C | |z| > |T||} < p(T).

Proof. The radius of convergence of the Neumann series (5.13) is |R,,(T)|~*. Also, the
series cannot converge if z € o(T'); therefore, |R,,(T)| ™! < dist(z0,0(T)). u

Remark 5.14. For selfadjoint operator, one actually has:

1

I =27 = Gt otm)

(5.20)

The next theorem provides a useful criterion to decide whether z € o(A).
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Theorem 5.15 (Weyl criterion.). Let T : D(T) — H be a closed densely defined operator.
Suppose that there exists a sequence v, € D(T) with || = 1 for all n € N and such
that (T — 2)¢n| — 0 (such a sequence is known as a Weyl sequence at z). Then, z € o(T).
Conversely, if z € 0p(T) < o(T) (recall that o(T) is closed), then there exists a Weyl sequence
at z.

Proof. Let ¢, be a Weyl sequence at z. If 2z € p(T'), we would have
[l = [R(T)T = 2)¢ul < |R(T)I(T = 2)¢n] < C(T = 2)¢pn] — 0, (5.21)

thus giving a contradiction. Hence, z € o(T). On the other hand, suppose that z € do(T).
Then, there exists a sequence z, € p(T) with z, — 2. From Theorem we have
|R.,(T)| — . Hence, there exists (p,) < H such that |R,, (T)enll/|en] — . Let
UVn =R, (T)pn/||Rz, (T)@n|. Then, |¢,| =1 for all n and:

[T = 2l < I(T = 20 )l + |2 = zallibn] = R'fT')w Ceem 0. (5.22)

Hence 1, is a Weyl sequence. u

Another useful result is the following lemma, that establishes a relation between the
spectrum of 7' and the one of its inverse 7! (which is a densely defined operator on H, if
T is injective and RanT is dense).

Lemma 5.16. Let T be injective and RanT be dense. Then, T~': RanT — H is such that:
a(T7\{0} = (a(T)\{0o})~" . (5.23)
Furthermore, Tv = X\ if and only if T~ = X714,
Proof. Let z € p(T)\{0}. Since, for every ¢ € H:
(I =2 (=2)TR(T)p = (T = 2)R.(T)p = ¢ (5.24)
and for all p € D(T!) = Ran (T') we can write 1) = T'p, we have:
(—2)TRT) T =27 = (=2)TRAT)(T™" —="")Ty
= TR.(TYT —-2)p=Te=1. (5.25)

This shows that T-! — 2= : D(T—1) — H is a bijection, with inverse given by (—2)T'R,(T).
Therefore, 2~% € p(T~!) and:

R, (T = —2TR.(T) = —2 — 2*R.(T) . (5.26)

Inverting the roles of T and T—! we have that 2= € p(T~1)\{0} implies z € p(T). Thus,
recalling that o(T") = C\p(T'), we have that z € o(T)\{0} if and only if 2~ € o(T1)\{0}.
To prove the relation between point spectra, notice that if T4 = A holds, then A\ is in
the range of T, and hence 1 is in the range of T. Therefore, we can apply 7' to both sides
of the equation and obtain 1 = AA ™14, that is A=t = A~ 19). u

5.2 Postulates of quantum mechanics

5.2.1 Observables

As discussed already in Section quantum mechanical systems are described by vector
in Hilbert spaces. Physically measurable quantities, called observables, correspond to self-
adjoint operators on H. The expected value associated with the self-adjoint operator T in
the state ¢ is given by (W, T).

The vector 1 does not only determine the expectation of T', but also the distribution of
its possible values. Let us consider the simple case in which A has the decomposition:

T =Y NP, (5.27)
J
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with A; € R the eigenvalues of T, and F,; the orthogonal projection onto the normalized
eigenvector ;. That is:

Pyp = o, bye . (5.28)

One also uses the notation P, = |¢){¢|. Then, we have:

W, Ty = YAl ol (529)

Eq. is called the spectral representation of the operator 1. The spectral theorem
for unbounded operators, that will be discussed later on, implies that the vectors ¢; form
an ONB for A (this is clear if dimH < oo, from the spectral theorem for matrices). In
particular, Y] ; [, 5| = 1. So far, we are assuming that the spectrum of the observable
T coincides with its point spectrum. As we shall see, the spectral theorem will allow to
generalize the expression to cases in which o, (T") # o(T), introducing the concept of
projection-valued measure.

The interpretation of the identity is the following: the eigenvalues A; are the
possible values of the observable T' and [(1, p;)|? is the probability that, if the system is
in the state 1, a measurement of 7' gives the value A;. If for example 1 = ¢;, then a
measurement of 7" will produce the value \; with probability 1. In general, however, ¥ will
be a linear combination of different ¢;’s. Hence, a measurement of T will give different
values with different probabilities. It makes sense, therefore, to define the variance of T in
the state i by setting:

ATy =, (T =, T)) >y = (6, Ty — (4, TY)* . (5.30)

If, as before, T = > y Aj Py, a simple computation shows that:

ATy = Y (N = & TE)* Kb, o)l - (5.31)

J

An important property of quantum systems is that noncommuting observables cannot be
measured simultaneously with arbitrary precision.

Theorem 5.17 (Heisenberg’s uncertainty principle.). Let A, B be two self-adjoint operators
acting on H. Then, we have:

AAGAB, > 1[0, 1A, BIOI (532)

Proof. For simplicitly, suppose that (i, Ay = (¢, By)) = 0 (if not, redefine A, B by sub-
tracting their average values on ). Then,

W, [A, Bl) = (¢, ABY) — (¢, BAY) = 2ilm(y, ABY) . (5.33)

Therefore,

[, [A, Blw)| < 21, ABY)| < 2[CA%, By| < 2| Au || By = 2(AAy)* (ABy)? . (5.34)

That is: 1
AAGABy > 1[G, [A, BIO)? . (5.35)
]
In particular, choosing A = &; (position operator) and B = p; = —iV; (momentum

operator), assuming that [[¢)|]2 = 1, we obtain the relation:

5e
Az Apjp = (5.36)
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5.2.2 Time evolution

In every quantum system there is an observable that plays a particularly important role, the
Hamiltonian. It generates time evolution via the Schrodinger equation:

{0 (t) = Ha(t) . (5.37)

If H is a bounded operator, the unique solution of the Schrodinger equation can be written
as

b(t) = e7M(0) (5.38)

where the exponential of H is defined via its Taylor expansion, which converges for all times
for bounded operators. More generally, if H has the spectral decomposition H = ] j APy,
the exponential map is defined as:

e =N e Nip, (5.39)
J

In particular, the solution of the Schrédinger equation associated to the initial datum (0) =
@; is simply given by:

b(t) = e i, (5.40)
In this case, the expectation of an arbitrary self-adjoint operator T is given by:
@), T(t)) = (i, Tepw) (5.41)

and does not depend on ¢. Physically, the vectors ¥ (t) = e’”‘itcpj describe the same state
for all times.

The spectral theorem will allow to introduce a spectral decomposition for any self-adjoint
operators, even unbounded ones, and will allow to make sense of the exponential of the
Hamilton operator. This in particular proves existence and uniqueness of the solution of the
Schrédinger equation for general Hamiltonians.

5.3 Projection valued measures

As explained in Section the spectral representation of a self-adjoint operator T is often
useful in quantum mechanics. It tells us what are the possible outcomes of a measurement of
the observable associated to T', and the probability with which possible values are assumed.
Moreover, as we shall see later, it allows to define a functional calculus, that is to make sense
of functions of operators. An important example is the unitary evolution e 7 associated
to the Hamiltonian H.

In this section we will discuss how to define functions of self-adjoint operators, satistying
the properties:

(f+T) = f(T)+9(T),  (fo)(T) =f(D)g(T),  f(T)=f(T)". (5.42)

The question is, for which class of functions f do we want to define f(T'). As long as f
is a polynomial, we can define f(7T) by simply takinng powers of 7. However, for several
purposes, including solving the Schrédinger equation, taking powers of T" is not enough. The
next guess would be to consider functions that can be approximated by polynomials, like
analytic functions. This works for bounded operators, but does not work well for unbounded
operators: taking high powers of an unbounded operator typically makes the domain smaller
and smaller.

A better approach consists in defining xo(7) for all characteristic functions of Borel sets
Q c R, and then in using the bounded operators xq(7) to construct measurable functions of
A. The main advantage of this approach is that, since x3 = xa = Xq, the operator xo(7T) is
an orthogonal projection, for all Borel sets {2 — R. On the other hand, we have to show how
to use the orthogonal projections xq(7T) to define f(T') for a general measurable function f,
We start by discussing the second step, and we postpone the first.
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Definition 5.18 (Projection-valued measure). Let H be a Hilbert space. Let B(R) be the
Borel o-algebra over R. We say that a map P : B(R) — L(H) is a projection valued measure

if:
(i) P(Q)? = P(Q) = P(Q)*, for all 2 € B(R).
(i) P(R) = 14.

(iii) (Strong o-additivity) If Q =, cn Qn with Q, N Qy, = & for all n # m, then:

neN
N
>, Py = lim 37 P(Qa)y = P(Q)y, (5.43)
N—w
neN n=0
for ally e H.

Example 5.19. (a) Let H = C? and T € L(C?) be a symmetric d x d matriz. Let
Al < Ay < ... < Ag be the eigenvalues of T, and Py,..., Py be the corresponding
eigenprojectors (for simplicity, we assume the eigenvalues to be simple). Then, we can
define:

PQ)= > P (5.44)
JiAEQ

It is easy to check that P : B(R) — L(C%) is a projection-valued measure.

(b) Let H = L*(R) and set P(Q)) = xa(x), with xq the characteristic function of the set
Q. Also in this case, P defines a projection valued measure on H.

Remark 5.20. In the definition of projection valued measure we request o-additivity to hold
in a strong sense (that is, after application to a fized ¥ € H), and not in norm (that is,
taking the supremum over all v). This is an important point. Already in the simple example
discussed above, where P(Q) = xq(z) is a multiplication operator over L*(R), we do not
have o-additivity in norm, because the operator norm of multiplication operators is the L®
norm and thus:

IP@) = P = xasrlo = | § GO0 20 (5.45)

where QAQ = () U (V\Q) is the symmetric difference of the two sets and u(-) denotes
the Lebesgue measure on R. Eq. implies that o-additivity does not hold in norm.
Remark 5.21. In Definition [5.18, strong o-additivity is actually equivalent to weak o-
additivity. In other words, Eq. s equivalent to the condition:
D, P(Qu)py = (b, P(Q)py,  for all ,p e H. (5.46)
neN

This follows from the fact that, if P, is a sequennce of orthogonal projections and P is an
orthogonal projection with w — lim,,_, P, = P then, for any ¢ € H.:

Hpnq//H2 = <Pn1/}a in> = <7/}a Pn¢> - <1/)7 P¢> = ‘|P¢H2 : (547)

The weak convergence P, — P together with | P,|| — | Py| implies that P,y — Pi. Hence,
P, — P strongly.
Next, we discuss some important properties of projection-valued measures.

Proposition 5.22. The following properties are true.

(i) P(J) =0 and P(Q°) =1— P(Q)

(i) P(Q1 U Qy) = P(Q1) + P(22) — P(Q1 N Qo).
(i) P(Q1 0 Q2) = P(Q1)P(¢)

(iv) P(Q1) < P(2) if Q1 < Qs.

Proof. Exercise. L]
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Definition 5.23 (Resolution of the identity). For every projection-valued measure P we
define the resolution of the identity p : R — L(H) via p(X\) := P((—o0; A]).

Remark 5.24. Then, p()\) is clearly an orthogonal projection for all A € R. Monotonicity
of P implies that p(A1) < p(A2) if A1 < Aa. Also, strong o-additivity implies that for every
1 € H and every sequence A, such that A, < X\ for all n € N and such that A\, — X as
n — o0,

Tim p(\)o = p(A)Y (5.48)
That is, s — lim,—,_o p(An) = p(N\). Another consequence of strong o-additivity is that:
s— lim p(A)=0, s— lim p(A)=1. (5.49)
A—>—0 A—®©

As above, strong convergence of an orthogonal projection towards an orthogonal projection is
equivalent to weak convergence.

Definition 5.25 (Measure and distribution associated to a projection-valued measure). For
any fized ¢ € H, we define the finite measure pry, : B(R) — [0;00) via py(Q) = (¥, P(Q))
for all Q@ € B(R). The corresponding distribution function dy : R — [0;00) is given by
ds(N) = 1 (=20, A]).

Remark 5.26. Notice that py,(Q) < [|?. Therefore, dyp(N) < |9 Also, dy(N\) =
[ P((—o0; ADY[? = <&, p(N)3))-

More generally, starting from the projection valued measure we can also introduce, for
every 9, € H, the complex measures py () = @, P(Q)p). They are related to the
positive measures f,; via the polarization identity:

() = {00 (9) — p o (©) + i (90) — ity 10 ()] (5.50)

Also, they satisty |1y o(Q)] < [PQ)PI[P Q)] < [4[#]-

Remark 5.27. Fvery distribution function is associated with a unique measure on the Borel
o-algebra B(R). One can also show that every resolution of the identity p : R — L(H) with
the properties listed above is associated with a unique projection valued measure. This follows
from the fact that the resolution of the identity allows us to define distribution functions dy,
which in turn can be used to reconstruct the measure p,. Then, it is easy to check that for
all @ € B(R) there is a unique orthogonal projection P(SY) such that py,(2) = (Y, P(Q)¥).
This follows from the fact that a linear operator can be reconstructed from the corresponding
quadratic form, via the polarization identity.

5.4 Functional calculus

We shall now use the projection valued measure P : B(R) — L(H) to define a functional
calculus, that is a map from a class of functions to operators. We start with the set of
measurable simple functions.

Definition 5.28 (Simple function.). We say that the function f is a simple measurable
function on R if

n
f=>lajxa,, mneN, a;eC, Q;eBR), (5.51)
j=1

with Q; nQy = & for all j # L. We denote by S(R) the space of simple measurable functions
on R (or simple functions, for short).

Definition 5.29 (Functional calculus for simple functions.). Let f€ S, f = Zj ajxe;- Let
P:BR) — L(H) be a PVM. We define the functional calculus ® : S — L(H) as:

B(f) = i a; P(Q;) . (5.52)
j=1
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Remark 5.30. We shall also define:

[r00an0 = 3, a0 (55)

Remark 5.31. Notice that for arbitrary ¢, € H we have:

n

BP0 = gl PO = 3 oy (0 f F i) - (5.54)

Jj=1 j=1

The right-hand side is the Lebesgue integral with respect to the complex measure f, . (which
s just a linear combination of real measures, according to the polarization identity ).

Proposition 5.32. The functional calculus ® : (S, | - |0) = L(H) is a bounded linear map,
with |®| < 1.

Proof. Linearity immediately follows from the definition. Let us prove boundedness. For
1 € ‘H, we have:

leel* = HZ%—P@WH
= Z o 2 P() ]
= Z ozj| 1y (2
- f TV (5.55)
In particular,
12Ul < [f el (5.56)
where we used that () < [¢|?. Therefore:
[2(H)]
P| .= <1. 5.57
%1 Tl < (&.57)

Recall the notion of Borel measurable function on R. We say that a function f: R — C
is called Borel measurable if for any Borel set < B(C) one has f~1(Q2) « B(R). We denote
by My, the space of bounded Borel functions.

Proposition 5.33. The functional calculus ® : (S| - |lo) — L(H) extends uniquely to a
bounded linear map ® : (Mo, || - |o) = L(H).

Proof. The proof is an application of Theorem |3.66 To begin, recall that any bounded
measurable function can be approximated in L* norm by simple function. Therefore, S is
dense is My, with respect to the | - |, norm. By Theorem [3.66] there is a unique extension
of ® to a bounded linear map ® : My — L(H), with norm ||®| < 1. This defines ® for all
f € My. ]

The Lebesgue integral of functions in My, is defined as the limit of the Lebesgue integral
of simple functions. We have, for any f € My:

W, 8(f)g) = f FN g (2 - (5.58)

We shall also generalize the definition (5.53]) by setting:
[ rvann) = (). (559
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Theorem 5.34. Let P : B(R) — L(H) be a projection-valued measure. Then, ® : M, —
L(H) is a C*-algebra homomorphism with norm one. Moreover, for every sequence f, € My
and f € My such that f, — f pointwise and with | f,|ls bounded, we have ®(f,) — D(f)
strongly.

Remark 5.35. The fact that ® is a C*-algebra homomorphism means that ® is linear, that
®(1) =1, that ©(fg) = ®(f)P(g) for all f,ge My and that (f) = (f)*.

Proof. For simple measurable functions, It is easy to check that ® is linear, that it satisfies
®(fg) = ®(f)®(g) and that ®(f) = ®(f)*. For general bounded measurable f, these
properties follow by approximation.

If f, — f pointwise and | f||c < K, then, by dominated convergence theorem:

(o, ®(fn)h) = an()‘)d:ugaﬂ/)()‘) - Jf(A)duga,w(/\) = (e, () - (5.60)

This shows that ®(f,)Y — ®(f)y weakly, as n — oo. Moreover, again by dominated
convergence theorem:

00 = [P = [1F0)Pdus3) = B0 (.01
This implies that ®(f,)y — ®(f)y, which means that ®(f,) — P(f) strongly. ]
Remark 5.36. Since ® : My, — L(H) is a C*-homomorphism, we find that:

(D(9)e, ®(f)Y) (o, @(g)*@(f)Y)
@@@ﬁw:f@ﬂOMMMM:JWMﬂMWWw (5.62)

for all f,g e My and for all p, € H. Hence, we have:

Ha(g)e.a(1)w () = (B(9)p, P(xa)®(f)) = JXQ(A)E(A)f()\)dMW(A) ; (5.63)

which implies that
dpa(g)yp.0(ryw = 9f oy - (5.64)
Example 5.37. Let H = C?. Let T € C™*? matriz. Let \; < Ay... < A\q be the eigen-

values of T, that we assume to be disjoint. Let Py,..., Py be the corresponding (rank 1)
eigenprojectors. We already defined the projection valued measure associated to T as:

> P (5.65)

j:/\jGQ

Let My, be the space of bounded measurable functions on o(T). The functional calculus
associated to this space of functions is the map ®7 : My — L(C?):

d
= > FON)P; (5.66)
j=1
We have, for any 1 € C?:
pp((—0,A) = D [Pl (5.67)
VYR
or equivalently:
d
W r(1)0) = [ SN = Y FO5) P01 (5.68)
j=1
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The above discussion allows to define a functional calculus for bounded functions. Next,
we shall introduce a functional calculus for unbounded functions; this is relevant for un-
bounded self-adjoint operators (like the Laplacian).

For f unbounded, we expect ®(f) to be an unbounded operator. Hence, we first have to
define its domain. Recall that. for every bounded measurable function f, we have:

[e(f)vl? = JIf(A)Igdw(/\) : (5.69)

Hence, we expect that even for unbounded f, the operator ®(f) can be applied on it, if
f e 2R, duy).

Definition 5.38. Given f: R — C, we define the domain of the functional calculus associ-
ated to f as:
Dyi={ve M| fe LR duy)} . (5.70)

Proposition 5.39. D; is a linear subspace, dense in H.
Proof. For every Borel set < R, we have piny(Q) = |a|?1y(£2) and:

b () < 2415(92) + 20(2) (5.71)

This bound implies that f € L*(R, dpay+y) if f € L%(R,dpy) N L*(R, dp,) and a € C. Hence
a) +peDyifyp,pe Dy and a e C.

To prove that Dy is dense in H we proceed as follows. Let Q, = {A e R | [f(\)] < n}.
Then, for any ¢ € H, we define ¢, = P(Qy)9. Since dpuy, = xq, dity, we have ¢, € Dy for
any n. Moreover, since yq, — 1 pointwise, it follows that ¢, — ¥ strongly. This proves
that D; is dense. ]

Proposition 5.40. Let f be a Borel measurable function on R. Let ) € Dy. Let (fn) © My,
such that f, — f pointwise and such that | fu|r2(®,au,) is bounded uniformly in n. Then,
the limit lim, o, ®(fn) =: ®(f)¢ ewists in H and does not depend on the sequence (fr). It
defines a linear map ®(f) on Dy, such that for all ¢, € Dy:

1(f)0)? = j FO) Pdps (V) <w,q><f>so>=ff<x>duw,w<x>. (5.72)

Remark 5.41. The first integral makes sense by definition of Dy. The second integral also
makes sense, since by Cauchy-Schwarz L*(R,duy) < LY(R,duy) (recall that du.y, is a finite
measure, that is it has finite mass).

Proof. By dominated convergence, we have f, — f in L?(R, dpty). Therefore,

[2(fa) = @(fm)¥] = [2(fa = fr)¥? = J|fn(/\) = fn V) Pdpy (V) (5.73)

which implies that ®(f,)v is a Cauchy sequence in H. Therefore, the limit exists and we
set:

D(f)p = lim B(f,)0 (5.74)

It is easy to see that the limit does not depend on the sequence. Therefore, it defines a linear
map O(f) on Dy, and moreover:

[2(f)wl? = f\f(A)IQduw(A) (5.75)

for all ¢ € Dy. Since py is a finite measure, we have that L*(R,duy,) < L' (R, duy) and
therefore:

W, ®(f)) = f FON () (5.76)

or more generally:
W, 0 (f)p) = f FOdpi o () - (5.77)
| |
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Remark 5.42. We shall set:
o(7) = [ FOVdO . (5.79)
Theorem 5.43. For every Borel measurable function f : R — C, the operator ®(f) : Dy —

H is a normal operator (meaning that D(®(f)) = D(®(f)*)) and | 2(f)p[ = [®(f)*| for
all p € Dy. Moreover, for f,g Borel measurable and o, B € C, we have ®(f)* = ®(f),

a®(f) + B2(g) = ®(af + Bg) , (5.79)
with D(a®(f) + BP(g)) = D)g|4|g and:
o(f)®(9) = (f9) (5.80)

where D(®(f)®(g)) = Dy N Dyy.

Proof. Fix a Borel measurable function f: R — C. For n e N, let Q, = {Ae R | |f(\)| <n}
and let f, = fxq,. Then, f, € My, and thus ®(f,)* = ®(f,) by Theorem For any
¢, € Dy = Dy = Dy, we have:

(o ®(F)¥) = lim (o, O(fa)u) = lim (@(F)e,v) = @(Peswy.  (581)

This implies that D(®(f)*) o D(®(f)) = D(®(f)) = Dy, and that, for all ¢ € Dy, one has

O(f)*p = ®(f)p. To conclude that ®(f)* = ®(f) we still have to show that D(®(f)*) < Dy.
To this end, let us fix ¢ € D(®(f)*). Then, there exists @ € H such that (o, P(f)Y) = {(F,¢)
for all ¢ € D(®(f)). By definition of ®(f) we find, for every £ € H:

B(N)B(xa, )€ = lim B(fn)P(xa,)E = lim B(fxa,x0,)E = (L)E,  (582)

since xq,, X, = Xa, for all m = n. Hence, we find:

(@(fn)p,&) = (0, ®(fn)E) = (o, (/) P(x02,)€) = (B, D(x0,)E) = (P(x0,)P,&)  (5.83)
for all £ € H. This implies that ®(f, )¢ = ®(xq, )¢ and therefore that:

flfn(A)Pdma(A) = |e(fu)el? = |12(x,)@I* = 18)*,  asn— . (5.84)

Since f is the pointwise limit of f,, the monotone convergence theorem implies that f €
L23(R, dpuy), with:

[ESREOR S (5.85)

Hence ¢ € Dy. We obtain ®(f)* = ®(f), for all Borel measurable functions f over R. This
also implies that:

[2(f)vl? = flf(A)IQduw(A) = [@(F)v)* = [@(f)*¥[? (5.86)

for all 1) € Dy = Dy. Hence, ®(f) is a normal operator.

Next, we observe that for two Borel measurable functions f,g: R — C and for «, 5 € C,
we have D(a®(f) + ®(g)) = D(®(f)) n D(®(g)) = Dy N Dy = Dj|4|g|, because |f| + [g] €
L*(R,dpy) if and only if f € L*(R,duy) and g € L2(R, duy). Since |af + Bg| < C(|f] +1g]),
it is easy to check that D4 (g © Dayipg- It remains to show that a®(f)y + fP(g)y =
O(af + Bg)y for all ) € Dyg 1|y To this end, for n € N, set:

Qn = {AeR[[f(NI+ g <n},  fa=Ffxa.,  9n=9xa, - (5.87)

For w € le\Hgla we have (I)(fn)¢ - (I)(f)w’ (I)(gn)w - (I)(g)wv @‘I’(an + ﬁq)(gn)'(/) =
(afn + Bgn)¥ = ©((af + Bg)xa, ) — @(af + Bg)y.
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Finally, we prove Eq. (5.80]). To this end, assume first that g is bounded. Then:

D(2(f)2(g)) {veH|2(g)peDs}={vet|fe LR dusgy)}

et | fe LR |g]*duy)}

{ et | fge L*(R,duy)} = D(2(fg)) = Dy - (5.88)

Thus, for all ¥ € D(®(fg)), we have ®(g)y € D(®(f)) and (recalling that f,, = xq, f, with

Qn = {AeR[|f(N] <n}):
)

()09 = lim D(£,)P(g)6 = lim @ (fag)y = (Fg)is (5.89)

I

This shows that, if g is bounded, ®(fg) = ®(f)P(g). If now g is not necessarily bounded,
we define ,, = {A e R | |g(A)] < n}, gn = gxa,- Suppose that ¢ € Dy N Dyy. Then, we
have ®(g, )Y — ®(g)1. Moreover, ¥ € Dy, = D(®(fgyn)) = D(®(f)P(gn)) implies (from
the case considered above) that ®(f)®(gn)Y = ®(fgn)y — P(fg). Since ®(f) is closed

(which follows from ®(f) = ®(f)** = O(f) = ®(f)), this shows that ®(g)y¥ € Dy and that
O(f)@(9)y = 2(f9)¥ u

5.5 Construction of projection valued measures

The discussion of the previous section allowed us to define the functional calculus, given
a family of projection valued measures. In particular, given P : B(R) — L(H), we can
associate a self-adjoint operator 7' = { Adp(\) with domain:

D(T) = (et | J/\Qduw()\) < o). (5.90)

The question we shall consider is this section is: given a self-adjoint operator T, is it possible
to find a projection valued measure P such that T can be expressed as T' = { Addp(\)? If yes,
this provides a spectral representation for the operator 7. We shall first answer this question
for the resolvent of T', R,(T), and later for T'.

Definition 5.44. Let p(-) : B(R) — R be a Borel measure. For all z € C\suppu, we define
the Borel transform F of u as:

1
F(z) = du(A) . 5.91
() = [ 5 dny (591)
Remark 5.45. The support of the measure is defined as:
suppp = {A e R | u(0O) >0 for all open neighbourhoods O of A} . (5.92)

Remark 5.46. Since 1
ImF(z) = Imzfmdu(A) , (5.93)

we conclude that z — F(z) is a holomorphic function mapping the upper half complex plane
{z € C| Imz > 0} into itself. Such functions are called Herglotz or Nevanlinna functions.

Theorem 5.47. Every Herglotz function F' has the form:

1 A
Py = N 94
(2) bz+a+JR[)\_Z 2 e (5.94)
with b >0, a € R and p a Borel measure on R with:
1

Conversely, for every b = 0, a € R and for every Borel measure i satisfying Eq. , the
function is holomorphic on C\suppu. It is such that F(Z) = F(z) and:

ImF(2) = Imz [b+ f ﬁdu()\)] (5.96)
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for all z € C\suppu. Moreover, if F' is a Herglotz function, the triple (a,b, ) satisfying
15.94) is uniquely determined by

. . 1
a = ReF' (i), b= ImF(i) — J mdu()\) (5.97)
and by the Stieltjes inversion formula:

A2
[1((A1,A2)) + p([A1, A2])] = lim lj ImF(\ +ig)d\ . (5.98)

e—0t T A\

DN | =

Remark 5.48. That is, this theorem allows us to construct a measure starting from a
Herglotz function. Later, we shall take as Herglotz function the quadratic form associated to
R.(T), and use this theorem to construct the projection valued measure.

Proof. Let f(z) = i(i—2)/(i+z). It is easy to see that f is holomorphicinD = {z€ C| |z| <
1} and that it takes values in C; = {z € C | Imz > 0}. More precisely, f maps the lower
disk D_ = {z € D | Imz < 0} into C;\D and it maps the upper disk D = {z €D | Imz > 0}
into itself. Also, the map is invertible, and f~!: C, — D is simply f~!(z) = f(z). Let:

C(2) == —iF(f(2)) (5.99)

One easily sees that if the map F is Herglotz then C is a Caratheodory function, that is an
holomorphic function on D with ReC'(z) = 0 for all z € D. Also, we can invert Eq. (5.99)
and obtain:

F(z) =iC(f(2)), (5.100)

which shows that if C' is a Caratheodory function then F'is a Herglotz function. Thus, F' is
Herglotz if and only if C' is Caratheodory.
We claim now that every Caratheodory function C': D — C has the form:

. Tl 4oy
C(z) =ic+ J,,r - Zdl/(ga) (5.101)
for ¢ = Im C(0) € R and for a finite measure v, with:
J dv(p) =ReC(0) . (5.102)

To prove this claim, let C': D — C be a Caratheodory function and fix 0 <r < 1. Fix z € D
with |z| < 7. By Cauchy theorem, we have the identity:

1 E+2z r?/E+z d¢
Clz) = — + — [C(§)—=
(2) 4mi Jig)=r [5—2 r2/§—z] (©) I3
1 E+z d€
= — Re c)—=
2mi Jig|=r (5 - z) (©) £
1 (™ ret? + z »
- = - ip
2| R (mw hs Z)C(Te ) . (5.103)
We take the real part:
ReC(z) = | Rupe(arg(s) - p)dn(e) (5.104)
where we set: ]
1+ re*? o\ AP
P, =Re ——— = Wy, 1
-(¢) = Re Iy dv,.(p) = ReC(re )27r (5.105)

Notice that dv,. is a Borel measure, thanks to Re C' = 0. Setting z = 0, we obtain:

s

dv, () = ReC(0) < 0, (5.106)

—T
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uniformly in » < 1. This implies that there exists a sequence r,, — 1 and finite Borel measure
v on [—7; 7] such that, as n — oo:

f F(@)dvr, () — f F(@)dv(e) (5.107)
[~ in] [~

for all f € C([—m;x]). In fact, uniform boundedness implies the existence of a subsequence
of measures converging vaguely, that is after testing with compactly supported continuous
functions; this can be proven approximating compactly supported continuous functions with
simple functions, and from the convergence of v, ([A1; A2]) on subsequences, for any interval
[)\1; )\2]

For |z| < 1, we also have P, /.(argz — ) — P |(argz — ¢) as r — 1, uniformly in . We
conclude that:

us

ReC(z) = lim Pyr, (arg(z) — @)dvy, ()

n—0o0

T

lim | P (arg(z) — @)duy, ()

n—oo

T

P (arg(2) — ¢)dv(ep)

—T

r Re[ w+z]du( ). (5.108)

K2 J—
r err

The claim now follows because every holomorphic function is determined by its real
part, up to an imaginary constant. In fact, let f(z) be a holomorphic function, such that
Ref = 0. Then, the Cauchy-Riemann equation implies that Imf = constant. Therefore,
f(z) =ic. This proves Eq. .

Let now F' be an arbitrary Herglotz function and C the corresponding Caratheodory
function, defined as in (5.99). Then we can write F(z) = iC(i(i — 2)/(i + 2)), or F(z) =
iC((i — 2)/(i + 2)) for the function C'(z) = C(iz), which is also a Caratheodory function and
therefore admits a representation as in . Hence:

F(z) = iC((i-2)/(i+2)

ele 4 i=z
= —c+ ZJ 7§+’zdu( )
[_7" 7"] e 14z

—c+zf[ i rae 1), )

(et — 1) + z(e? + 1)
-1

14 25 =1
_c+zf ”j“’“d()
TrTr]Zelq,+1 +z

14Nz
= _C+V({_7T’7T})Z+J,oo P

dii(\) (5.109)

where we changed variables, setting A = f(p) with the function f : (—m;7) — R defined
through f(p) = i(1 — €*)/(1 + €¥), we introduced the Borel measure i over R such that
H(A) = v(f~1(A4)), and we took into account the weight of v at £m. Setting a = —e,
b=v({£n}) and du(\) = (1 + A?)dfi()\), we obtain the desired representation of F.
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Suppose now that a Herglotz function F' has the form (5.94]). Then, we find

1 (*
lim — f Im F(\ + ie)d\

e—0t+t T A1

1 (e €
= lim = [ 11
im MJ}xM2+§mmmw (5.110)

e—=0 T

1 [ €
=1 — ————d)\d
1

= lim | —[arctg((A2 — x)/¢) —arctg((\ — @)/¢)]du(z)

liy ) 7
1
= [ 30n(®) + X ()(o)
1

= 5 ([ A2]) + 1((As3 A2))) (5.111)

where we used the dominated convergence theorem to take the limit € — 0, since

~[aretg((% — 2)/6) — axcta((\ — 2)/2)] = 5[xp (@) F xouan@] (6112

pointwise, and
1 C
—larctg((A2 — —arctg((A\ — < —
larctg((h2 —2)/e) —arctg((M —2)/e)] < 77—

for an appropriate constant C' depending on A1, Ao. The formula for a,b follows evaluating

(5.94) at z = . ]

The next proposition allows to establish a link with the resolvent of selfadjoint operators.

(5.113)

Proposition 5.49. Let (T, D(T)) be a selfadjoint operator. Let Fg(z) be the quadratic form
associated to R,(T):

Fj(2) =, R(T)Y) . (5.114)

Then, Fg(z) is a Herglotz function, and it can be written as:

FJ(2) = fR 3 i Zdu()\) , (5.115)

for a unique finite Borel measure .
Proof. By the analyticity of z — R,(T), recall Theorem we see that F¢T(z) is analytic

in p(T), and in particular in C,. Also, Fg(z) maps C, into itself, since:

ImF} (2)

2o, R(T)) (o, R(T)0))

- %@, (R.(T) — R.(T)*)®)

_ %@” (R.(T) — R=(T))¥)

= I RATRATIY) (5.116)

where in the last step we used Eq. (5.8). Therefore, InF[(2) = Imz|R.(T)y|* = 0 for

z € C4. Hence, FwT (z) is a Herglotz function, which means that it can be rewritten as in Eq.
(5.94), for some (a,b, ). We clam that a = b = 0, and that p is a finite Borel measure. In
fact, by Eq. (5.15)) one has |R,(T)| < 1/|Imz|, which implies that

wEy (i)l < >, vyeR. (5.117)
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This implies that FwT (2) has the form:

FT(z) = JR %du(x) . (5.118)

—z
The fact that the measure is finite, u(R) < oo, follows from

2

yImF (iy) = f dp(y) < []? | (5.119)

_y
A2+ g2
and from dominated convergence. L]

Remark 5.50. Moreover, theorem tells us that we can reconstruct the Borel measure
associated to FwT by the inverse Stieltjes transform. In particular, the distribution function

iy () = p((—o0;A]) is

A+0
dy(A) = lim lim —J ImFy (t + ie)dt . (5.120)

0—0t e—0+ T J_p

Since this is a distribution function, it can be used to reconstruct the corresponding Borel
measure ,ui : B(R) — [0;00) (write the measure of any Borel set via the complement, count-
able union or intersection of sets (—o0, A], A € R).

We are now left with constructing the projection valued measure. For every Q € B(R),
we define the quadratic form:

h0) = 15@) = [N (5.121)

Through the polarization identity, we also find a sesquilinear form s}, (¢, 1) such that ¢d (1)) =
s&(1,v). Clearly,

561, 0) = 11,,() , (5.122)
with MT . defined from M via the polarization identity. Since 0 < qr (1)) < [¥]?, we have,
by the Cauchy Schwarz mequahty for sesquilinear forms:

1 1
560 0)l < g (V)2 ad ()2 < [¥]l¢] - (5.123)

By Riesz’ representation theorem, we can write the map ¢ — sk (¥, ) as sh (v, p) = (n, ),
for a unique n € H. By the antilinearity of the sesquilinear form, it is not difficult to see that
n = QT (Q)*y, for a bounded linear operator Q7 (2) with [|QT ()| < 1. We then have:

sh(W,9) = 1y () =W, QT (V)  aa(¥) = py() =W, QT(VYy.  (5.124)
Lemma 5.51. The map QT : B(R) — L(H) is a projection valued measure.

Proof. That is, we have to prove that:
(i) QT(Q)? = QT (Q) = QT(Q)*.
() QT(R) = 1.

(iii) Strong c-additivity.

We prove first that QT (21)QT (22) = QT (Q1 N Q) for all Q1,0 € B(R). This implies, in
particular, that for € = Q:

Q'@ =Q"®. (5.125)
To this end, we observe that, for all z, Z € C\R, by definition of dugz(T)%d)()\);
1
J mdﬂﬁz—www@) = (R:(T)p, R:(T)Y) = {p, Ro(T)Rx(T)p)
1
= = RA(T)) = (o, R(T)9)] (5.126)
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where we used the resolvent identity:

R.(T) = R:(T) = (2 = 2)R.(T)Rx(T) . (5.127)
We conclude that:
1 7 1 1 1 "
f xRN = o zf [/\ -z - z]d“w(A)
11
= f—i s e () - (5.128)
Since this identity holds for all Z € C\R, we must have:
1
(1) (N) = =, (N) - (5.129)
Therefore,
1 . .
JA—zd"%Qmw = fd“Rz(TmQ(mw(A)
= {p, R(T)QT (1)
~ | xaWdunryen)
1
= f v XeNduew () (5.130)
—Z
which means that:
dpig,qr2)p(A) = X (A)dpp .y - (5.131)
Hence:
Q@ ) = [ ditawNxa, e (V)
[ i)
= {p, QT (U N )y, (5.132)

which means that QT (2; N Q) = QT (21)QT (). Also, we claim that QT(Q)* = QT (Q).
This easily follows from QT(Q) = 0. Therefore, QT is an orthogonal projection.
Let us now prove that QT (R) = 14,. Suppose it is false, QT (R)1) # 1. Then, we write:

b =QT(R)Y +¢ (5.133)
with ¢ € Ker QT(R). Then we have, for any ¢ € H:
0 = dug,grr)y = Xr(A)dpg,o(A) (5.134)

which implies (¢, R,(T)¢) = 0 for all £ € H and for all z € C\R. Since C\R < p(T'), R.(T)
is invertible: for any n € H there exists £ such that R:z(T)¢ = n. Therefore, ¢ = 0, thus
implying a contradiction: Q7 (R)t) = ).

Finally, we have to prove the strong o-additivity. For orthogonal projection, the strong
o-additivity is equivalent to the weak o-additivity, since |Qv| = (¥, Q) (hence |Q | —
|Q| is implied by weak convergence). Let (©2,,) < B(R), such that Q, nQ,, = & for n # m.
Let Q = u,Q,. Therefore, for all ¢ € H, for N — oo:

N N
D1, QT Q)Y = > () = pap(Q) = W, QT (V) (5.135)

where the convergence follows from the strong o-additivity of the measure j1,,. By polariza-
tion,

N
2. QT( Qe — W, QT (V) (5.136)
n=1
for all 9, ¢, which implies strong o-additivity. n
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In conclusion, starting from a self-adjoint operator T'(, D(T)) we constructed a PVM
P : B(R) — L(H) such that, for all z € C\R:

1
A—z

R(T) — J dp(\) (5.137)

This easily implies the spectral theorem for unbounded self-adjoint operators.

Theorem 5.52. For any self-adjoint operator (T, D(T)) there exists a unique PVM PT such
that:

D(T)={eH| J)\Qd,ud,()\) < w}, (5.138)

and:

T= J)\dp()\) . (5.139)

Proof. Given the PVM constructed before, we know that A = § Adp()\) defines an unbounded
self-adjoint operator, with domain D(A) = D). We claim that A = T. By construction:

Ro(T) = (T—2)"! = f dp(/\)i . forzeC\R, (5.140)

with R.(T) : H — D(T). We claim that D(T) < D,. This follows from the fact that for
any ¢ € D(T) there exists ) € H such that: ®(A —2)p = (A — 2)P(1/(\ — 2))b = . Also,
(N —2) DT — 2z, since, for any ¥ € Dy,

DA —2)0(1/(A—2))p = D1/ (A= 2)) P\ —2) =2 . (5.141)

This shows that ®(\—z) =T — z on D(T), hence ®(\) o T. Using that both operators are
self-adjoint, we get ®(\) = T'. To prove uniqueness, notice that the measure p,; is uniquely
determined by R, (T) via the Stieltjes inversion formula. Uniqueness of PT follows from the
fact that it is uniquely determined by fiy. ]

Finally, as one could expect, the projection valued measure associated with T is supported
on the spectrum of 7.

Theorem 5.53. Let T : D(T) — H be a self-adjoint operator, with projection-valued measure
PT:B(R) — L(H). Then:
o(T)={AeR|PT (A=, X\ +¢)#0, Ve > 0} . (5.142)
Also,
PT(a(T)) = 14, PT(R\o(T)) = PP(Rn p(T)) =0. (5.143)

Remark 5.54. The condition PT(Q) # 0 has to be understood as there exists 1 € H such
that PT(Q)vy # 0.

Proof. Let Ao € R, Q,, = {\g — 1/n, Ao + 1/n}. Suppose that PT(€,) # 0 for all n € N.
Then, for all n € N we can find v,, € RanPT (€2,,) with |4, = 1. We have:
I(T = Xo)m | [T = X0) PT () t0n |

1
f|)\ — Xol*xa, N)dpyg, (N) < ok (5.144)

Therefore, from the Weyl criterium, A\g € o(T'). This proves that {\ € R | PT((A—¢, A\ +¢)) #
0, Ve >0} € o(T). On the other hand, suppose that there exists £ > 0 such that
PT((Ao — &, X0 +€)) = 0. Define:

1
fe()‘> = N >\O XR\{)\O—E,AO-!—E}()‘) . (5145)
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By the properties of the functional calculus,

(T = 2@ (fo) = @T((A=Xo)fe)
= PTR\(A\g—¢&, X +¢))
Iy — PT((Mo— €, X0 +¢))
= 1y. (5.146)

Analogously, ®T(f.)(T — X\o)y = ¢ for all ¢p € D(T). Therefore (T — )\o) is invertible, and
Ao € p(T). This proves Eq. (5.142).

Let us now prove that PT(R n p(T)) = 0. For all A € R n p(T), let I 3 X be an open
neighbourhood of A and PT(I,) = 0 (otherwise A € o(T), as we just proved). Let us cover
Rnp(T) with intervals I, and let {J,,},en be a countable subcovering. Let €2, = n\u;:ll J;.
so that {2} is a disjoint covering. By c-additivity of the projection valued measure,

N—w

PT(R A p(T)) = lim i PT(Q,)=0. (5.147)
=0

Remark 5.55. Therefore, ®7(f) = P(o(T))®" (f) = ®" (Xo(r)f). That is, changing f on
R\c(T) does not change ®T(f).

5.6 Unitary equivalence of self-adjoint operators with multiplica-
tion operators

In this section we shall show that self-adjoint operators are unitarily equivalent to multipli-
cation operators. We say that two operators 7' on H and 7' on H are unitarily equivalent if
there exists a unitary operator U : H — H such that UT = TU, with UD(T') = D(T).

Let v € H. Let P be a projection valued measure, generating a functional calculus ®,
and a Borel measure p,, = (¢, P(Q)9). Let

Hy = {P(9)¢ | g€ L*(R,duy)} < H . (5.148)

It is not difficult to see that H, is closed. Therefore, by Theorem we can split the
original Hilbert space as H = H,, (—B’Hi. In what follows, we shall denote by Py, the projection
onto Hy.

Lemma 5.56. The subspace Hy reduces ®(f):
Py®(f) < ©(f)Py - (5.149)

Remark 5.57. That is, if ¢ € Dy then Pyp € Dy, i.e. PyDy < Dy. Also, for all p € Dy,
Py®(f) = ®(f)Pypp. We shall also say that Hy is invariant under O(f).

Proof. (Sketch). Suppose f is bounded. Any ¢ € H can be written as ¢ = Py + ¢+, with
Py = ®(g)1 for some g € L3(R,duy). We claim that ®(f)pt € Hi. In fact:

(B(f)ph, @(h)y = (o™, ®(fh)Y) =0, (5.150)

because fh e L%(R,dpuy) since f is bounded. It follows that:

Py@(f)e = Py@(f)2(9)v = Pp®(fg)v
= O(fg) = @(f)P(9)y = (f) Py . (5.151)
This proves the claim for bounded f. The case of unbounded f follows by an approximation
argument, we omit the details. L]
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Therefore, we can decompose ®(f) = ®(f)l3,, ®<I>(f)|7{i; this means that if ¢ = 1 + 2
with o1 € Hy and @z € My, then ®(f)o = ®(f)p1 + B(f)p2 with ®(f)p1 € Hy and

(f)p2 € Hflj
The domain of ®(f)|3, is defined as:

PyDy =Dy nHy = {P(9)¢ | g, fg € L*(R,dpy)} - (5.152)
On P, Dy the action of ®(f) is then given by:
(f)2(9)Y = (fg)¥ (5.153)

This implies that the operator ®(f) can be interpreted, when considering its action of H,,
as a multiplication operator by f. To be more precise, we can define the map:

Uy : My — L*(R,dpy) , (5.154)

by setting Uy ®(f)y = f. Since |[®(f)¥| = | f|2, the map Uy, is unitary. Furthermore, it
follows that:

Uy D(®(f)l2,) = UpPyDy = Uy(Dy 0 Hy) = {g € L*(R,dpy) | fg € L*(R,dpy)} (5.155)

and:
Up®(f)ln, = fUy (5.156)

where f also denotes the multiplication operator, (fg)(A) = f(A)g(\), with domain D(f) =
UaD(@(f) ).

We say that the vector v is cyclic if Hy = H. In this case the picture is complete: the
operator ®(f) is unitarily equivalent to the multiplication operator f, acting on its domain
D(f) = UyDy. In general however H, # H, and Eq. only shows that the restriction
of ®(f) on the space H,, (more precisely, on the dense domain H., nDy) is unitarily equivalent
to multiplication with f.

What can we say about the restriction of ®(f) on the orthogonal complement ’Hi? Also
on ’Hi; we can choose a vector 1’; the corresponding space My will again be invariant with
respect to the action of ®(f). We can iterate the procedure; {1;};cs is called a family of
spectral vectors, if Hy, L Hy, for all @ # j. We say that a family of spectral vectors if a
spectral basis of H if H = (—Dje 7 Hy;- Such family always exists.

Lemma 5.58. Let H be a separable Hilbert space, and P and projection valued measure.
Then there exists a, at most countable, spectral basis {1);}jes with H = @ ;c; Hy,;. We can
eﬁne a unitary map U = (—BjEJ Uy, : H— (—BjEJ L?(R, dy, ), where Uy, is defined as in Eq.
5.154), through the identity Uy, ®(f); = f. Then, for any Borel measurable f : R — C:

UDy = D(f) = Plg e L*(R,duy,) | fg € L*(R,dpy,)}, (5.157)
jeJ

and UD(f) = fU, where f acts as a multiplication on each component of @ ., L*(R, dpy,).

jedJ
This last lemma shows, in particular, that any selfadjoint operator is unitarily equivalent
to the multiplication operator A: (Ag)(\) = Ag()).

Remark 5.59. Notice that the spectral basis is not unique, and its cardinality is not well
defined: there might exists different spectral bases with different cardinality. However, since
we are only considering separable Hilbert spaces, the cardinality of every spectral basis is at
most countable. The minimal cardinality of a spectral basis for a given self-adjoint operator
T, or more generally for a given projection valued measure P, is called the spectral multiplicity
of T (or of P). We shall say that the spectrum of T is simple if the spectral multiplicity of
T is one (this means that there exists a cyclic vector).
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5.7 Decomposition of the spectrum

Let us start by reminding some well-known facts about Borel measures. For any Borel
measure p there exists a decomposition p = pac + s, where p,c is absolutely continuous with
respect to the Lebesgue measure (meaning that p..(2) = 0 for all Q € B(R) with Lebesgue
measure Q| = 0) while ug is singular with respect to the Lebesgue measure (meaning that
there exists a set Q with |Q] = 0 and us(R\Q2) = 0).

The singular measure ps can be further decomposed as fts = ppp + ftsc, Where ppp is
pure point (meaning that the distribution function dpp(A) is a step function on R) and fiee
is singular continuous (meaning that the distribution function is continuous on R).

The measures fiac, fisc, fpp are mutually singular: there exist disjoint sets Moc, Mpp, My ©
R such that piac is supported on My, ppp is supported on My, and psc is supported on M.
Observe that the choice of the sets Mac, My, Mpp is not unique: one can always add sets
with zero p measure. We will choose My, as the set of all jump points of the distribution
function u(A) and Mg, with Lebesgue measure equal to zero.

At first, suppose that the spectrum of T is simple, and that v is a cyclic vector. Let P =
PT be the projection-valued measure associated to T', and let p = ,ui be the corresponding
spectral measure. We then introduce the orthogonal projections:

Pac = ®(X0r.) » Poe = ®(Xa) s Pop = ®(X0s,,) (5.158)
such that P, + Psc + Ppp = 13. By the orthogonality of the projections, we write:
H= Hac @ Hsc ® pr 5 (5159)

with Hy = PyH. Recall that the Hilbert space H = H,, is unitarily equivalent to L?(R, du),
UypHy = L*(R,dpy). Writing UyHy = Uy (Pac + Pac + Pop)Hy and using that UwPﬁU;Z =
X, we get the following orthogonal splitting:

L*(R,dp) = L*(R, djtac) ® L*(R, dpse) ® L*(R, dpupp) - (5.160)

This means that every function g € L?(R,du) can be written as g = gac + gse + Jpp, With
gs = gl M- Being the sets Mj disjoint, the functions appearing in the splitting are orthogonal.
Notice that, by construction, if ¢ € My, then p, = py, 4, with f = ac, sc, pp. In fact, being ¢
cyclic, ¢ = ®(gy)1p for some g5 € L*(R, dpy), and dpy(N) = |gs(A)[Pdpy (N), with g5 supported

in M.
Also,
T = (TPy)® (TPs)® (TPyp) - (5.161)
We define the absolutely continuous, singular continuous and pure point spectrum of T as:
Gac(T) := o(TP.) , 0sc(T) := 0(TPs) , opp(T) :=0(TPyp) . (5.162)

Being the subspaces Hy invariant under 7', we have P;T Py = T'Fy. Hence, T'P; are selfadjoint,
and oy(T) are closed subsets of R.

Remark 5.60. One has 0,(T) < 0,,(T), with o,(T') the set of eigenvalues of T. This also

implies 0,(T) < o, (T). It is possible to prove that op,(T) = 0,(T'). See next example.

Example 5.61. Let H = (*(N), let T5, = %é}L with 8, the sequence equal to 1 at the
n-th place and zero otherwise. That is T is a diagonal matriz with elements 1/n. Then,
op(T) ={1/n| neN}. We claim that

o(T) = o0pp(T) = 0p(T) v {0} = 0,(T) . (5.163)

We claim that {0} belongs to o(T). To see this, notice that T is injective, but not surjective:
not every vector in £2(N) can be written as Ty for some o € (*(N). Finally, notice that all
points z € C which are not in {1 | n € Ny U{0} are in p(T). This simply follows by computing
the resolvent:

(T — 2716, =

On , .164
1—2zn (5 6)

and observing that (T — z)™" is bounded for all z € {L | n € N} U {0}. Therefore, o(T) =
op(T) u {0}. At the same time, we know that o(T) = 0,p(T) U 04c(T) U 05.(T). Being
op(T) € 0pp(T) with op,(T) open and o,,(T) closed, it follows that o,(T) U {0} = 0pp(T).
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Example 5.62. An example of purely absolutely continuous spectrum is obtained taking p
to be the Lebesque measure. An example with purely singular continuous spectrum is given
by taking p to be the Cantor measure.

To conclude, we are left with discussing the case in which the spectrum of T is not
simple. In this case there is no cyclic vector, and we need to introduce a spectral basis. After
introducing such basis, the operator T' is unitarily equivalent to a multiplication operator,
after conjugating with the unitary map: UH — @;L*(R, dpry;). In general, however, it is
difficult to exclude that the splitting depend on the choice of the spectral basis. For
this reason, we introduce the following definition of spectral subspaces of H:

Hae = {1 €H| uy is absolutely continuous}
Hse = {1 € H| py is singular continuous}
Hpp = {¥e M| py is pure point} . (5.165)
Lemma 5.63. We have:
H=Hi®Hsc® pr . (5166)

As for the simple case, the absolutely continuous, singular continuous and pure point
spectrum are defined as:
o4(T) = o(Tly,) = o(TPy) (5.167)

where P; is the projector over Hy.
To conclude, we discuss a simple consequence of the fact that opp(T) = o, (T).

Proposition 5.64. Let (T',D(T)) be a selfadjoint operator. Suppose that ¢ € Hp,. Let
(pj)jen be the eigenvectors of T', T; = N\jp;. Then, there exists (a;) < C such that

Jim o - ]Zv] oy = 0. (5.168)
j=1

Proof. The proof immediately follows from the fact that My, = M, with M, = {\ € R |
A is an eigenvalue of T'}. Therefore, Hy, = ¢(xas, )H = PpyH is dense in Hpp,. n

Remark 5.65. Recall that A\; # A, implies that {¢;, i) = 0. This follows from, for e > 0:

1 .
{pjspr) = m@jv(HJr%]lH)@D
1 .
= +i6<(H_25]1H)90j7<Pk>
N —i€g
= )\2 _’_l-€<80j7%0k> (5.169)

which implies that {@;, iy = 0 (since A;, \p € R, the ratio in the r.h.s. is #1).

To conclude, let us discuss a simple example of self-adjoint operator with purely absolutely
continuous spectrum.

Example 5.66. The Laplacian (—A, H*(R?)) is a selfadjoint operator, with:
o(—A) = 04.(—A) = [0,00) . (5.170)

The selfadjointness of the Laplacian has been proved in Section[[.3, using that it is unitarily
equivalent to multiplication by |k|?> (real-valued measurable function), recall Lemma .
Also, a(—A) = [0,0), since o(—A) = o(F(—=A)F1) = 0(A2), and o(Aj2) = [0,0), since
ki (k* — 2)7 is a bounded function for all z ¢ R\[0, ).

Let us now prove that o(—A) = o4.(—A). To do this, it is enough to show that the
spectral measure [y 1s absolutely continuous with respect to the Lebesgue measure, for all
e HX(R?). Observe that, for all ¢ € L*(R?), z € p(—A):

(@, Ro(=A)) = (i, Re(Ag2 ) = fRd WE 4 fR fl_zdgw(r) (5.171)

k2 — 2z
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where

dfiy (1) = X[0,0) (r)rd_l(Ld_l |1ﬂ(rw)|2dw> dr . (5.172)

After a simple change of variables, we have:

W R0 = [ 3. (5173)

with piy () given by:

nuN) = pxt00 A (|

Sd—1

\i(ﬁwn?d@dx . (5.174)

This measure is absolutely continuous, since it is of the form duy(N) = f(A)dX, with f €
LY (R?, d)\) given by:

£ = 00 N ( [ 1P ) (5.175)

gd—1

Absolute continuity of the measure follows from the fact that the integral of an LP function
over a set with zero Lebesque measure is zero.

6 Quantum dynamics

In this section we shall apply the spectral theorem to study solutions of the Schrédinger
equation:

i0ip(t) = H(t) (6.1)

where H is a selfadjoint operator, the Hamiltonian, defined on a domain D(H) < H.

6.1 Existence and uniqueness of the solution of the Schrodinger
equation

In the next theorem we shall prove that the solution to this equation is given by () =
U(t)(0), with U(t) = exp(—iHt), define via functional calculus:

et = fefi)‘tdp()\) , (6.2)

with P the projection-valued measure associated to (H, D(H)).
Theorem 6.1. Let (H, D(H)) be a selfadjoint operator and let U(t) = e *Ht. Then:
(i) U(t) is a strongly continuous one-parameter unitary group.
(i) The limit:
1
lim L U(t) 1 (63

exists if and only if v € D(H). In this case:

lim %[U(t) 1 = —iHY . (6.4)

(iii) We have U(t)D(H) = D(H) and, on D(H), [U(t),H] =0 for all t € R.
Remark 6.2. That is, H is the generator of U(t), recall Definition .

Proof. Let us prove (7). The spectral representation of U(t), Eq. (6.2)), together with the
rules of functional calculus, implies that U(t)~! = U(t)*, and that U(t + s) = U(t)U(s) for
all t,s € R. To prove that U(t) is strongly continuous, fix ¢ € H and consider:

thl,£1 He—th,l/J _ e_thOT/JHQ _ thr? J|e—i)\t _ e_i/\0t|2dﬂw()\) =0 (65)
—to —to
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by dominated convergence. This proves (7). Let us now consider (ii). Suppose that ¢ €
D(H). Then, we have:
t—01l ¢

1 . 2 1. 2
lim Hf(e—“ff 1) szH - }iir(l)f)g(e_”‘t — 1) +iM] duy(V) =0,  (6.6)

again by dominated convergence. Here we used the bound |e~** — 1| < [t\| and the fact
that, since v € D(H):

fﬁdu,p(A) <w. (6.7)
One the other hand, define the operator H : D(H) — H by:
D(H) = {v : lim %[U(tm — 4] exists} (6.8)
and by: _
Hy = lim < [U(0) - ] (6.9)

for all » € D(H). The operator H is the generator of the one-parameter group U(t). It
follows from Eq. that H < H. Moreover, for all ¢, ¢ € D(H) we have:
i)

(o, Hupy = limp, E[U(t)w -] = hm<(_—[U<—t)so — @l by = (Hep, ) . (6.10)

We conclude that H is a symmetric extension of H. However, self-adjoint operators are
maximal: they do not have symmetric extensmn which means that H = H. This proves
(ii). The proof of (iii) follows from Proposition [3.79 (ii). u

Therefore, it follows from Eq. (6.4]) that, for ¢y € D(H), the vector ¢(t) € U(t)yy with
U(t) = e~ is a solution of the Schrédinger equation with initial datum (0) = 9. In fact:

iU ()0 = lim %[U(t +h) = U(0)]o = lim %[U(h) — 1 U)o = HU ()W  (6.11)

because U (t)yo € D(H) if 1o € D(H). It turns out that U(t)o is the unique solution of the
Schrodinger equation.

Lemma 6.3. Let g € D(H) and let ¥(t) be a solution of the Schrédinger equation with
initial datum (0) = . Then ¥ (t) = U(t)1o.

Proof. Let 1(t) be a solution of the Schrédinger equation. In particular, ¢(t) is differentiable
and ¥(t) € D(H) for all ¢t € R (or for all ¢ in the time-interval on which (¢) is a solution).
Let o(t) = U(—t)y(t). Then:

iup(t) = lim L[U(~t = <Pt + )~ U(-1)0(0)]
— lim [iU(—t N G ‘2 —v z‘U(f? - ]lU(ft)w(t)] . (6.12)

Since 1) is differentiable and U is strongly continuous, we have, as € — 0:

Pt +e) —9(t)

iU(—t—¢) . — U (=t)Y'(t) = U(=t)Hy(t) = HU(—t)y(t) . (6.13)

On the other hand, ¢ (t) € D(H) implies that U(—t)y(t) € D(H) and therefore that:
iU(%)_BU(—t)w(t) L CHU(—t)0(1) (6.14)
We conclude that ¢'(t) = 0 for all ¢ and therefore that ¢(t) = ¢(0) = ¥(0) = 1. Hence,
¥(t) = U(t)to. n

Remark 6.4. Since D(U(t)) = H, the dynamics can be extended to all initial data 1o € H.
However, notice that U(t)y is a solution of the Schrédinger equation if and only if 1o €
D(H).

Suppose that H < H. Then, by Proposition 1| H* < H. Also, being H symmetric, by Proposition m
Hc H*. That is, HCH hence H = H.
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6.2 Stone’s theorem

In the previous section we proved that any self-adjoint operator generates a unitary evolution.
Conversely, Stone’s theorem shows that any strongly continuous one-parameter unitary group
U(t) is generated by a selfadjoint operator such that U(t) = e ",

Theorem 6.5. Let U(t) be a weakly continuous one-parameter unitary group. Let H :
D(H) — H be the generator of U(t), defined by:

D(H) = {w e H | lim %[U(t)w — ] eaist) (6.15)

and by: ’
Hy = lim %[U(t)zb — ] for allye D(H). (6.16)
Then, H is selfadjoint and U(t) = e~

Proof. First of all, we notice that the weak continuity of U(t) also implies strong continuity,
since, for any ¥ € ‘H and for t — tg:

[U)¢ = Ulto)v|* = 2|¥]* — 2Re (v, U (to — t)1) — 0 (6.17)

if U(tg —t) — 1 weakly. Next, we claim that D(H) is dense in H. For any ¢ € H and 7 > 0,
we set:

by = JT U(t)dt . (6.18)
0

This implies that 7719, — 1 as 7 — 0. In fact, given € > 0, by the strong continuity of U (t)
we can find ¢y > 0 such that |U(¢)y) — ¢| < e for all 0 < ¢t < tg. Then, for all 0 < 7 < tg we
have:

e =l < 1 [ 0w vl << (6.19)

Since € > 0 is arbitrary, this shows that 714, — 1. Moreover, we claim that ¢, € D(H).
In fact, for any 7 > 0, we have:

T

%(U(tm—wr) = [fﬂ U<s>¢ds—f

0

U(s)wds]

1 [T+t t
- EU U(s)pds —J U(s)wds]
T 0

1t
- Wm -1, f Uls)bds — [U(r) — 1], ast— 0. (6.20)

0
This implies that ¢, € D(H). Hence, for arbitrary ¢ € H, we found a sequence 714, €
D(H) with 7714, — 1. This proves that D(H) is dense. Next, we show that H is essentially
self-adjoint. From Corollary it is enough to check that Ker (H* + i) = {0}. To this

end, suppose that H*p = Fip. Then, proceeding as in the proof of Theorem [6.1] (iii), for
any ¥ € D(H), we have U(t)y € D(H) for all ¢t € R and therefore:

%@, U(t)yy = (o, —iHU ()Y = —i(H*p, U(t)¢) = (o, U(t)¢)) . (6.21)

Hence,
{p, Ut)) = e*{p,9) . (6.22)

Since the left-hand side is bounded, uniformly in ¢ € R, we must have (p,1) = 0. Since
v € D(H) is arbitrary and D(H) is dense, we conclude that ¢ = 0. Therefore, H is essentially
selfadjoint, and its closure H is selfadjoint. We can therefore define the one-parameter group
V(t) = et We claim now that V(t) = U(t). This would also imply, by Theorem that
H = H (because it would imply that D(H) = D(H)) and therefore it would conclude the
proof of the theorem.
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To show that indeed V' (t) = U(t), we pick ¢ € D(H) and we set () = U(t)y — V(t)3.
Then, we compute:

li—rf(l) w = 11_{% %S_DU@W} — 112% Wv(t)d,
= HU(@t) —iHV (t)y = iHy(t) (6.23)

where we used that U(t)y € D(H) it ¢ € D(H), V(t)y» € D(H) if v € D(H) < D(H), and

that HU (t)y = HU (t)y for ¢ € D(H) (because H is an extension of H). We obtain:

d , d —
IO = =@ @), 0 (1)) = 2Re (W (1), ilY(1)) = 0 (6.24)

since (¢ (t), Hi(t)) € R (which follows from the fact that H is selfadjoint). With (0) = 0,
it follows that ¢ (t) = 0 for all ¢ and therefore that U(t)y = V(t)y for all ¢ € D(H). Since
D(H) is dense in H and U(¢), V(t) are unitary (in particular, bounded), this also implies
that U(t) = V(¢) on H. u

6.3 The RAGE theorem

There is an interesting relation between the spectrum of a selfadjoint operator H and the
properties of the quantum dynamics U(t) = e~*t. This relation is summarized in a theorem
due to Ruelle-Amrein-Georgescu-Enss. The goal here is to understand, based on the spectral
properties of H, whether a quantum system whose evolution is generated by H remains
confined in a bounded region for all times or whether instead it moves to infinity as ¢ — oo.

A first simple observation is as follows. Let H be a selfadjoint operator, and Hac, Hsc,
Hpp the corresponding spectral subspaces, so that H = Hac ® Hee ® Hpp-

If 9 € Hac, then the spectral measure piy, is absolutely continuous with respect to the
Lebesgue measure. This also implies that p, . is absolutely continuous with respect to
Lebesgue, for all ¢ € H, since

|1, ()] = Ko, PQB)] < <o, P2, P = pip ()2 ()2 . (6.25)
Therefore, setting U(t) = e *H* we find:

{p, Ut)y) = Je*i’\tdu@@(A) -0 as t — o0, (6.26)

by the Riemann-Lebesgue lemma. This is because any Borel measure p which is absolutely
continuous with respect to Lebesgue can be written as du(A\) = f(\)d\, with f € L'(R, d\)
and dA the volume measure. In fact, by Theorem (3.4

(o, U(t)0) Je-m FowOVAA = Fos(t) =0 ast— . (6.27)

This means that, if ¥ € H,., the time evolved state U ()1 becomes orthogonal to any fixed
@ € H, as t — oo. This of course cannot be true for all » € H. In particular, if ¢ is an
eigenvector of H, that is if Hy = E1, one has:

K, Uyl = K9l , forall teR. (6.28)

A more exhaustive understanding of the asymptotic behavior of (¢, U(t)¢) in the limit of
large t is provided by the following theorem.

Theorem 6.6. [Wiener] Let i a finite complex Borel measure on R and:

Alt) = fR e~ (6.29)
Then,
i & [ 170 Pa = 3 () (6:30)
T- T 0 AeR ’

where the sum on the r.h.s. is finite (because p is a finite measure).
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Remark 6.7. Recall that any Borel measure has can be written as pt = fLge + fhse + tpp. Also,
SINCe flge, Wse have continuous distribution, p({\}) = ppp({A}). Therefore, 3\ g |1({A})]? =
ek lpp({AD)|?. The sum is over the support of My, of the pure point measure fi,p, which
is a countable set. This follows from the fact that My, = |, ey Mn with M,, = {\ € R |
w({A}) > 1/n} = {Ae R | pupp({\}) > 1/n}. Each set M, is countable and finite: otherwise,
w(My,) = oo, which is impossible since p is finite. Therefore, My, is the countable union of
finite sets, and hence it is countable.

Proof. We apply Fubini’s theorem to write:

J]R J]R [% LT 67i(zfy)tdt] dp(@)dp(y) - (6.31)

Since "
1 —i(z—y)
- dt‘ <1 6.32
] (6.32)
and, as T' — oo:
71 (e y)tdtﬁ{? iiig (6.33)

Therefore, by dominated convergence:

7 | aORa = || vy = ndu@dil) = [ nopda) - ¥ et 63

yeR

Let us now apply this theorem to study the quantity |, U(t)1)|, describing the proba-
bility of finding the evolved state in the state ¢ at time ¢t. If ¢ € Ho. ® Hse and ¢ € H is
arbitrary, the measure p,  has not atoms, 4.e. it is such that p, ({A}) = 0, for all A e R.
Therefore, by Theorem

1 (" ,
lim —f [(p, ety 2dt = 0. (6.35)
0

Hence the probability of finding the evolved state in ¢ tends to zero, but only in an averaged
sense.

Notice that |[{p, U(t))|* = |P,U(t)y|?, with P, the orthogonal projection onto . We
can extend Eq. to a more general class of operators, called compact operators. Com-
pact operators are the natural generalization of finite-rank operators, that is operators that
can be written as finite linear combination of orthogonal projectors. In the following, we
shall denote by Bj(0) the unit ball in H, that is:

Bi(0) ={ypeH|[v]<1}. (6.36)

Definition 6.8. An operator K € L(H) is called compact if KB1(0) € H is pre-compact in
H, that is if KB1(0) is compact.

Remark 6.9. (i) Equivalently, an operator K € L(H) is compact if and only if for any
bounded sequence i, € H, K1, has a convergent subsequence.

(i) The space of all compact operator K(H) is a closed linear subspace of L(H). Also, K*
is compact if K is compact, and KA, AK are compact if K € K(H) and A € L(H).
Furthermore, compact operators can be approrimated in norm by sequences of finite
rank operators.

Definition 6.10. An operator K : D(K) — H is called relatively compact with respect to
the self-adjoint operator H if there exists z € p(H) such that KR,(H) = K(z — H)™! is
compact.

69



Remark 6.11. (i) Using the first resolvent identity, R,(H)—R.,(H) = (z—2z0)R,(H)R,,(H),
one can check that if KR.(H) is compact for one z € p(H), then it is compact for all
z € p(H).
(ii) If K is relatively compact with respect to H, then D(H) < D(K), because every i €
D(H) can be written as ¢ = Ra(z)p for a p € H.

The results (6.27)), (6.35) can now be extended as follows.

Theorem 6.12. Let H be a selfadjoint operator. Let K be relatively compact with respect
to H. Then, for all € D(H):

1 (" ,
lim — | [Ke “#'P.(H)y|?dt =0, (6.37)
T—oo T 0
where P.(H) = Py.(H) + Psc.(H) is the orthogonal projection onto Hae @ Hse. Also, for all
YveD(H): _

Jim. |Ke "M P, (H)Y|> =0. (6.38)

If we also assume that K is bounded, then Egs. , hold true for any ¢ € H.

Proof. To prove Eqgs. (6.37)), , we can assume that ¢ € H. and, respectively, that
1) € Hae, and drop the orthogonal projections. If K is a rank-one projector, the claims follow

from Egs. (6.27), (6.35). If K is a finite-rank operator, K = Z?Zl a;j{Y;j, Pyp; for two
orthonormal families {¢1,...,on}, {¥1,...,¢,} then:

| e i) = " [y, e iy (6.39)
j=1

and the problem reduces to the rank-1 case. If K is compact, we can find a sequence of
finite-rank operators K,, with |K — K,,| < 1/n. Then:

[ K e ) < 2| Kne™ ) + 20729 (6.40)

and the problem reduces to the finite-rank case (by choosing first n large enough, and then
T or t large enough). Finally, it K is relatively compact with respect to H and v € D(H),
we write ¢ = (H — 2z) 7€ for a € € H (notice that, if 1 € H, or 1) € Hae, then also & € H, or,
respectively, £ € Ha.). Thus, it is enough to apply the result for compact operators to the
operator K(H — z)~!, because the operator (H — 2)~! commutes with e~ *t, u

Example 6.13. A simple application of these results is obtained by taking H = —A and K
the multiplication operator X o) (x). It turns out that the operator K is relatively compact
with respect to H. More generally, one can prove that all operators of the form f(iV)g(),
or g(2)f(=iV), for f,g € C(R™) and g(—iV) = F1g(k)F are compact. In our case,
9(x) = XBro)(®) and f(k) = (k* + 2)~', with z € C\R.

Since H has purely absolutely continuous spectrum, we conclude that:

IXBr@e" U] =0 ast— o, (6.41)

for every ¥ € H and for every R > 0. In other words, if the evolution is generated by the
Laplace operator, the probability that the system is found in a ball of radius R around the
origin decays to zero as t — o, for all R > 0 and for all initial data ¢ € H: the system
moves to infinity.

As we will see later, more realistic Hamilton operators have the form H = —A +V,
for a potential V. Depending on the form of V, the spectrum of H may contain absolutely
continuous, singular continuous and pure point parts. Taking again K = X g, ) (x) (which is
still relatively compact with respect to H, at least for reasonable choices of V'), we conclude
that

IXBa @e ] >0 ast - oo, (6.42)

if Y € Hae, that:
1 (* »
7| o @e a0 st o, (6.43)
0
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Zf 1;[} € Hac &) HSC, and that:

IXBr© @)™ = IXBr@¥] = I¥] (6.44)

as R — o0, if 1 is an eigenvector of H. In other words, if the initial data v is an eigenvector
(hence, it belongs to Hyyp), its evolution remains localized within a ball of radius R, if R is
large enough.

If ¢ is contained in the spectral subspace Hqs of H, the its evolution moves to infinity,
while if it is contained in the spectral subspace H., with possibly a component in Hsc, the
probability for finding the state within a ball of radius R still goes to zero, but only in an
average sense.

It turns out that the behavior of | Ke~ )| can be used to dynamically characterize the
spectral subspaces H, and Hy,, associated with H.

Theorem 6.14 (RAGE theorem). Let H be a selfadjoint operator and suppose that K,
is a sequence of relatively compact operators with respect to H, converging strongly to the
identity. Then:

1 (T :
H, = {we’H\ lim lim —f HKne_’Hth:O}
0

n—w T—ow T

Hpp = {1/) e H | lim sup||(1 — K,)e 'ty = 0} . (6.45)
n—o0 t=0

Proof. Pick first ¢ € H.. By Cauchy-Schwarz and by Theorem we find:

iy iHt i it 12 0]V

- —1i <|= n —1 N .

7| e <[5 1K) -0 (6.46)
as T' — oo. Hence:

He {w eH | {1/; e | lim lim ~ ' | K e~ ity = 0} (6.47)
¢ n—ow T—oo 1 0 " ’ ’

On the other hand, suppose that ¢ ¢ H.. We want to show that:

1 (T »
1| e (6.48)
0

does not converge to zero, if we let first 7' — o0 and then n — 0. Since ¥ ¢ H., we have
¥ = e + Ppp, for a Y. € He and for ¢y, € Hpp, with ¢, # 0. Since |Kpe | >

| Kne~ | — | Kne~ )| and since we know that:
1 (" :
Jim TL | K=t dt = 0, (6.49)

it is enough to show that
1 (T »
| e ar (6.50)
0
does not converge to zero, it T'— o0 and then n — 0. To prove this, we shall show that:

iglg HKne_th@/’pp - e_thwpp” -0 (6.51)
as n — oo. If this is true, we obtain that:
1 (T
—iH —iH —iH
T | Ve it > ] = sup L™ M, = € = el >0 (652

as n — o0, which implies the claim. To show (6.51]), we use that 1, can be approximated
by a sequence vy, having the form:

N
YN = Z Qjpj (6.53)

=1

71



where (¢;) en are orthonormal eigenfunctions of H, associated with eigenvalues \;, recall
Proposition [5.64] This implies that:

N
ey = 2 aje” Nt (6.54)
j=1

Hence, for every fixed N, as n — oo:

N
sup | Kne™ oy — ey < ) oyl Kng; — @5 =0, (6.55)
teR j=1
because K, — 1y strongly. Since, on the other hand, |e™*# 4, —e ™ Hihn| = |1pp—1n | —
0 and also:
| Kne™ T pp = Kne™ 0y | < | Knlltpp — ¥l < Cltrpp — ¥n ] — 0 (6.56)

as N — oo, uniformly in ¢ and in n, we obtain Eq. (6.51]). (We used that strong convergence
of K,, to 14 implies that (K,) is a bounded sequence, whose proof is left as an exercise).
This proves the first identity in Eq. (6.45). Let us now prove the second identity. The
inclusion:

Hyp © {¢ eH | lim sup |(Ly — Ky )e y] = o} (6.57)
n—w >0
follows from Eq. (6.51). Conversely, it 1 ¢ Hpp, then ¢ = e +1pp for ¢, € He, with ¢ # 0.
Applying again Eq. (6.51)), it is enough to show that

sup ||(1y — K,)e "t does not converge to zero as n — 0. (6.58)
t=0

=

To this end, let us proceed by contradiction and assume that sup, |[(1y — Ky,)e | — 0
as n — o0. Then, we would conclude:

. 1 (T —iHt
0 = JﬂréoTlfioTL (L3 — Kn)e " e||dt
1 (* -
> BT . - —iHt _
> el = Jimy Jim 7 |1t = s > 0 (6.59)
which is a contradiction. L]

7 General Schrodinger operators

7.1 Kato-Rellich theorem

Often in quantum mechanics one has to deal with perturbations H of simple reference oper-
ators Hy. As an example, one might consider Hamiltonians of the form H = Hy + V, with
Hy = —A and V = V(&) a multiplication operator, describing an external potential.

Perturbation theory aims at establishing properties of H, starting from the properties
of Hy, assumed to be well-known. Of course, to reach this goal, we will also need some
information about H — Hy. For example, it is easy to check that if H — Hy is bounded and
seldadjoint, then H is again selfadjoint (provided Hj is selfadjoint). More generally, in this
section we will show that relatively bounded perturbations of self-adjoint operators remain
self adjoint (if the relative bound is less than one).

Definition 7.1. Let A: D(A) —» H, B : D(B) — H be two densely defined linear operators.
We say that B is relatively bounded with respect to A (or A-bounded) if D(A) c D(B) and
if there are constants a,b > 0 such that:

|BY| < a Ap]| + b4 (7.1)

for all v € D(A). If B is relatively bounded with respect to A, then the infimum over all
a > 0 such that Eq. holds true is called the relative bound of B with respect to A (or the
A-bound of B). If the A-bound of B is zero, then we say that B is infinitesimally A-bounded.
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The next theorem is the main result of this section.

Theorem 7.2 (Kato-Rellich). Let A be self-adjoint and B a symmetric operator, bounded
with respect to A and with A-bound less than one. Then, A+ B defined on D(A+B) = D(A) is
selfadjoint. The statement remains true if we replace everywhere selfadjoint with essentially
selfadjoint. In this case, we have D(A) = D(B) and A+ B = A + B.

Proof. We shall only consider the case in which A is selfadjoint. We shall prove that Ran (A+
B +i)\g) = H for a suitable Ao > 0. This implies that (A + B)/\g is selfadjoint, hence that
A + B is selfadjoint.

Let ¢ € D(A). We have, for every A > 0:

[(A+iNel® = |Apl* + X[l . (7.2)
Being A selfadjoint, (A £4i\)~! is bounded. Setting ¢ = (A+i\)~11, we have, for all 1) € H:
[0I? = [A(A+iN) "> and  [9f* = XA+ i) ) (7.3)

Therefore, || A(A +i\)7! <1 and |(A +i\)"'| < A7, From the relative boundedness, it
follows that, for ¢ = (A + i)~ te:

b
[B(A+iN) 0] < al A4+ i) +0)(A+iN ] < (a5 )l (74)

Choosing \g > b/(1—a) > 0 (recall that a < 1 by assumption), it follows that | B(A+i)\)~!| <
1. Therefore, by the Neumann series

Iy + B(A+iXg) ™ =1y — (—B(A+iXo)™h) (7.5)

is continuously invertible, and hence Ran (13 + B(A + i\g)~!) = H. Using that, for all
p € D(A):

(L3 + B(A +1iXo) ) (A +iXo)p = (A+ B +iXo)p (7.6)
and that Ran (A + i\g) = H (recall that A is selfadjoint), we find Ran (4 + B + i\g) = H.
The same argument applies for —i\g; this proves that A + B is selfadjoint. L]

Let us now discuss applications of the above theorem. We will be interested in operators
of the form H = —A +V(£). We will use the Kato-Rellich theorem to establish under which
conditions on V' the operator H is self-adjoint.

Theorem 7.3. (—A-bounded potentials on R3.) Let V : R® — R, with V € L?*(R®) +
L*®(R®), that is one can write V.= Vi + Vo with V. € L? and Vo € L*. Then, V is
infinitesimally Hy-bounded, with Hy = —A on D(Hy) = H?(R3). In particular, the operator
H = Hy +V is selfadjoint on D(Hy).

Proof. Let D(V) = {4 € L? | Vi € L2}. D(V) contains C*(R9), and it is therefore dense
in L?. Let V =V, + V5 with V; € L? and V, € L®. Then, by the Sobolev lemma any
function ¢ € H2(IR?) is continuous and bounded. Therefore:

IVelrzme) < leleolVillLzmey + Vol Lo @s) ol 2 s) (7.7)

that is, H?(R?) = D(V). The next lemma will allow us to complete the proof of infinitesimal
boundedness of V' with respect to —A. L]

Lemma 7.4. For every a > 0 there exists b > 0 such that for all ¢ € H*(R?):
[#lloo < alApz + bl L2 - (7.8)

Remark 7.5. Fjq. (@ together with Fq. concludes the proof of infinitesimal bound-
edness of V' with respect to —A.
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Proof. By Cauchy-Schwarz inequality:

lelo < [@les =1+ &%) (1 +E) @]
< @ F) T L2 (1 + K@ 2
< O(IK@]z + [2lz2) - (7.9)
Setting @, (k) = r*@(rk), one has:
H@r”Ll(RS) = H@HLI(RS) for all » # 0. (710)
At the same time, we also have:
~ 3 A
18rl|L2®e) = 72 B L2 () (7.11)
and: )
HkQ@THL?(W) = r_§||k2<,5||L2(R3) . (7.12)

All together, we have:

[eloo < 1@l = 18rler < CUK*Gr ]2 + 181 ]22)
= Cr 3|kl ss + Or? @]z
= Or 2|Ap| + CrE gL - (7.13)
Being r a free parameter, the claim follows. L]
Example 7.6 (The Coulomb potential). Let V(z) = — 121 e the Coulomb potential (and —e
the electric charge). We write:
e e e
V() == = —Xual<R] — Xzl>RT
[ SR ] g
= Vi+Vs, (7.14)

where V; € L2(R3) and Vo € L®. Therefore, the previous results imply that H = —A — \%I 18
selfadjoint on H?(R). Analogously, it is possible to check that the N-body Hamiltonian:

N
€jk
H=Y A, - 9k (7.15)
;1 Ty —

is a selfadjoint operator on H*(R3N).

If the operator A is bounded below, under the same assumptions of Kato-Rellich theorem
one can also prove that A + B is bounded below. We will not discuss the proof of this fact.
Instead, we shall focus on a special important case, the one of the hydrogenic atom:

H=-A- Z , (7.16)
|z
on D(H) = H?*R?). As we proved above, this operator is selfadjoint on H?(R%). The
parameter Z > 0 plays the role of nuclear charge (here we set e = 1). We will prove that
this model is stable, in the sense that the Hamiltonian is bounded below by a constant. We
shall prove an optimal lower bound which matches the ground state energy of the model,

) (i, Hap)
R kA
e (R (1, Py

Notice that this is very much in contrast with what happens in classical mechanics. Clas-
sically, the Hamiltonian H(p,q) = p* — Z/|q| is not bounded from below: one can lower
the energy by taking the electron closer and closer to the nucleus (that is, sending |g| to
zero, and choosing p = 0). In quantum mechanics, we know from the uncertainty principle,
Eq. , that particles cannot be simultaneously localized both in space and in velocity:
this ultimately means that a particle that is very close to the nucleus should have a large
kinetic energy. The compensation between these two energies is ultimately responsible for
the stability of the hydrogenic atom, and more generally for the stability of matter. This
heuristic principle is captured by the following inequality.

Egs = (7.17)
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Lemma 7.7 (Coulomb uncertainty principle.). Let H € H'(R3). Then:

1
| do 0@ < 190 lagen e (r.19

Before discussing the proof, let us use this lemma to prove the stability of the hydrogenic
atom.

Proposition 7.8. Let v € HY(RY), E, = (3, H). Then, the following inequality holds
true:

Z?
Ey> -l (7.19)

Equality is reached for ¢ = Ke~(Z/9l,

In particular, this proposition proves that Egg = —ZTQ (recall that H?(R?) = H'(R?),

which follows from the definition of Sobolev space, Definition [3.74] together with |k| <
(1/2)(1 + |k|?)). This inequality proves the stability of the hydrogenic atom.

Proof. (of Proposition [7.8]) Suppose that ||¢|> = 1. By Lemma [7.7] we have:

Z2

s = VI3 - Z| V)2 > 1 (7.20)

as it follows from 22 — Za = (x — Z/2)? — Z?/4. Equality for ¢ = Ke~(#/917] is left as an
exercise. L]

To conclude, let us prove Lemma [7.7]

Proof. (of Lemma[7.7}) The starting point is the following identity:

<w7 = > @l vy, (7.21)
7=1,2,3
where we used that: )
T 1 T’
Op, 2| = — — L. 7.22
oo o = (7:22)

Therefore, integrating by parts:

1 T,
2 ST = - z; ¥ . s U
W i) B 1’23(< T+ (0, )
= —2Re 2 <azjw7 33] 1/}>
7=1,2,3 | |
< 22|<a w,| |w>|
By Cauchy-Schwarz inequality:
1 T;
20, — < 2 Op. V|2 ||
W) < ;n S =
1/2
DA (ZHm )
J
< 2[Vela e - (7.23)
This concludes the proof. L]
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7.2 Relatively compact perturbations and Weyl’s theorem

Kato-Rellich theorem allowed us to prove that selfadjointness survives perturbations, if they
are small enough. It is also natural to ask whether perturbations preserve other properties of
self-adjoint operators. For example, how does the spectrum of an operators looks like after
perturbation?

Let T be a selfadjoint operator, and let A be an eigenvalue of T'. Let ¢ be the eigenvector
of T' with eigenvalue A, and consider the perturbation 7' 4 €P,, where P, is the projector
onto ¢. Then, ¢ is still an eigenvector of T'+¢ P, with new eigenvalue A +¢. This shows that
the eigenvalues of a selfadjoint operator are, in general, not invariant under perturbations.
The question we would like to address here is whether there exists subsets of the spectrum
that are invariant under a class of perturbations.

Given a selfadjoint operator T' with projection-valued measure Pr, let us define the
discrete spectrum:

oa(T) ={ eR |rank Pp(A —e; A +¢€)) < for some ¢ > 0} (7.24)
and the essential spectrum:
Oess(T) ={A e R |rank Pr(A—e; A +¢)) = © for all ¢ > 0} . (7.25)

Obviously, 0(T) = 04(T) U 0ess(T), and 04(T") N 0ess(T) = . The essential spectrum con-
tains the absolutely continuous spectrum, the singular continuous spectrum, accumulation
points of eigenvalues and isolated eigenvalues of infinite multiplicity. Instead, the discrete
spectrum oq(7T') contains isolated eigenvalues of finite multiplicity. From what we discussed
above, we know that the discrete spectrum is not invariant under finite rank perturbations.
Instead, as we shall show, the essential spectrum is invariant under finite rank and, more
generally, compact perturbations.

Lemma 7.9 (Weyl criterion for the essential spectrum). Let T be a self-adjoint operator.
Then, A € 0¢s5(T) if and only if there exists a sequence 1, € D(T) such that ||t,| = 1 for
all n € N, 1, converges weakly to 0 as n — o0, |[(T — A\, | — 0. Moreover, if A € 0ess(T),
the sequence v, can be chosen to be orthonormal. Such a sequence is called a singular Weyl
sequence at .

Remark 7.10. With respect to the Weyl criterion we discussed with Theorem here
Un, — 0 weakly.

Proof. Let 1, be a Weyl sequence at A. Then, by Theorem A€ o(T). Tt is therefore
enough to show that \ ¢ oq(T). We proceed by contradiction. Suppose that A\ € oq(T).
Then, there is € > 0 such that the spectral projection P. := Pr((A — e, A + €)) is of finite

rank. Let ¢, := P.1,. Since, by assumption, 1, — 0 weakly and P, is finite rank, we have
on = P, =0 stronglyEI On the other hand, by the spectral theorem:
1t — SOHHQ = Wn, Pr((A—g A +6))Pn)
=[x =+ )@, (@
1
< 5 [@ =N, (@) = SIT =Nl 0. (728)

3Since P. is finite rank, it can be written as P. = ZzAi1 a¢Py,, where {¢,} is an orthonormal family, P, is
the projector over ¢, and M = rank of P.. Therefore,

M
Peip = 2 arpe{pe, Pn) (7.26)
=1
and the norm || Pty || is:
M
[ Peon* = 3 lowe* <o )] - (7.27)

=1
By weak convergence, (¢¢, )ny — 0. Hence, |P:),| — 0.
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Since [l = 1 by assumption, and [t — [0 — @nll < lnl < [nl + [ — @all, we
conclude that |¢,| — 1. This gives rise to a contradition: P, cannot be of finite rank, hence
Aé¢ oq(T).

Conversely, suppose that A € gess(T'). We claim that there exists a singular Weyl sequence
at A\. There are two possibilities: either X is isolated, or it is not. Suppose that A is isolated.
Then, A has to be an eigenvalue of infinite multiplicity. We can choose an orthonormal
sequence 1, in the eigenspace of T' associated to A. It is clear that i,, — 0 weakly. Thus,
{¢p} is a singular Weyl sequence.

Suppose that A is not isolated. In this case, consider the sequence of orthogonal projec-
tions:

P,=Pr([A=1/msA=1/(n+ 1) v (A+1/(n+1);A+1/n]). (7.29)

Since A is not isolated, there must be an infinite subsequence n;, such that rank P, > 0 for
all j. Hence, we construct a singular Weyl sequence by choosing a normalized 1; € ran P,
for all j e N. [

We are now ready to prove stability of the essential spectrum with respect to compact
perturbations.

Corollary 7.11. Let T be a selfadjoint operator and K selfadjoint and compact. Then,
Oess(T + K) = 0¢55(T).

Remark 7.12. In particular, if T is a compact selfadjoint operator, this theorem recovers
the well-known result o.55(T) = {0}.

Proof. Let X\ € 0ess(T) and let 9, be a singular Weyl sequence at A. Then, we have:
(T + K = Nton| < (T = A)ion | + [ Kepn | — 0 (7.30)

because v, — 0 weakly, which implies that K1, — 0 strongly. Therefore, v, is also a
singular Weyl sequence at A for the operator T+ K, and therefore A € oess(T+ K). Reversing
the roles of T'and T + K, we can also show that A € e (T + K) implies \ € 0o (T). |

Since, as observed at the beginning of the section, any point in the discrete spectrum can
be moved away by a finite rank perturbation, we obtain the following characterization of the
essential spectrum, whose proof will be omitted.

Theorem 7.13. Let T be a selfadjoint operator. Then,

vess(T) =[] o(T+K). (7.31)
K compact
self-adjoint

Before discussing applications, let us mention that the essential spectrum is not only
preserved by compact operators, but even by relatively compact operators. Recall that for
a selfadjoint operator T, we say that K is relatively compact with respect to T if K Rr(z) is
compact for a z € p(T).

Theorem 7.14 (Weyl.). Let A, B be selfadjoint operators such that Ra(z) — Rp(z) is
compact, for a z € p(A) N p(B). Then, 0ess(A) = 0ess(B).

Proof. Fix z € p(A) n p(B). Let X € 0ess(A) and v, be a singular Weyl sequence for A at .

Then: ) Ra2)
Az
[RA(Z) - D]ﬂ’n =T (A= Nt . (7.32)
Since R4(z) is bounded, we obtain that v, is also a singular Weyl sequence for R4(z) at
the point (A — 2)~!. We claim that this proves that (A — 2)™! € gess(Ra(2)). Notice that
this does not directly follow from Lemma since the operator Ra(z) is not selfadjoint.
Nevertheless, the proof of Lemma directly applies to this case as well, since the spectral
projector of A is, by construction, equal to the spectral projection of R4(z). Also, the proof
of Corollary together with the assumption that R4(z) — Rp(z) is compact, implies that

()\ — Z)il € Jess(RB(Z))'
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We are left with showing that A € ess(B). Setting ¢, = Rp(2)¢y, we find that:
(B = Ngn| = |z — >\|H (RB(Z) - L)%H >0  asn— o (7.33)
A—2z

Moreover, since
T [n] = Tim (A= 2) 7+ (B(z) = A= 2) Dl = A —2[7H 20 (7.34)

it follows that &, = ¢, /|en| is a singular Weyl sequence for B at A and that A € gess(B).
Reverting the roles of A and B, we conclude that gess(A) = 0ess(B).- u

The invariance of the essential spectrum with respect to relatively bounded perturbations
is now a simple corollary of the last theorem.

Corollary 7.15. Let T be a selfadjoint operator and let K be selfadjoint and relatively
compact with respect to T. Then, 0ess(T) = 0ess(T + K).

Proof. To begin, notice that T'+ K is a selfadjoint operator. In fact:
KRy (i) = (KRr(i))(T — )R (i)) (7.35)

from which we get |KRp(iA)| — 0 as A — oo, since K is relatively compact with respect
to T. This implies that K is relatively bounded with respect to T', with relative bound 0:
hence, T + K is selfadjoint, and Ry k(z) is bounded for all z € C\R.

To prove the corollary, it is enough to observe that

RT+K<Z) — RT(Z) = RT+K(Z)KRT(Z) (736)
is the product of a bounded operator Ry k(z) and a compact operator K Ry (z), and it is
therefore compact. The claim then follows from Theorem n

7.3 Two examples of Schrodinger operators

In this section we shall discuss applications of Kato-Rellich and Weyl’s theorems. We shall
consider operators of the form H = —A + V(z), for suitable, explicit choices of the external
potential V(z). As we shall see, the spectrum of H will depend dramatically on the behavior
of the function V.

Operators of this form are called Schrodinger operators. They play an important role
in quantum mechanics. The nature of the spectrum of H will allow us to understand the
dynamics generated by H, via the Schrodinger equation.

7.3.1 The harmonic oscillator

Consider the operator Hypa,m = —A + w?x?, depending on a fixed parameter w € R. For
simplicity, suppose first that the system is one-dimensional: x € R and A = d?/dz?. Observe
that the perturbation V(z) = w?2? is not relatively bounded with respect to —A. Never-
theless, using the positivity of V(x), we can construct a selfadjoint extension of Hparm by
means of the Friedrichs extension.

The spectrum. Next, remark that (Hpam + 1)7! is compact. Therefore, the spectrum of
(Hyparm +1) 71 is discrete, and can only accumulate at zero (recall that the essential spectrum
is given by {0}). This implies that the spectrum of Hy,m consists of isolated eigenvalues,
diverging at infinity.

To determine the eigenvalues of Hyarm, we define the operators:

1 _ 1 d
v s =gl
Note that A, = A*. A simple computation shows that [A_,A;] = 1 and that H =
w(2N + 1) where N = AL A_. Next, we observe that:

Ay = (7.37)

[NV, Ay] = TA, . (7.38)
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Hence, if N = ni) for ¢ # 0, then N A4 = (n + 1)A11). Moreover, we have |A,v¥|? =
W, A_A )y = (n+ 1)|¢)? and |A_¥|? = (), AL A_) = n|y||>. This implies that n >
0, and therefore that o(N) < N, because if n ¢ N was an eigenvalue, then applying A_
sufficiently many times we would find a negative eigenvalue of N.

if M'pg = 0, we must have A_1)y = 0: if A_1pg # 0, it would be an eigenvector of A with
eigenvalue —1. The condition A_1py = 0 implies that:

V() = %wz)(z) (7.39)

which has a unique normalized solution (up to an irrelevant phase):
Yolz) = (w/m) e "2 (7.40)

Starting from g, we can construct eigenvectors 1, associated with the eigenvalue n € N of
N for all n € N, setting:
1

Ao () . (7.41)

We find that: )
Un(a) = m(w/w)l/‘lHn(\@x)e’Mz/Q , (7.42)

where H,, is the Hermite polynomial of degree n, given by:

2 d " 2 2 d" 2

H,(z) =e" /2 [:c - %] e/t = (—1)"e” dmin(fz . (7.43)

It turns out that the eigenvectors {¢,,} form a basis of the Hilbert space L?(R). This might be

checked from the properties of the Hermite polynomials, or from the spectral theorem: since

Hyarm is selfadjoint and has discrete spectrum, the set of eigenvectors must form a complete

basis of the Hilbert space. Summarizing, the Hamiltonian of the harmonic oscillator has the
spectrum:

0(Hnarm) = 0pp(Hharm) = {w(2n +1) : n e N} . (7.44)

Each eigenvalue \,, = w(2n+1) is simple, and it is associated with the normalized eigenvector
1,. Notice that the difference A\, 1 — A, is independent of n. In other words, the energy is
quantized: each quantum carries the energy 2w. Applying the operator A, we generate an
additional energy quantum, applying the operator A_ we annihilate a quantum of energy.
The operator A, is therefore called a creation operator, while A_ is called an annihilation
operator.

Properties of eigenvectors. In terms of the creation operator A, , the eigenvectors can be
written as ¥, = (v/n!)"*A%¢)y. A simple computation shows that the expectation values of
the position and of the momentum operator on the state 1, vanish. In fact:
. 1
<7pna an> = 7<1/}m (A+ + A*)"/}n>

V2w
1
W<Ai¢o’ (Ay + A_) A% o)
2 n n _
= mRe (Ao, A% o) = 0 (7.45)

and similarly, with the momentum operator p = id/dx:

{n,s Pihn) AV, W/2n, (A- — AL )P0

YA, (A~ A Ao (7.46)
— mlm (Atapg, AT apgy = 0 . (7.47)

n!

1
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To have an idea of the distribution of position and momentum in the state v,,, we have to
consider the variance of these quantities. We find:

Al’w" = <wn, 2'21/)n>
1
— m@‘l?ﬂﬂo, (Ay + A_)2A™ )

1
= m@ﬂﬂ/’m (Ay A+ A_AL)A%Yo)

1
= (Ao, (2A- Ay — 1)ATY)

_ 1 n+1 2 1 n 2 1
= AT ol = Aol = —(n+1/2) (7.48)
Similarly,
prn = <w’ﬂ)ﬁ2¢n>
w
= *2771'<A:L_1/}0, (A— - A+)2AT_~L_QZJO>
w
= Tn'<A:L_7/}Oa (A+A_ + A_A+)A1¢O> = w(n + 1/2) . (749)
We conclude that:
Azy, Apy, = (n+1/2)%. (7.50)

Observe that for n = 0, corresponding to the state g with smallest energy (the vacuum state,
with no energy quanta), the product of the variance is minimal, according to Heisenberg
uncertainty principle. For larger n, on the other hand, the uncertainty in the state v,, grows.

7.3.2 Finite well potential

The harmonic oscillator is a special example, is the sense that the Hamiltonian operator H
has a purely discrete spectrum. Here we shall consider a simple one-dimensional system,
where the spectrum of the Hamilton operator has a discrete and continuous component. We
consider a Schrédinger operator H = —A + V, with V : R — R by setting:

| =b ifjz]<a
Vi) = { 0 ifjz|>a (7.51)

for some a, b > 0. Tt is easy to check that V(z) is relatively compact with respect the Laplace
operator —A = —d?/dxz?. Therefore, it follows from Weyl’s theorem that the Hamilton
operator H is such that:

Oess(H) = 0ess(—A) = [0;00) . (7.52)

We can ask whether H has additional eigenvalues. To answer this question, we shall solve the
eigenvalue problem (also known as the time-independent Schrodinger equation) Hiy = Eq,
i.e.

d2

|- 5+ V(@) |() = Bu() . (7.53)
We find:
— " (z) = E(z) (7.54)
for |z| = a and:
—¢"(z) = (B +b)¥(x) (7.55)

for |z| < a. Tt follows that, if E > 0, ¢(z) = Ae?VE® 4 Ae=iVET if 1 > g and, similarly,
Y(z) = BeVEr 4 Be=VE if < —q. But then, 1 ¢ L2(R). Hence, H has no positive
eigenvalues.

Negative eigenvalues. Let us assume now E < 0. In this case, explucing exponentially
increasing solutions, we obtain that:

W) = { AeVIEl@=a) if x>

7.56
BeVIFa+0) it g < —a (7.56)
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for some constants A, B. For |z| < a, on the other hand, we find:
¥(x) = C cos(wz) + C sin(wz) (7.57)

where we set w = 4/b — |E| (the case F < —b can be easily excluded, since H > —b cannot
have eigenvalues below —b). Next, we have to make sure that i) and ¢’ are continuous at
x = ta (otherwise 1 is not a solution of Hy = E1 on R). We obtain the conditions:

B C cos(wa) — C sin(wa)
VIEIB = wCsin(wa) + wC cos(wa) (7.58)

at x = —a and

A = Ccos(wa)+ Csin(wa)
—V/I|E|[A = —wCsin(wa) + wC cos(wa) (7.59)

at £ = a. Thus:

[
Q
A,
B
=
s
Q
Q
S}
m
€
Q

C cos(wa) — C sin(wa)

C cos(wa) + Csin(wa) = ——Csin(wa) — ——C cos(wa) (7.60)
or equivalently
~ W o~
C —Ctan(wa) = ——=Ctan(wa)+ —C
VIE| VIE|
~ w W o~
C + Ctan(wa) = mCt an(wa) — \/@ (7.61)

To solve these equations, we must either have C' = 0 and V|E| = wtan(wa) or C = 0 and

|E|tan(wa) = —w. Noticing that /|E| = v/b — w? we can find solutions w € [0;v/b) of the
equation 4/|E| = wtan(wa) intersecting the graphs v/b — w? and of wtan(wa). Depending
on the value of b, we find finitely many solutions wy,...,w,. It is interesting to notice that,
no matter how small b > 0 is, we can always find a solutions wy; > 0. Similarly, we can find
solutions of 4/|F|tan(wa) = —w, by looking at the intersections of the graphs of tan(wa)
and of —w/+/b — w?. Also in this case, depending on the value of b, we obtain finitely many
solutions @1, ...,W,, (in this case, for b small enough, there is no solutions). For each value
of we {wy,...,wn,,@1,...,W0n,}, we can find the corresponding eigenvalue FE1, ..., E,, 1n,
and a corresponding eigenvector 11, ...,%n, +n,. Let us stress, once again, that the number
of eigenvalues depend on the parameter a, b and that, no matter how small a,b > 0 are, there
is always at least one negative eigenvalue.

Generalized eigenvectors for positive energies. We can ask whether we can find solutions of
the equation Hvy = Ev for E > 0, that are associated with the continuous spectrum of H. As
noticed above, for E > 0, that are associated with the continuous spectrum of H. As noticed
above, for E > 0 solutions of Hiy) = Et) are not in L?(R), they cannot be normalized. Still,
we can look for so-called generalized eigenfunctions, oscillating at infinity, playing the same
role as plane waves e’** play for the Laplace operator (notice that —d?/dz?e’** = k2etF®;
hence e*** is a solution of the eigenvalue equation —Af = Ef, with E = k? > 0).
For E > 0, we find that solutions of Hv = Ev must have the form

€1 4 gre T for x < —a
(x) =1 1% + e for |z] < a (7.62)
ege T 4 goetT  for x> a

for appropriate coefficients ey, es,a1,as,c1,co and where k = v E and w = vVE +b. The
coeflicients e; and ey are known as the incoming coefficients since they are associated to

waves e'** for x < —a and e~ for z > a that are moving towards the obstacle (described
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by the potential). The coefficients a;,as are known as outgoing coeflicients, since they are
associated to waves moving away from the obstacles, towards infinity.

The continuity of 1,1’ at z = +a gives four conditions relating the six coefficients
e1,€e2,0a1,a92,C1,co. It follows that, for every E > 0, we can find two linearly independent
solutions of the equation Hy = Ei. We can, for example, use the continuity relations
to express c¢i,ca,a1,as as linear combinations of eq, es (of course, the coefficients of these
combinations will depend on E' and on the parameters a, b in the Hamilton operator). The
2 x 2 matrix S = S(F) giving the outgoing coefficients as a functions of the incoming
coefficients, i.e. such that (a1,a3) = S(e1,eq), is known as the scattering matrix of the
system. It can be shown to be a unitary matrix, describing the scattering of waves at the
obstacle.

We can build two linearly independent solutions by fixing once e; = 1 and es = 0 (this
solution describes a wave incoming from the left), and then e; = 0 and ez = 1 (describing
a solution incoming from the right). Alternatively, we can classify solutions according to
their parity. In other words, we can find a solutions ¢ 1 taking e; = ez = 1 (this solutions
has positive parity, i.e. ¥g +(z) = Yg +(—x)) and another solution g _ taking e; = 1
and ey = —1 (this solution has negative parity, ¥g _(—z) = —t¢g,_(z)). Comparing with
the case H = —A, the solution of Hy) = E1 incoming from the left is just e?*® while the
solution incoming from the right is e~**. The solution with positive parity is cos(kz) and
the solution with negative parity is just sin(kz). For the Laplace operator, the scattering
matrix is just S = 1.

Completeness relation. One can prove that the states g 4 (or also the two states with
energy E > 0 associated with e; = 1, e = 0 and with e; = 0, es = 1) build, together with
the finitely many-eigenfunctions of H associated with negative energies, a complete set of
functions, meaning that

2 |95 )25 +L dk [[VE®),+ XVe@).+| + [VEw), - X VE®), -] = L2®) (7.63)
j=1

with E(k) = k2. Futhermore, they satisfy the orthogonality relations:

Jdm Ve, +(©)Ypp),+(2) = 0(k—K')  while JdIEE(k),i(IWE(k');(I) =0 (7.64)

(of course, also the eigenfunctions 1, ..., are orthonormal). Although the generalized
eigenfunctions g 1 (or also the two states with energy E > 0 associated with e; =0, e2 =0
and with e; = 0, e; = 1) are not in L?(R), they can nevertheless be used to construct
singular Weyl sequences for H at every energy Ey > 0. To this end, it is enough to consider
linear combinations of the form

o
|| dratmg s (7.65)
0

for a sequence of o € L?(R) with |al = 1 and concentrating closer and closer to the fixed

value kg = v/ Fy. Hence, the existence of generalized eigenfunctions for all £ > 0 is related
to the fact that oess(H) = [0;00) (and the fact that we can find two linearly independent
solutions ¢g 1, for all E > 0, is related with the multiplicity of the essential spectrum).

Time-evolution of arbitrary initial data. Because of the completeness and of the orthogonality
relations, we can also use the true eigenfunctions and the generalized eigenfunctions ¥ g + to
compute the time-evolution of arbitrary initial data (similarly as we used Fourier transform
to describe the free evolution generated by the Laplace operator). A given ¢ € L?(R) can
be written, according to Eq. , as

Y(x) = D2y, () + Y L dk DBk .0r VOV ER) o (€) (7.66)
J=1 a=+

with

T - f 0z By @) (x) (7.67)
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Hence,
e Hhp(z) = Y e Ty, ps(z) + ) L dk e* XYy ar VIV B(R) o () (7.68)
Jj=1 a=+

in close analogy with the evolution generated by the Laplace operator, computed by means
of Fourier transform.

7.4 General Schrodinger operators: existence of stationary states

So far, we considered two simple examples of Hamilton operators, whose eigenvalues and
eigenvectors (and generalized eigenvectors) could be computed explicitly. For a general
choice of the potential V(z), we know, if V(z) is relatively compact with respect to —A,
that oess(H) = [0;00), but it is impossible to determine explicitly the eigenvalues of H =
—A + V(). Still, it is often possible to show the existence of negative eigenvalues through
the method of calculus of variations. This is the goal of the present section.

7.4.1 Energy functional

We consider a quantum system in d dimensions, described on L?(R?) by the Hamilton
operator H = —A + V(z), assuming for now only that V € L; (R%), fora 1 < s < o
(stronger conditions will come later). We consider the quadratic form associated with H,
defining the energy functional

e() = (o, HYp) = f d |V )| + f de V(@) (@) . (7.69)

We are going to establish conditions that guarantee that the functional € attains a minimum
on the unit sphere {1y € L2(R?) | [¢|2 = 1}. We will show then that the minimizer 1 of &
on the unit sphere is an eigenvector of H with eigenvalue Fy = £(1)). Ey is going to be the
ground state of H, i.e. the smallest eigenvalue of H. Later, we will show how to construct
excited eigenvalues (if they exists) by similar minimization problems.

Boundedness from below. The first question we have to consider, to show the existence of a
minimizer for Eq. @ , is whether ¢ is bounded below. Consider, for example, for d = 3,
the potential V(z) = —|x|7%2. Then, V € L{ (R3), for all s < 6/5. For every ¢ € C5°(R?)
with ]2 = 1 and for A > 0 we set:

Ua(z) = A732(z/N) . (7.70)
Then, |[¢xll2 = 1 for all A > 0 and

| Iwus@Pde — [ fa 2@
A2 f V() [2da — A2 de 22| ()2 . (7.71)

()

For A — 0 we notice that the second term dominates and that the energy takes arbitrarily
large negative values. In this case, (1) is not bounded below and the minimum cannot be
attained. The following theorem provides sufficient conditions to make sure that the energy
is bounded below. We use the notation

T(y) = fdx V()2 (7.72)

for the kinetic energy of the particle.

Theorem 7.16. Assume that V e L*(R?)+LY?(RY), ifd > 3, that V e L®(R?)+ L'+ (RY),
if d = 2, for an arbitrary € > 0, and that V € L*(R?) + LY(R?), if d = 1. Then, there exists
constants C, D > 0 with
e(y) = CT() - DJy|* . (7.73)
In particular,
Ep:=inf{e(@) | |[¢]2 =1} > —0. (7.74)
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Remark 7.17. Here V € LP* + LP2 means that there are Vi € LP* and Vo € LP?2 such that
V=V+W.

Proof. We consider only the case d > 3 (the other cases can be handled analogously). By
assumption, we have V; € L®, Vi € L¥? with V = V; + Va. We claim that, for arbitrary
§ > 0, there exists Wy € L®, Wy € LY? with V = W, + W5 and IWalq/2 < 0. In fact, since
[Va(2)| Y2 x(|Va(z)| = p) < |Va(x)|¥? for all z € RY and since |Va(x)|%2x(|Va(z)| = p) — 0
for almost all z € R%, as yu — o0, it follows from dominated convergence that

[ W@ vata) = ) — o (7.75)
as u — o0. Hence, there exists pg > 0 large enough with
[ @@ = w < 592, (7.70

Then, Wa(x) = Va(@)x([Va(x)| > o) and Wi (z) = Va(z) + Va(#)x(|Va(®)] < o) have the
desired properties. Thus

e(¥)

[ Ivubds+ [viop

\WM@+JmeW@W+JW%@W@W

V13 = Wil 13 — IWallaz2 9134 a—2)
(1= COIVYIE — Wi llol90]3 (7.77)

AR\

where in the last bound we used the Sobolev inequality. The theorem follows by choosing d
small enough. ]

For example, for d = 3, the last theorem can be applied to the hydrogen atom, where
V(z) = =1/jz] = —x(Jz| < 1)/|z|—x(|z| = 1)/|z| € LP(R3) + L®(R?), for all p < 3. Theorem
.16|implies that the spectrum of the hydrogen atom is bounded below, something we already
knew from Proposition [7.8] We stress again that the stability of the hydrogen atom and of
other quantum systems with attractive potentials (that is, the fact that the spectrum is
bounded below) was a crucial success of quantum mechanics. In the classical counterpart
of such systems, the energy can take arbitrarily negative values. In quantum mechanics,
stability follows thanks to the fact that the negative potential energy is compensated by the
positive kinetic energy, so that the total energy is always bounded below. In order to localize
the electron close to the singularity of the potential, we pay a price in terms of kinetic energy
(this is a formulation of Heisenberg’s uncertainty principle).

7.4.2 Weak continuity of the potential energy

Next, we look for conditions that guarantee the existence of a minimum of the energy (bound-
edness from below is a necessary but not sufficient condition). We will make use of the
following result.

Theorem 7.18. Let V : RY — R with V e L*(RY) + LY2(R?), if d = 3, V e L®(R?) +
L' RY), if d = 2, and V € L®(R?) + L*(RY), if d = 1. We assume moreover that
V e L®(RNBg(0)) for sufficiently large R > 0, with |V @&a5r0)) — 0 as R — 0. The
potential energy

HW=fmvmqu (7.78)

is then weakly continuous in H'(RY). In other words, if 1; — v weakly in H*(R?), then
P(iy) - P(t) as j — o,
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Proof. We consider the case n > 3, the other cases can be handled analogously. Let ¢; be a
sequence in H'(R?) with ¢; — 1 weakly in H*(R?). Then, the sequence %; is bounded in
HY(RY), i.e. |[¢oj]| g < C for all j € N. Since

j ‘ RV(@WJ( 2) < VLm0 19515 < CIV I e (Bg, 0)) = 0 (7.79)
xr|=

uniformly in j, it is enough to show that:

j X0y @)V (@) [165() 2 — f X))V (@) [(2)]? (7.80)

as j — oo, for an arbitrary, but fixed R > 0. We write now V(z) = Vi(x) + Va(zx), with
Vi € LY2(R%) and Vi € L®(R?). For § > 0 we set

Vas@) :{ Vi) if [Vi(e)] < 1/6 (781)

0 otherwise

and Vs = Vi s + Vo. Then, |V 5(z)| < [Vi(x)| for all 6 > 0, and Vi s(x) — Vi(x) almost
everywhere. Dominated convergence implies that:

J-dx V(@) — Va(@)|2 = f|V1(a:) CVis(@)|dr >0 ass—0.  (7.82)
Therefore,
[0 @050 - VeI @P] < [W@) - vl @rae
103 B2 | Wala) = V(@) da

Il [ 1Vata) = V(@I#2dz 0 (783

N

N

where in the last step we used Sobolev inequality. This means that it is enough to show that:
[ xmaoValusl = [ xa(OaluP (7:84)

as j — oo, for all fixed §, R > 0. To this end, notice 1; — 1 weakly in H'(RY) implies that
1 — 1) strongly in LY(Bg(0)) for all 1 < ¢ < 2n/(n — 2); see Theorem In particular,
112 — [|? strongly in L92(Bg(0)). Hence,

UXBR(O)V(S(WHQ — [P < WVslollltos 1 = 19121 21 (Br(oy) = O (7.85)

as j — 0. [ |

7.4.3 Existence of minimizers

We are now ready to show the existence of a minimum of the energy functional.

Theorem 7.19. Let V : RY — R with V e L*(RY) + LY2(R?), if d = 3, V e L®(R?) +
L**¢(RY), ifd =2, and V € L*(RY) + LY(RY), if d = 1. Moreover, let V € L* (R4 Bg(0))
for R large enough, with |V L= (s, 0)) — 0 as R — o0. We assume that:

Bo = inf{=(6) | ¥ € HY(R?), [z = 1} < 0. (7.86)

Then, there exists 1y € HY(R?), with ||[vlle = 1 and (o) = Ey. Moreover, the function g
satisfies the Schrodinger equation in the sense of distributions:

(=A + V)thg = Egty . (7.87)
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Proof. Let v; a sequence in H'(R?) with [[¢;]2 = 1 and £(¢);) — Ep as j — 0. Theorem
implies that
1
e(vy) = 51Vl - €, (7.88)

which implies that |V;| is bounded. Hence, |¢j|g: < C for all j. By the Banach-
Alaoglu theorem, this implies that there exists a subsequence 1,,, and ¢o € H 1(R?) such that
U, — o weakly in H'(R?) (in other words, ¢,,, — o weakly in L*(R") and Vi, — Vg
weakly in L2(R%)). Since in the weak limit the norm can only get smaller, we obtain:

[tollz2 <1, IVabol2 < 1in_1>ioglf IVbn, |2 - (7.89)

From Theorem we have that P(1) = lim; o P(tn;). This implies that

Eollyol3 < e(vo) = [Vebo|3 + P(to) < lim inf ([ Ve)n, 13+ P(ihn,)) = lim inf e(), ) = Eo -
(7.90)
Since Fy < 0, we find |1g]2 = 1. This means that [¢g2 = 1 and e(3p9) = Ep. To show
that vy satisfies the Schrodinger equation, we consider the variation of ¢y. For § € R and
f e CE(RY), let vs = 1pg + 5 f and R(8) = e(tbs)/|s|3. Then R(5) has a minimum in § = 0.
Hence, since R is differentiable in § = 0,

dR(6 de d 2
0= d((S ) szo= C(;é";) l5=0 fE()iHZ)gHQ 50 - (7.91)
A simple computation shows that
d _ _
gfg&) lsmo— 2Refdx (VF - Vibo + Vo) (7.92)
and that p )
Hf§“2 ls—0= QRedeﬁZJO . (7.93)
Thus,
ReJ[(—A LV~ E)flvo = 0 (7.94)

for all f e CF(RY). If we replace f by if we conclude that

f [(—A +V — Bo)Fldo =0, (7.95)

for all f € CF(R™). This shows that ¢ solves the Schrédinger equation in the sense of
distributions. ]

Remark 7.20. Since info(H) = infyepmy, o1 (%), and since D(H) is dense in H'
(D(H) is dense in H?, the domain of the Laplacian, which is dense in H'), we conclude
that Ey = inf o (H).

7.4.4 Excited states

Theorem [7.19] gives a variational characterization of the smallest eigenvalue of H. It is also
possible to give a variational characterization of higher eigenvalues and eigenfunctions. Let

us assume that
Ey = inf{e(y) | e H'(RY), [¢]a =1} <0. (7.96)

Then Theorem implies that the energy functional () has a minimizer 1 on the unit
sphere of L?(R?) which is an eigenvector of H with eigenvalue Ey. We can then define:

By =inf{e(y) | v e H'(RY), |¢]2 = 1 and (,v0) = 0} (7.97)

that is we look for the infimum of the energy functional among all normalized vectors,
orthogonal to the eigenvector g. If this minimum is attained, we denote the minimizing
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vector by 1. We can proceed recursively. Given that we already constructed the normalized
vectors g, Y1, ..., YE_1, we define:

By = inf{e(v) | ¥ e H'(RY), [ =1 and (¥, 4b;> = 0, for all j = 0,1,....k—1}. (7.98)

In the next theorem, we show that if F < 0 then Ej, is an eigenvalue of H and the minimizer
1y is the corresponding eigenvector.

Theorem 7.21. Let V be as in Theorem[7.19. Assume Ej, < 0. Then, the infimum in Eq.
is attained and the minimizer 1y, s such that Hyy, = Epy.

Theorem From a minimizing sequence wz, we extract a weak limit 1. As in the proof
of Theorem one can show that £(1y) = Ej and that |¢,| = 1. The only additional
observation here is that (¢, 1) = 0, for all £ = 0,1,...,k — 1. This follows from ¢y, — v,
weakly, since (3], 1) = 0 for all £ = 0,...,k — 1 and for all j.

To show that 1 solves the eigenvalue equation Hvyp = Ejy, we first show, proceeding
as in the proof of Theorem that (f, (H—Ey)y)y = 0 for all f € CF(R?) with (f,1,) =0
for all £=0,1,...,k — 1. This implies that:

Proof. The iroof of the existence of a minimizer follows the same ideas as the proof of

k—1

(H — By = ) cauthe (7.99)

(=1

for appropriate coefficients ay € C. Multiplying the equation with v; and using the orthog-
onality {t;, ¢y =0 for i =0,...,k — 1 we conclude that a; =0 for all ¢ =0,...,k — 1 and
therefore that

Hypp = Exty, - (7.100)
]
It follows from the recursion sketched above to define Fy, E1, . .. only stops when it reaches

E,, = 0. Also, it is not difficult to see that the eigenvalues have finite multiplicity. Let us
sketch the proof. Suppose that Ej has infinite multiplicity, and let (¢ ;) be a orthonormal
basis for the spectral subspace of Ej,. Then, being orthonormal, the sequence 1)y, ; converges
to zero weakly in L?. Weak convergence to zero in H' can be proven via an approximation
argument, using that every element in the dual of H' can be approximated with a Schwartz
function, and that |9y ;|2 = 1. By the continuity of the potential energy, we then have:

P(r,;) >0 asj— o, (7.101)

which implies that Ejy = lim;_o e(¢r ;) = imj_o T(¢%,;) = 0, which contradicts Ej, < 0.
Therefore, Ey is in the discrete spectrum of H. Furthermore, it is not difficult to check that
there cannot be any additional eigenvalues in (—o0; 0). In fact, if E < 0 and if ¢ € L?(R?) are
such that Hy = Ev and |¢| = 1, and if j > O is such that Ey < By < --- < E; < E < Ej 4,
then (¢, 1) =0 for all £ =0,1,...,7 and:

(p, HYy = e(y) = min{e(p) | || =1 and {p,1p¢) =0for all ¢ =0,1,...,5} (7.102)

which by definitions implies that £ = E; 41

Let us now comment on the essential spectrum of H. If V is a relatively compact
perturbation of the Laplacian, we know from Weyl’s theorem that cess(H) = 0egs(—A) =
[0;0). The next theorem gives more general conditions under which this is true, that allow
in particular to include the Coulomb potential.

Theorem 7.22. Suppose that V is a Kato class potential, that is V' can be written as Vi + Vs
with Vi € L*®(R?) and Vo € LP(R?), with |Vi|w < . Here, p =2 for d <3 and p > d/2 for
d = 4. Then, V is relatively compact with respect to —A.

Thus, under the slightly more restrictive condition that the potential is Kato class,
Oess(H) = [0; 00).

To conclude the section, let us state, without proof, some important properties of eigen-
vectors of Schrodinger operators, that hold true in great generality.
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1) Uniqueness of the ground state. Under the same assumption of Theorem [7.19
the normalized minimizer 1 of the energy functional . (which by Theorem
an eigenvector of H with eigenvalues Ey = min{e(¢)) | |¢| = 1}) can be chosen (by
appropriate choice of the overall phase) to be a strictly positive function. Moreover,
up to a constant phase, ¥ is the unique normalized minimizer. This implies that the
ground state energy Fy of H, that is the smallest eigenvalue of H, is nondegenerate.

2) Elliptic regularity. Let B; < R? be an open ball and let ¥ and V be functions on B
with (—A+V )y = 0 in the sense of distributions. Then, for any ball B = R? concentric
with B; and with strictly smaller radius, we have:

(i) If d = 1, ¢ is continuously differentiable on B.
) If d =2, e LI(B) for all ¢ < c0.
(iii) If d =3, ¢ € LY(B) for all ¢ < d/(d — 2).
) Ifd > 2 and V € LP(By) for a d/2 < p < d, then 1 is Holder continuous with
exponent « in B, for all a« < 2 —d/p.
(v) If d =2 1 and V € LP(By) for a p > d, v is continuously differentiable and the
derivative is Holder continuous with exponent « in B, for all a < 1 — d/p.
(vi) Ifd = 1 and V € C*<(By) (this is the subspace of C*¥(By) of functions whose k-th

derivative is Holder continuous with exponent «) for some k£ > 0 and 0 < o < 1,
then ¢ € C*+2:2(B).

In other words, there is a gain in regularity of two derivatives between the potential and
eigenvectors of Schrodinger operators (which by definition are only in L?). Note that this
regularity results hold locally. For example, this result implies that the eigenvectors of the
hydrogen atom, with V(x) = —Z/|z|, are C* in any ball away from the original. In a ball
containing the origin, on the other hand, V' € LP for all p < 3; hence, the result above
implies that eigenvectors of the hydrogen atom are Holder continuous with exponent «, for
any a < 1.

7.4.5 Min-max principles

Theorem [7.22| gives a variational characterization of all negative eigenvalues of H. However,
it is usually difficult to use in practice, since it defines Ej, by using all the eigenvectors 1);
associated with the eigenvalues E; < Ej. To compute the eigenvalues of H, the following
min-max principles are much more practical.

We denote as above by Fy < F1 < Fy < --- < Eny < --- < 0 the eigenvalues of the
Schrédinger operator H = —A + V. If H has a finite number J of eigenvalues, we set
Eny=0foral N > J.

Theorem 7.23 (Min-max principles.). Let V' as in Theorem [7.21]

Version 1. Choose ¢o,...,¢n € HY(R?) such that V|¢;|?> € LY (R?) for all i and such that
{ps, ;) = b;5. We define the (N + 1) x (N + 1) self-adjoint matriz h = (hij)o<i,j<n bY
setting hij = {¢;, Hp;). Then, the eigenvalue problem hv = Av has (N + 1) eigenvalues
Ao < A <+ < Ay such that \; = E; foralli=0,1,...,N.

Version 2. If N < J,

En = max min{e(on) | |on]| = 1 and {pn, ;) =0, for all j =0,...,N —1} (7.103)

b0, N1
where the mazimum is taken over all orthonormal families ¢g, ..., PN_1.

Version 3. If N < J,

Ey = min max{e(d) | [¢] =1 and € span(¢o,...,on)} (7.104)

¢07-'-7 N
where the minimum is taken over all orthonormal families ¢g, ..., ¢oN.

If N = J, Version 2 and Version 8 hold true with maz-min and min-maz replaced by
maz-inf and inf-maz.
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Remark 7.24. As it will be clear from the proof, the max and the min in the above expres-
sitons are attained.

Proof. Let us assume N < J, which is the most interesting case. We begin with Version
1. Let vg,...,vn be the orthonormal eigenvectors of the matrix h. We use these eigenvec-
tors to define functions &;(z) = Zé\’:o v;(§)¢;(x) for i = 0,1,...,N. These functions are
orthonormal, since

& &y = D i)k (0Xbs, by = > Wi (G)or (i) = S (7.105)
gt J
and moreover
N
& HE)y = Y 00w (m)be, Hopm) = (vi, hvg) = 63\ - (7.106)
£,m=0
We clearly have:
Ey < e(&o) = (&, Hé0) = Ao - (7.107)
Let us now assume that F; < A; for all i < k — 1. We prove that E, < A;. To this end,
we observe that dim span(&o,...,&) = k + 1 and therefore that it must contain a function

&= Z?:o ¢;&; with €] = 1 and such that (§,¢;) =0 for all = 0,1,...,k — 1. By Theorem
we find:

k k
By <e(€) = ) el HEy = Y A < M (7.108)
i,j=1 j=0

This completes the proof of Version 1. To show Version 2, we set:

YN =, max min{e(¢n) | {¢pn,¢;) =0, forall j =0,...,N —1}. (7.109)
0y--PN—-1

Clearly, by Theorem we have:
yn = min{e(on) | [|¢n] =1 and {pn,9;) =0, for j =0,1,...,.N -1} = Exy . (7.110)

On the other hand, for an arbitrary choice of orthonormal ¢y, ..., ¢n_1 we can find a linear

combination f = Z;V:O ¢;1; such that f is normalized and orthogonal to all ¢; (because
dim span(ty,...,%n) = N + 1). Then, we have:

N

e(f) = Hf =) |eilPE; < En . (7.111)

Jj=0
Hence, vy < En. To prove Version 3, we define:

AN = %r?.ir;w max{e(®) | |¢|| = 1 and ¢ € span(do,...,on)} (7.112)

Choosing @o, .. ., ¢ to be o, ..., 1y and noticing that for ¢ = 377 c;1h; with 37 [ej|? =

1 we have
N

e(¢) ={p,Hp) = ). |c;]°E; < En (7.113)

Jj=0

we conclude that:

T < max{e(@) | 6] = 1 and ¢ € span(iio, . ., )} = B . (7.114)

On the other hand, for arbitrary ¢y, ..., ¢n, we can find f € span(dy, ..., dn) with ||f| =1
such that (f,¢;» =0 for all j =0,1,..., N — 1. This implies, from Theorem that:

En =inf{e(¢) | ||¢] = 1 and {¢,9;) =0 for all j =0,1,...,N —1} <e(f) . (7.115)

Therefore, Yy = En. n
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7.4.6 Generalized min-max principle

Let us mention a simple extension of the min-max principle, which is very useful to get
bounds on sums of eigenvalues. From Version 1 of Theorem we find in particular that:

N N N N
DME <N =Trh= )Y hj;=> (¢,). (7.116)
7=0 =0 7=0 =

for any orthonormal family ¢g, ..., ¢n. We can generalize this statement to the case where

the functions ¢; are not orthonormal. Let ¢q,...,#z be the (L + 1) functions in H*(R?)
such that 6;; = (¢;, ¢, defines a (L + 1) x (L + 1) matrix § with 0 < 6 < 1. Suppose that
Tréo = Zf:o 0;; =N+1+94, for a d e (0;1). Then, we have:

L N
De(g) =D Ej+ 00BN . (7.117)
j=0

Jj=0

To prove Eq. ([7.117)), consider first the case in which the functions are orthogonal (but not
necessarily normalized). Then, T; = 0;; = |¢;]* < 1 (from the assumption 6 < 1). Let us
reorder the indices 0, ..., L such that

0<Tr <Tp1<---<Th <1 (7.118)

Let v; = ¢;/+/T; (then v, in an orthonormal family). Then, by a telescopic rearrangement
of sums:

L L
Miele) = D) Tie(y) (7.119)
j=0 j=0
L L—1
= TLZc‘J(wj)‘F(TL—l_TL) 5(7/)])4'
Jj=0 7=0

=0
L L—1
> Tp ) Ej+ (Tpoa—To) ), Ej+...+ (To — Th)Ey
=0 =0
L
= ZTjE]
7=0
L L N
> min{ Y, TE |0<Ty <1, 3 Ty =N+ 146} = 3 B +0En .
j=0 j=0 j=0

Now, let us consider the general case. Define u, and g, to be the eigenvalues and the
corresponding eigenvectors of the matrix . We denote by G the (L + 1) x (L + 1) matrix
with the eigenvectors g, as columns. We set @, = ZJL:() 9a(j)@;. Then, we have:

(Do, Pp) = Z Ga(1)g5(5){bi, B5)

= >.9.(1)g5(j)0;
i,
= (G*QG)Q,B = 5%5#@ . (7.120)

Since 2520 Trf = N + 1+ §, we apply the result for the case of orthogonal (but not normal-
ized) functions established above. We find that:

ZEMMH Z Z%ga@M@=Z ;mn (7.121)

7=0 a=0 o,t,] 7=0

which proves Eq. (7.117)).
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8 Semiclassical approximations

8.1 Dirichlet Laplacian

In the last section we gave a variational characterization for the eigenvalues of Schrédinger
operators of the form H = —A+V. The question we want to address in this section is whether
it is possible to obtain information on the eigenvalues E; by looking at the corresponding
classical system, at least in some particular regime. To simplify the analysis, we will focus
here on a special class of potentials V', For an open bounded subset Q < R?, we will consider
the potential:

0 ifze
Va(z) = { too ifaréQ

This (mathematically not very precise) choice means that we look at the Laplace operator
on (), imposing Dirichlet boundary conditions at the boundary of 2. In other words, for
a bounded open subset @  R? we will consider the operator Ho = —A, defined on the
Hilbert space HZ(2), the closure of CP(£2) with respect to the H?-norm. The eigenvalues
have a variational characterization, similarly as the Schrédinger operators discussed in the
previous section. Defining:

Bo = int { [ [V(o)Pde | € H3@). lol = 1} (.2)

we can show (as in the proof of Theorem using also the fact that ¢; — ¢ weakly in
H'(Q) for a bounded set €2 implies also that 1); — 1 strongly in L?(£2)) that Ej is attained
by a minimizer ¢y with [t = 1, which is then a solution of Hqty = Egtbg. Recursively,
after constructing the eigenvectors vy, ..., %¥r_1, we find that:

(8.1)

By = inf{fﬂ V(@) de | o€ HY(Q). ele =1, Gout) =0, £=0,1... k1]  (83)

is attained by a normalized minimizer ¢ such that Howr = Eri. In this case, the recursion
never stops, Hg has infinitely many eigenvalues (tending to infinity) and eigenvectors. Simi-
larly as discussed in the previous section, alls eigenvalues and eigenvectors of Hg, are obtained
by this recursion. Finally, it is not difficult to see that the spectrum of Hq is purely dis-
crete: gess(Hq) = . To prove this, recall Weyl’s characterization of the essential spectrum,
Lemma[7.9] A number E € R belongs to the essential spectrum of Hy, if and only if there
exists a singular Weyl sequence (v,,) at E, that is a sequence such that 1, — 0 weakly in L2,
[nll2 =1 and |(H — E)y, |2 — 0. This last condition, together with |1, ]2 = 1, implies that
[#n| g1 < C uniformly in n. Therefore, we can extract a weakly convergent subsequence in
H', ¢, — v. Suppose that 1) # 0. Then, ||[¢|3 = lim;_oo(1), 1y, ) = lim,_oo (b, ) = 0,
which gives a contradiction. Therefore, 1) = 0.

By Theorem weak convergence in H' implies strong convergence in L? on bounded
sets. Therefore, [y, |2 — 0 as n — oo, which contradicts [[¢,,[l2 = 1. Thus, (¢,) is not a
singular Weyl sequence. This shows that the spectrum is purely discrete, i.e. it is given by
eigenvalues of finite multiplicity.

8.2 Lower bound on the sum of Dirichlet eigenvalues

Our goal in this section is to extract information about the eigenvalues E;. It turns out that
it is quite difficult to approximate the single eigenvalues F;. Instead, it is easier to obtain
information about sums of eigenvalues. Besides the mathematical interest for the question
of approximation sums of eigenvalues, this is also a relevant question in physics, since, as
we shall see later, this allows to estimate the energy of a system of many non-interacting
fermions. The first result we want to discuss is a lower bound for the sum of the first N
eigenvalues of Hq, a result due to Li-Yau and Berezin.

Theorem 8.1. Let Q c R? be open and bounded, ¢q,...,on—_1 € H}(Q2) an orthonormal
family in L*(Y). Then:

N—-1
d d 2/d _
X IveilE = en* 5 (rgmy) N el (8.4)
i=1 -
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where |Sq—1| is the area of the (d — 1)-dimensional unit sphere. In particular:

N—1
) 2L d 2/d 1+2/d|(y2/d
];)Ejz(%) d+2<|Sn71|) N Qp2/d. (8.5)
Proof. Since H{ () is the closure of C(£2) with respect to the H' norm, it is enough to
show the statement for orthonormal families ¢q,...,¢n—1 € CFP (), compactly supported
away form the boundary of Q. We extend ¢o,...,¢n_1 to functions in C°(R?), by setting
them equal to zero outside of their support. Now, we can express the H' norm of ¢; by
means of its Fourier transform. We find:

196,18 = | K2435 () P (8.6)
Hence,
N—1
> IV6518 = [ Kp(hydk ®.7)
7=0
where we set
N-1
plk) = 3 16;(R)[* . (88)
j=0
Notice that:
[ oty = . (59
Moreover, with the definition e (z) = e~*xq(z)/(27)%?, we find:
6;(k) = (bj,en) - (8.10)

Extending ¢y, ...,¢n_1 to an orthonormal basis {¢;}72, of L?(R%), we find:
6;(k) = (bj,en) - (8.11)

We conclude that, by the bathtub principle, see Appendix

N-1
> IVel3
j=0

f k2 (k) dk

> inf{szp(k) | pe LI(RY), Jp(k)dk = N and 0 < p(k) < [92/(2m)"}
_ (gd fk2x(|k\ < M)dk , (8.12)

where M > 0 is chosen so that

Q
JX(W < M)(2|7T;ddk _N (8.13)
which implies that
M = (27r)( d )1/dN1/d\Q|—1/d . (8.14)
|Sa—1]

Therefore, Eq. (8.12) yields:

N-1

Q d 1/d _
S IVeilE > gty [Kx(Ik < em () el )
Jj=0 B

d d 2/
_ 2_ 4 142/d|y|—2/d
(2r) d+2(‘5d71|) N+2/d|q)=2/d (8.15)

92



As an example, let us consider the sum S(N) = ij:_ol E; of the eigenvalues of the

operator Hg, for the simple case in which = [0; L]¢ of a cube with side length L. In this
case, eigenvectors of Hq are products of eigenvectors of the one-dimensional Laplace operator
on the interval [0; L], with Dirichlet boundary conditions. Hence, we look for solutions of:

—(z) = B(z),  with (0) = (L) = 0. (8.16)

The condition ¢(0) = 0 implies that ¢)(x) = Asin(kx) with k = v/E. The condition ¢)(L) = 0
implies that k = mm/L, for an m € N. This gives the eigenvalues

(mm)?
B = 5, (8.17)
and the eigenvector ¥,,(x) = Asin(mm/L) (for an appropriate normalization constant A),
for m € N. The energy of the product wave function ¥, .. m,)(21,...,2q) = H?=1 Ym, ()
is then given by:
2 d
T
E(m) = Iz Z m? (8.18)
j=1
for any m = (my,...,mg) € N%. Let us now fix x > 0 such that the set
K.={x=(21,...,24) eR? | |z| < wand x; = 0 for all j = 1,...,d} (8.19)

has volume N. In other words, we require that:

1 k4
alSa-1l— =N, (8:20)
or equivalently, we fix:
d \1/d
K = 2N1/d(7> (8.21)
|Sa-1]
Then, the set K, certainly contains less than N points (my,. .., mq) € N%, because every such
point can be associated uniquely with a square with unit volume (the square {(x1,...,2,) |

mj—1 < x; < m;}) contained in K, (the case with exactly N points can be excluded because
one cannot cover a ball with finitely many nonoverlapping unit cubes). Hence (remember
that we use the notation Exy_; for the N-th eigenvalue of Hq)

2 d \2/4
En_1> —r2=(2n)?(—) N¥4q-24 8.22
w1 > e = 0P (g ) NVl (8.22)
and
N—-1 N
d \2/d .
SIN) = X B> P (g ) I
Joury d—1 =1
d d 2/d
> @2n)s (o) QNI 8.23
et 5 (g) , (8.23)

in agreement with the result of Theorem A famous conjecture in mathematics, due to
George Polya, states that the bound for the N-th eigenvalue of Hq holds not only if
Q is a cube but for arbitrary open bounded Q — R%. From the lower bound in Theorem
we obtain the bound:

N-1 d d 2/d
Byvoz 2 Bz nP () e N, (8.24)
j=0

d+2 |Sd71|

which however misses Polya’s conjecture because of the factor d/(d + 2) < 1. Although
Polya’s conjecture is known to hold true for special classes of domains 2, it remains open in
its full generality.
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8.3 Asymptotic behavior of eigenvalues

For the cube © = [0; L]¢, the right hand side of Eq. (8.23) is not only a lower bound for the
sum S(N). Instead, it really capture the leading behavior of S(N), in the limit of large N.
With x as defined in Eq. (8.21]), we have:

SNy~ ) %|m|2 (8.25)

meN%:|m|<k

where |m|? = Z?:l m?, for m € N%. Defining k = m/NY4 and X\ = k/NY4 = 2(d/|Sy_1])"?,
we find

1

2
S(N) ~ %NHQ/"I —k2. (8.26)

keNd/N1/d:|k|<X

The sum on the right-hand side is a Riemann sum; as N — oo, it approaches

2 2/d
~ T a1+2/d 271 — 2_d d —2/d nr1+2/d
S(N) 5N Jk|<,\ kdk = (2m) 7152 <|5d—1|) (9] N (8.27)

up to errors of lower order in V. It turns out that the same asymptotics behavior of the sum
S(N) holds for a more general class of domains. This important result is known as Weyl’s
law. In order to state Weyl’s law, we need to introduce first the notion of boundary area.
Let Q < R? be a bounded set, 02 its boundary. We define the boundary area A(Q) of 0Q by

A(Q) = limsup %H{x € Q° | dist(z, Q) < r}| + [{z € Q] dist(z, Q%) < r}|] . (8.28)

r—0+

Theorem 8.2. Let Q = RY open, bounded and with finite boundary area A(SY). Then:
d ( d

2/d
T |Sd_1|) |Q| 2/dN1+2/d+O(N1+2/d) (829)

N—-1
S(N)= Y. E; = (2r)°
j=0

in the limit N — 0.

In fact, the error O(N1+2/d) in Eq. 1) can be estimated more precisely by:
0 < o(N'*2%) < CN(AQ)/1Q0)**(d/[Sa-1 )4 (N/|02])*/* (8.30)

for a universal constant C' > 0.

The result can be interpreted as a semiclassical estimate. The postulate of semiclassical
analysis is that every quantum state occupies (2m)? in the classical phase space. We are
interested in the total energy of the N states with the smallest possible energies. The
classical counterpart of the Laplace operator with Dirichlet boundary boundary conditions
is the classical Hamiltonian H(p,z) = p?>x(x € Q). To minimize the total energy, we fill the
phase space with z € Q and |p| < &, where k > 0 is chosen, so that

d
K
E|Sd71‘|ﬂl = (ZW)dN7 (8.31)
i.e. so that there is enough space for N quantum states (according to the postulate that

every quantum state occupy the volume (27)% in phase space). We find

_ d \NY 4dio/d
,.;_(277)('&71‘) N/ (8.32)

Hence, semiclassical analysis suggests that the total energy of the N states with smallest
energy is given by:

1 d ( d )2/dN1+2/d (533

2 2
— p“dpdxr = (27
<27r)dfm{|,,|@} e e \sny)  Tape
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which is exactly the statement of Theorem [8:2]

The goal of the rest of this section consists in proving Theorem Since a lower bound
for S(N) has already been established in Theorem (in fact, the lower bound holds for all
N, not only in the limit N — o0), we need only to prove an upper bound for S(N), coinciding
to leading order with the right-hand side of Eq. . To find such an upper bound, we
will use coherent states; this is not surprising, since we pointed out above that Weyl’s law is
a semiclassical estimate, and coherent states are as close as possible to classical states.

8.4 Upper bound on the sum of Dirichlet eigenvalues

8.4.1 Coherent states

In the present setting, coherent states are wave functions of the form
Fry(x) = ™Gz —y) (8.34)

where G is centered Gaussian function, y, k € R%. Since |F}, ,(z)| = G(z —y) and |ﬁky(p)| =
é(p — k), the coherent state F} , is localized around y in position space and it is localized
around k in momentum space. In the sequel, we will not need to assume that G is a Gaussian.
We will only assume that G € L?(R?) with G(—z) = G(z) and |G|z = 1 (so that [Fj ]2 = 1
for all k,y € R?).

For an arbitrary ¢ € L?(R%), we define the coherent state transform
Tk = Pty = [Fy@ve)ds = | Gy, (539
R
Since by Cauchy-Schwarz
J|G(I*y)ll¢($)|d$< IGI ] (8.36)

the transform J(k, y) is the Fourier transform of an L!-function; hence J(k, y) is bounded.
We denote by 7, the orthogonal projection onto F} 4, so that

(Thy ) (@) = Fhooy(2)(Fly, ) = Fry ()0 (k. y) - (8.37)

The integral kernel of 7y, is given by s (2; 2) = Fr o () Fry(2).

Lemma 8.3. Let G € L*(RY) with G(—z) = G(z) and |G|2 = 1. Let ¢ € L*(R?). Then

@M(/@yn?dk = (W16 W)

1 ~ ~ ~
o [ WP = (0 +1GR) 0
1 ~ ~
ot | BBy = 1wl = 1013 (8.38)
Moreover,
Jhoy) = e [ Do) Gla—yda. (8.39)

Proof. Set H(x,y) = |1 (z)|*|G(x — y)|?. By Fubini:

[ [ # sy = [ [ [ 1.y]as = 1ol <o (8.40)

Hence, the function y — § H(z,y)dz = (|¢|* = |G|?)(y) is in L'(R?) and thus it is finite for
a.e. y € R%. This means that the function z — ¥ (2)G(z — y) is in L2(RY) for a.e. y € R4
By Cauchy-Schwarz, this function is also in L'(R%), for all y € R, 9(k,y)/(2m)%? is the
Fourier transform of this function. Hence, by Plancherel,

@ f [k, ) [Pdk = J|¢(x)|2|G(x —y)]2dz = (|G? = | (v) (8.41)
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and thus, by Fubini,

1 ~
a7 | o] [ 100 R] = [0« 6Py = [ ds [ ayl@PieE - - i
(8.42)
The second formula can be proven similarly, Finally, we show (8.39). By Plancherel,

Dk, y) = (Fry ) = (Frys ) - (8.43)
Since Fy,(q) = e=*G(q — k), this proves (8.39). [
Remark 8.4. The relation:
2 1 f ” 2 1 J
= = — F; F 44
| @n)? [ (k,y)|*dkdy @n)d W, iy X Fie s ¥)dkdy (8.44)

expresses the completeness of the coherent states F j, i.e.
1
W |Fk,y><Fk7y‘ dkdy = ]].LQ(]Rd) . (845)

8.4.2 Proof of Theorem [8.2]

We are now ready to prove the main result of this section, Theorem [8:2}

Proof. (of Theorem ) For R > 0, we consider the domain Q(R) = {z € Q | dist(z, Q°) >
R}. By definition of the boundary area A(€2), we have |QA(R)| > |Q] — 4RA(Q), for R > 0
small enough.

Let now M (k,y) be a function on phase space, with 0 < M (k,y) < 1 for all k,y, with
supp M (k,-) © Q(R) for all k € R?, and with

@ Jdk‘dy M(k,y) =N +e¢ (8.46)

for an arbitrary e > 0. We construct the operator K on L?(R?) by defining its integral kernel

K(z,2) = ﬁ JM(k', Y7y (2, 2)dkdy = ﬁ JM(hy)Fky(x)Fky(z)dkdy . (8.47)

Here Fj, , are the coherent states defined by
Fiy(x) = ™Gz —y) (8.48)

where Gr(z) = R™¥2G(z/R) and G e L?(R?) is a non-negative smooth function with

G(z) = G(-x), |G|z = 1 and with suppG < B;(0). This guarantees that Gg is non-

negative, smooth, Gr(—xz) = Ggr(x), |Gr|2 =1 for all R > 0 and that supp Gr < Bg(0).
For any f e L%(RY),

0 UKD < g | MED S m bl = s [ Mg Fr) Py
< Gy | 1Tk by = 1113 (3.49)

where we used Lemma [8:3] Hence, 0 < K < 1. Furthermore, we find
deK(x,x) _Nie. (8.50)
In particular, this implies that K has discrete spectrum. We denote by:

)\12)\22)\32... (851)
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the eigenvalues of K, and by fi, fa, ... the corresponding normalized eigenvectors. Note that
by the restriction on the support of M and of G, supp f; < €2, for all j. Note moreover, that
Zj Aj = N + €. Hence, we can find an integer L large enough with

L
DA >N (8.52)
j=1

We set K = ZL:1 il fi)Xfjl. Then K — Ky, = 0. Now we apply the generalized min-max

principle, Eq. (7.117), with ¢; = )\;/ij, 7 =1,...,L. We are allowed to do so, because
0;; = {¢i,dj) = Ai0;; and therefore 0 < 6 <1 and Tr6 = ZJ-Lzl Aj > N. We conclude that:

N—-1 L L
SN o< Yew) =Y )\jf\ij(x)Fdx
7=0 Jj=1 7j=1
< Z /\j J |ij(f£)|2 dx = JV%VZK(I7Z) |z:z dx
j=1
1
= WJdkdyM(k,y)fdx|VFk,y(x)|2. (8.53)
With:
VFy,(2) = ike™*Gr(z —y) + e*"VGr(z —y) , (8.54)

and noticing that

de [Gr@ = 9)VCar(z —y) + Cr(z — y)VCnE —g)] = fdwaR(x — =0, (855)

we obtain:
N—-1 1
Y E; < @n)d JkQM(k,y) dkdy + (N + ¢)|VGr|?
j=0
1
< @n)e JkQM(k:,y) dkdy + CR™%(N +¢) , (8.56)
™

because, by definition of Ggr, |[VGg|3 = R7?|VG|3 = CR™2.
This bounds hold for all choices of M with 0 < M (k,y) < 1 for all k, y with supp M (k,-) c
Q(R) for all k € R3, and with

ﬁ Jdkdy Mk,y) = N + & (8.57)

for an arbitrary € > 0. To minimize the average of k2, we choose
M (k,y) = x(y € UR)X(k| < ) (8.58)

where we fix K > 0 such that

1 1 & o Si1| 4
M = Q =N+e. .
2n)d Jdkd!f (k) = Gl M= +e (8.59)
Hence, & = (21)(N + )Y4(d/|Sq_1])"/4|Q2(R)|~/4. With this choice of M, we compute
1 JkQM(k Vdkdy — —— (RIS |’“””d+2
(2m)? N O T i
~ d /]Sq_1|\~2/1
- 2 1+2/d 2/d
(22N -+ &) FHRR) 2( : ) . (8.60)

Since [Q(R)| = |Q2] —4RA(Q), we can choose R = N, for a sufficiently small a > 0. Letting
€ — 0, we conclude that

N-1

_ d /|Sq_1]|\~%/4
< 2 n7142/d|(y|—2/d 142/d .
jéo E; < (2m)*N | ppn 2( d ) +o(N ) (8.61)
which implies the theorem. n
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8.5 General Schrodinger operators

To conclude, let us briefly discuss the extension of the previous result for Schrodinger opera-
tors of the form H = —A +V on L%(R%). Semiclassical analysis also give predictions for the
sum of negative eigenvalues of such Hamiltonians, for potentials V' decaying at infinity, corre-
sponding to relatively compact perturbations of the Laplacian. By Weyl’s theorem, the essen-
tial spectrum of the Hamiltonian is not affected by the potential: gess(H) = o(—A) = [0, 00).
However, the negative part of the potential V_(z) = —min{V (z), 0} might generate negative
eigenvalues.

Arguing semiclassically, that is associating a volume (27)? in phase space for every quan-
tum state, we can predict that the sum of all negative eigenvalues of H can be approximated
by:

SE = (1 = V- (@)x(Ip* = V- ()] < 0)dadp

)
= - dz V_(I)J dp
(2m) f L|<v1/2(x (2m) Ipl<V2 ()

- Gl gg g [ aeveere
D 1)d ;(|5d 12|) devf(x)“dﬂ- (8.62)

One can prove that this prediction is indeed correct in the semiclassical limit. In fact, in
analogy with the Dirichlet Laplacian, we expect the prediction of semiclassical analysis to
become more accurate after summming a large number of eigenvalues. Here, the number of
negative eigenvalues is fixed by the choice of the potential V. In order to increase the number
of negative eigenvalues, we perform the semiclassical limit: that is, instead of considering
the Hamiltonian H, we consider:

Hp=-RA+V, §h>0. (8.63)

The parameter h plays the role of Planck constant in Physics. We shall be interested in the
limit & — 07T; in this limit, the number of negative eigenvalues of Hy, diverges. This is clear
after rewriting Hy, = h?(—A + h=2V (z)), since the negative part of h=2V becomes deeper in
the semiclassical limit i — 0%. Semiclassical analysis allows to prove that, as A — 07:

7 1 2|Sd 1| 1+d/2 d
ZE dd(d+2h Jd V_(x) +o(h™%) . (8.64)

Also, in analogy with the Li-Yau inequality, Theorem [8.1] one can prove that the semiclas-

sical prediction gives a lower bound to the sum of the negative eigenvalues, for the initial
Schrodinger operator H. This is encoded by the Lieb- Thirring inequality:

Y E; = Cur Jdm V()2 (8.65)
J

1 2|Sq_1] 5) holds with Cip

for a suitable constant Cp 1t < Cy., where Cy. is the constant predicted by the semiclassical
approximation, Cs. = — G A+ - Proving that the inequality Eq.

replaced by Cy. is a longstanding open problem in mathematical physics.

9 Many-body quantum mechanics

9.1 Bosons and fermions

In this Section we will consider quantum mechanical models for many particle systems. The
wave function for a system of N quantum particles in R? is described by a wave function
YN (z1,...,zn) € L2(RV), where ; corresponds to the location of the i-th particle. More
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generally, one might want to include the presence of extra degrees of freedom for each par-
ticle, labelled by o; = 1,..., M; in that case, the wave function of the system is denote by
N (21, ... 2z0r) € L2(RW; CMN). For instance, o; might denote the spin of the particle: in
that case, M = 2. The scalar product in the presence of this extra degree of freedom is
defined as:

Wnon)y = ), Jdih cdzy YN (21, 2NN (215 2N)

sz’l...dZNl/)N(Zl,...,ZN)d)N(Zl,...,ZN) . (9.1)

We shall consider identical particles. These correspond to wave functions satisfying the
property:

[N (e 2z )| = [Nz zie )] (9.2)
That is, the probability density for finding the particles in a given configuration does not
change is one exchanges two particles. It turns out that in Nature there exists only two type
of particles: bosons and fermions. Bosonic wave functions are symmetric with respect to
exchange of particles:

Un( iz ) =Nz i) (9.3)
We shall denote by L2 (RV:CMN) the restriction of L2(RY;CMN) to functions such that

sym
Eq. (9.3)) holds true. Example of bosonic particles are photons, the elementary constituents
of light. Instead, fermions correspond to wave functions that are antisymmetric with respect

to exchange of particles:

UN(-ezizjo) = =N (e 2z ) (9.4)

We shall denote by L2 . (R; CM¥) the restriction of L2(RV; CMN) to functions such that
Eq. holds. Example of fermionic particles are electrons, neutrons and protons, which
form all elements in Nature. The antisymmetry of the wave function immediately implies
Pauli exclusion principle: a fermionic wave function is vanishing whenever z; = x;, for any
1 = j. The probability density for finding two fermionic particles at the same location is
Zero.

As a matter of fact, there is a deep connection between the possible values of the spin of
the particle and its bosonic or fermionic type: the spin-statistics theorem states that particles
with an even number of spin states are fermions, while particles with an odd number of spin
states are bosons. In the following, we shall neglect this fact, and keep the number of spin
states arbitrary for both bosons and fermions. Also, for simplicity we shall often set M = 1.

A simple example of bosonic wave function ¥y € Lgym is given by:

Un(21,-..2n) = f(21) - flzn) (9.5)
for some f e L?. Instead, the simplest example of fermionic wave function is provided by a
Slater determinant, defined as follows. Let f;(z;), ¢ =1,..., N be N orthonormal functions

in L2(R4;CM). The N-particle wave function

1
Yn(z1,...,2N) = ﬁdet(fi(zj))é\,szl (9.6)
is antisymmetric and normalized. It is called the Slater determinant associated to f1,..., fn.
By Leibnitz formula, Eq. can be rewritten as:
1
Yn(21,...,28) = NGl Z sen(7) frr) (1) -+ frvy(TN) (9.7)

TESN

where Sy is the set of all permutations 7 of {1,..., N}, with sign sgn(7) = +1. Notice
that the Slater determinant vanishes if f; = f; for some 7 # j, which is another instance
of Pauli principle. If (f;)?2, form a basis of L2, it is not difficult to see that a basis for
L2 (RN CNM) is given by the set of all Slater determinants that can be constructed
choosing N functions among (f;)% .
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9.2 Reduced density matrices

Given the wave function ¢ of N identical particles, the k-particle reduced density matrix
'ygjz is an operator on L?(R) with integral kernel:

k
W sy, ) (9.8)

N
= (k) Jd$k+1-~-d$N¢N($17--~795k733k+17--~7$N)wN(y1’-~-ayk,1‘k+17~-~7$N) .

Equivalently, one writes:
N
T = (k,>Trk+1,...,N|1/)N><¢N : (9.9)

Notice that TrLz(de)'yfﬁg = (¥). Density matrices are interesting because they allow to
compute averages of k-particle observables. For instance, consider:

Ony=>0",  0;,=19"D@0e1°"", (9.10)

with O acting on L?(R¢). Then:
(YN, ONYN) = Z@U\u Oin)

= N{@n,O1n)
= TI‘L2(Rd)O’Y1(¢;1A),- (9.11)

In general, the k-particle density matrix allows to compute the average of observables of the
type Z{il ik} O(iy,...i,)- In particular, let us consider the many-body Hamiltonian,

Hy = Zhi + Z Vii (9.12)
% 1<j

with Vj; = V(z; — ;). One has:

N
N, Hyvypny = Tr h’Yfplji + (2><¢NaV12'¢N>
= Trhl) + TVl . (9.13)

Therefore, the many-body ground state energy is completely specified by 7 and v(?). Tt
is therefore important to know the mathematical properties of the density matrices. Being
partial traces of a nonnegative operator, '71(;2 > 0. The next lemma will provide an important

upper bound for the reduced one-particle density matrix of identical fermions.

Lemma 9.1. Let ¥ € L2 ,.(R¥). Then:

ante

0< ’71(1)]\)] < ]le(Rd) . (914)

Remark 9.2. Being a trace class operator, ng\)[ can be approximated by finite rank operators.

That is, fyl(;jg = Z;il Nl £ fi| with {f;} a ONB of L*(R?). The bounds in Eq. imply
that 0 < \; < 1.

Proof. We shall use a Fock space formalism. We define the fermionic Fock space as:

F=Co@LL;R™). (9.15)

That is, an element of F has the form o = (O M ™) ) with (™ e L2 (R™).
The space F becomes a Hilbert space if endowed with the standard scalar product

Wy oyr = D, W™, 0™ 2 gany . (9.16)

n=0
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Given f € L?(R%), we define the creation and annihilation operators a*(f) and a(f) as:

(@)™ (@, zm) = \/(n—i—I)def(m)w("H)(m,:rl,...,xn) 9.17)
(a*(F)) ™ (21, .. 2,) = \;ﬁji(—l)jf(fﬂj)w("_l)(xl,--~790j—1,37j+1,---wn)-

It is not difficult to see that a*(f) = a(f)*. Physically, the operator a(f) destroys a fermion
with wave function f, while the operator a*(f) creates a fermion with wave function f. Let
{A, B} be the anticommutator of the operators A, B: {A, B} = AB + BA. It is a simple
algebraic exercise to check that:

{a(f),a*(9)} = {f@r2@a)lr,  A{a(f),alg)} = {a*(f),a™(9)} = 0. (9.18)

The above relations are called the canonical anticommutation relations (CAR). An important
consequence of the CAR is the boundedness of the fermionic operators:

@oa*(Ha(Nvy = IFIEIIF — @, alfa ()

< IfI3Iel% - (9.19)
We used that (¢, a(f)a*(f)) = |a*(f)¥|? = 0. As a consequence,
Ja(H) = sup O < 1. (9.20)

This bound easily implies the desired statement for the one-particle density matrix. Let
¥ € F be an N-particle vector in the Fock space: ¥ = (0,0,...,0,4(™) 0,...,0,...), with
V) = ¢n a normalized fermionic wave function. A simple computation shows that:

G, a* (falg)yy = (alFv) ™Y, (alg)p) VD) = (g, Framay - (9.21)

Therefore:

AW f = @ a*(HalHvy < |F13 (9.22)
which implies that %(pl) < 1. ]

Remark 9.3. The above upper bound is not true for bosons: there, 71(/)1) < N1. This suggests

that bosonic one-particle density matrices might have large eigenvalues. One can check that
for factorized states the reduced one-particle density matrix has one eigenvalue equal to N.

To conclude, as an example let us compute the reduced one-particle density matrix of the
simplest fermionic wave functions for N fermions, namely Slater determinants. Consider:

Y = V%;sgnmfm)(xl) o Fay (@) (9.23)

with {f;} orthonormal. A simple computation shows:

N
W= SEXA (9.24)
i=1

That is, ’yfbl) is a rank—N orthogonal projector: 71(;) = 71(;)* = 71(;)2, Trfyz(pl) = N. In this

case, the eigenvalues of the density matrix are either 0 or 1.

9.3 Atoms and molecules

In the following, we shall focus on a specific model in quantum mechanics, of great relevance
for physics and chemistry. The model describes a system of N fermions (electrons) interacting
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with K fixed nuclei. For K = 1, this model describes an atom with N electrons, for K > 1
it describes a molecule. The Hamiltonian is:

N K

1
Hux(Z,B) = gA sz TR e

1=17=1 1<j=1

Z:Z;

_ 2 (9.25)
e

i<j=1

on L?(R3N;CMN). Let us discuss the various terms. The first term describes the kinetic
energy of the N particles; A; is the Laplacian acting on the i-th particle,

(Ale)(Zla7ZN):Am1wN(Zlvva)v 'L:]va (926)

The second term takes into account the interaction between the electrons, with positions x;,
and the nuclei, located at R;. Units are chosen so that the charge of the electron is —1, and
the charge of the nuclei is Z; € N. The sign of the Coulomb potential shows that the energy
decreases when the particles and the nuclei are close: the interaction is attractive. The third
term describes the electrostatic interaction among the electrons: the sign of the Coulomb
potential shows that the energy increases when two electrons are close: the interaction is
repulsive. Finally, the last term takes into account the Coulomb repulsion of the nuclei.
Notice that z; is a multiplication operator, while R; is a fixed vector in R3: that is, the
nuclei are treated as fixed in space. This is motivated by the fact that that, physically, the
masses of the nuclei are much larger than the masses of the electrons (chosen to be equal
to 1/2 in our units). Later, we shall minimize over the positions of the nuclei, to find the
optimal energy of the system.

At zero temperature, the state of the system coincides with the ground state of the
Hamiltonian Hy g (Z, R). Since we are interested in describing a system of N electrons, and
since electrons are fermions, we shall consider the fermionic ground state energy:

Exk(Z,R) = inf <¢N»HN k(Z, R)Yn) (9.27)

WNHz 1

These are the typical questions we shall study in the following.

1. Is the system stable? That is, En x(Z, R) > —0? If so, this is called stability of matter
of the first kind. Stability is a purely quantum mechanical phenomenon: it is false in classical
mechanics. We have seen that stability holds for N =1, K = 1.

2. From experience, we know that the energy of a physical system scales linearly with the
number of constituents. If not, this would imply a huge release or absorption of energy as
two systems are merged together. Suppose for instance that Ey x(Z,R) ~ —C(N + K)2.
Then,

Eaonox = —4C(N + K)? « 2En i . (9.28)

This means that it would be energetically much more convenient to merge together two sys-
tems composed by N particles and K nuclei, which is not what we observe. This gain is
incompatible with the observation that matter is extensive (doubling the number of parti-
cles of a physical system corresponds to a macroscopic variation of the volume the system
occupies). We say that stability of matter of the second kind occurs if:

Enk(Z,R)> -C(Z,R)(N +K) . (9.29)

Of course, stability of matter of the second kind implies stability of matter of the first kind.
Does stability of matter of the second kind occurs for the model in Eq. (9.25))?

3. In order for an atom or a molecule to be stable, the ionization energy to remove an electron
must be positive. That is, if Eni1,m < En,um: it is energetically more convenient for the
system to attract one more electron. Under which conditions the ionization energy is posi-
tive? We know from experience that there are no atoms with N > Z + 2. This is intuitively
clear: the ionization energy will be zero, when the total charge of the electrons compensates
the total charge of the nucleus, so that the atoms looks neutral at large distances. Can one
prove this mathematically?
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4. As N increases, the model becomes quickly intractable from an analytic point of view.
Can we say anything quantitative about, e.g., the ground state energy of the system for N
large?

In order to understand these questions, we shall first consider them in a simplified theory,
the Thomas-Fermi model. Later, we shall discuss the rigorous connection between Thomas-
Fermi theory and the original many-body problem.

9.4 Thomas-Fermi theory

Thomas-Fermi (TF) theory is an effective theory for many-body quantum mechanics, which
takes as only input the density of the quantum system, defined as:

z) = Nfdzz...dzN [Un (2, 22, ..., 2n)|2 (9.30)

where 9 is the many-body wave function of the system. Clearly, p > 0, §dz p(z) = N. The
quantity p(z)/N describes the probability density for finding a particle at z = (z,0). Any
wave function v determines uniquely a density p; clearly, the converse does not hold.

TF theory is much easier to study than the full many-body problem, due to the fact
that it depends on much less degrees of freedom (the density is a function on R3, while the
wave function is a function on R3Y). Later, we will discuss the rigorous validity of this
approximation, in the limit in which N, Z — co.

The main approximation introduced in TF theory is the replacement of the kinetic energy
of the system with a functional of p. In order to understand this approximation, let us first
discuss a simple example.

9.4.1 The free Fermi gas

Consider a system of N spinless, noninteracting particles confined in a cubic box A, of side
1, with periodic boundary conditions: A = T2, with T? the unit torus in three dimensions.
Let us first start with N = 1. The Hamiltonian is H = —A, on L?*(T?). The eigenfunctions
of the Hamiltonian are given by plane waves:

Hf, = |p|2fp , fplz) = e~ pE (271)23 . (9.31)

The vector p is called the momentum of the particle; the constraint p € (27)Z3 is due
to the requirement of periodic boundary conditions. The energy of the quantum particle
with momentum p is [p|>. Consider now a system of N > 1 particles. The Hamiltonian
is Hy = Z;\le —A;. Clearly, if (fp,) are eigenstates of the Laplacian, then their product
fp1 -+ fpy 15 an eigenstate of Hy with energy Zivzl |pi|?. Since we are interested in fermionic
eigenstates, we shall consider antisymmetric combinations of products of plane waves, that
is Slater determinants:

ngn pr(l) (1) - Spain) (zn) - (9.32)

Notice that as soon as p; = p; for ¢ # j, the Slater determinant vanishes (Pauli principle).
The fermionic ground state of H is given by the Slater determinant with the smallest energy.
To find such state, we have to minimize the quantity Zfil |pi|? under the constraints that
p; # p; for i # j, and p; € (27)Z3. The solution to this problem is provided by “filling the
Fermi ball”: one considers the N momenta p; with smallest modulus. In general, one has
that |p| < pr, where the Fermi momentum pg scales as pp ~ ¢N'/? for some constant ¢ > 0.
Notice that in general not all states with momenta such that |p| < pr will be occupied: the
Fermi ball might be only partially filled, and the ground state might be degenerate.

Suppose, for the sake of simplicity, that the number of particles IV is chosen so that the
Fermi ball is completely filled. The ground state energy of the system is:

Byv= Y bP=N Y b (9.33)

pe(2n)Z3 pe(2n)Z?
lpl<eN'/? lp|<eN'/®
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Changing variable, one has:

1
Ey=N'"i ) ol (9.34)
pe %7323
lpl<c

As N — o0, the sum converges to an integral. One has:

wlen

By = N f dplp2 + o(N3) = ONS + o(N?) . (9.35)
[pl<e

Thus, the ground state energy of the system, which is purely kinetic, scales as N%3. More
generally, in d-dimensions one would find N 1+3. This asymptotic behavior is in agreement
with the Weyl law for the sum of the first N eigenvalues of the Dirichlet Laplacian, recall
Theorem In the present case, however, the domain €2 has no boundary, hence Theorem
does not apply directly. One can actually show that the constant C is equal to the
constant appearing in the Weyl asymptotics. In the present example, the density p(z)
associated to the ground state is constant: p(x) = p = N. Thus, the kinetic energy of the
confined system scales as p®3. This connection between kinetic energy and density turns out
to be much more general, and it plays a crucial role in defining the Thomas-Fermi energy
functional.

9.4.2 The Thomas-Fermi energy functional

In TF theory, the energy of the system is determined by the electron density via the following
functional (we omit the spin of the system for simplicity):

Exe(p) = exe [ dop(o) — [de V(o) + 5 [anay B o (030)
r—y

where V(x) is the electrostatic potential generated by the K fixed nuclei, and U is the

electrostatic repulsion of the nuclei:

K
AV
U= —d 9.37
ZW}H 2 R (37

i<j=1

The constant cry is positive, and later it will be suitably chosen, in order to connect with
the original many-body problem. The following discussion will only use that cpg > 0.
The domain of the TF functional is given by the set of allowed densities:

Fn={p:R*>R|p(x) =0, [pl =N, pe L’R*)}. (9.38)

As we shall prove later, the TF functional is well-defined on this domain. The TF ground
state energy is:
EXY = inf Err(p) . (9.39)

PEFN

Before discussing the mathematical properties of the functional, let us discuss its physical
origin. The first term in Eq. takes into account the kinetic energy of the system. As
we have seem for a homogeneous electron gas, Section the kinetic energy of the system
grows as p°/3. For a general system, one cannot expect the density p(x) associated to the
ground state to be constant. Nevertheless, in general it will vary on a scale that is much
smaller that the mean interparticle distance; to approximate the ground state, one fills a
“local” Fermi ball, with radius p(x)'/3, and integrates over space. This yields the Sp(x)s/ 3
term in the TF energy functional. This approximation of the kinetic energy turns out to be
rigorously justified, as we shall discuss later with the Lieb-Thirring kinetic energy inequality.

The second term describes the electrostatic interaction between the electrons and the
nuclei. In the full many-body problem, this is given by:

W, Z Z R (9.40)

i=1j= 1
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We have:

N K 1
<¢N722 ¢N> - > >z f codry [N (@, an) P
i=1j= 1 i=1j5=1 |J?,L RJ|
K
, 1
; f day [N (1, o) R
- f da p(x)V () | (9.41)

where in the second step we used the (anti)symmetry of the wave function. The right-hand
side reproduces exactly the second term in the TF energy functional: hence, no approxima-
tion is made here. Consider now the third term. This describes the electrostatic repulsion of
the electrons: it appears as a classical electrostatic energy, generated by the charge density
p(z). In the full many-body problem, this terms corresponds to:

N

W,y )] #ww : (9.42)

i<j=1 |z — 4

Consider the electrons as classical point particles, with positions x;; treat them as indepen-
dent, identically distributed random variables, with probability distributions p(z)/N. The
law of the large numbers implies:

%271 :de% LI (9.43)

i e — |z; —

Under this approximation, we replace Eq. (9.42)) by:

N
1
Wy, 2 ¥ = <¢N,
i<32i1 |xi7xj| ; |:I"27xj|

1 N
~ §<"/1N7 Dlw(@)yny, (9.44)

i=1
with w(z) = (p*|-|7!)(x). The big conceptual simplification here is that we replaced a sum

of two-body operators by a sum of one-body operators, exploiting an averaging principle.
Then, we can repeat the computation in Eq. (9.41). We have:

N

3, D, wlai)u) = 5 [ dudyp@)p(e) =

b
i=1 |z — |

(9.45)

which is precisely the third term appearing in the TF energy functional. Finally, the fourth
term appearing in the TF functional is equal to the corresponding term appearing in the full
many-body problem, hence no further approximation is introduced at this point.

The mathematical foundations of TF theory have been developed by Lieb and Simon
in the seventies, see [2] for a review, fifty years after the introduction of the functional by
Thomas and Fermi. It is a milestone in mathematical physics; its development played a
crucial role in understanding the problem of stability of matter for large quantum systems.
Here we shall discuss the mathematics of the TF energy functional, and in particular how
to solve the problems 1.-4. spelled out in Section [0.3] within the framework of TF theory.
Later, we will show how the TF approximation can be rigorously justified starting from the
original many-body problem.

Let us now prove that the TF energy functional is well-defined on its domain Fy. The
finiteness of the first term in Eq. (9.36)) follows from p € L%3. Consider the second term.
We rewrite it as:

de p(x)V(z) = fdx p(x)Vo(x) + de p(x)Vs (), (9.46)
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where:
K K
Z; Z;
j= j=

Consider the first term. By Holder inequality, we have:

x(lz — R;| <1)

[ oty METE < g ML= (9.48)

5/2

which is finite, thanks to the fact that p € L%3. The second term can be estimated immedi-
ately, using that:

x(|z — Rj| > 1)
d 4 £ K =N. 9.49
[ aroe =2 <, (9.49)
All together:
jmmmwm<022mwrwmm» (9.50)
j=1

Finally, consider the third term in Eq. (9.36). This will be estimated using the Hardy-
Littlewood-Sobolev inequality. Let f € LP(R?) and h € L"(R?). Then, for 1% +14 % =2

[ oyt 5] < COLd DT LlAL (951)

|z —y[*
See [3] for a proof. To apply this inequality to the TF functional, we choose A = 1, d = 3,
and f = h = p. Choosing p = r, one has p = 6/5; hence:

1 1
D(p.p) = 5 [ dady pla)ol) = < Clil s (95
The right-hand side is finite, since by interpolation:

Iolless < ol lelss" (9.53)

with A\ = 7/12. This shows that Erg is well defined on Fy.

9.4.3 Existence and uniqueness of the minimizer in Dy

In this section we shall start the study of the variational problem associated to the TF
functional. Before starting, let us comment about the fact that in general one does not
expect the minimizer to exists for all values of N. In fact, one expects the system to be able
to bind a finite number of electrons, dependent on the total nuclear charge Zio4 = ZJK=1 Zj.
This is due to the fact that, for N = Z;, the total charge of the electrons is equal to the
total charge of the nuclei. Hence, at large distances, the system will look charge neutral, and
will not be able to attract any further electron. This is confirmed by the fact that in nature
one does not observe stable atoms with N > Z,¢ + 2.

Mathematically, one does not expect the minimizer to exists in Fp, for any N. Calling
p* the minimizer, it might happen that:

de p¥(x) < N, (9.54)

which means that p* ¢ Fpy. Therefore, in order to avoid this problem for the moment, we
will consider the functional on a larger domain,

Dy = {p eL'nL?|p=0, Jdmp(m) < N} . (9.55)
This new space allows to take into account the “loss” of electrons at infinity. We will first
prove the existence and uniqueness of the minimizer in this domain, and then later we will

prove that, for suitable values of IV, the minimizer actually belongs to Fy (particles are not
lost at infinity).
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Theorem 9.4 (Existence of minimizers in Dy.). There exists px € Dy such that the follow-
ng 1s true:
inf gTF( ) gTF(P*) . (956)
pEDN
The proof will be based on the following auxiliary result.

Lemma 9.5. Let p1, p2 in Dy, and p; — p2 weakly in L? for all p € (1,5/3]. Then:
Jlim D(p1,p;) = Dlpr,p2) , Dlpr,pz) < D(p1,p1)"*D(pa, p2)'/* . (9.57)

Proof. (of Lemma [9.5) Let us prove the first property. To this end, we rewrite:

D(pr.py) = 5 | dudyon )y (2) s = [ ey (@)1 (2) (9.59)

[z —y
where f(x) = (1/2)(p1 * | -|71)(x). We decompose the function f as f = f- + f-, where:

xr — x—y|>1
J~dyp1 x(lz -yl <1) , J‘dy x(lz—yl>1) (9.59)
|z — vy lv —y

Consider f.. By Holder inequality,

|<”‘ <o (9.60)

X
I f<lloo < le||5/3H ( | ‘5/2

and: )
—yl <

It = | dedy pr () XTI S 1)
|z —y|

Therefore, by interpolation f- € LP(R3) for all p € [1,0). Hence, by weak convergence:

= Clpfs < . (9.61)

i [ depyo)f<(2) = [ dopulo)fo(o) (9.62)

Consider now fx (z). By Young’s inequality for convolutions,

1f=1p < llpallq ALLE:QM (9.63)

with % = % + % -1< % % Therefore, p > 3. Using that L? is equal to the dual of L’

with p’ € (1,3/2), by weak convergence:

ti [ de gy ()12 (0) = [ depu(a) - (@) (9.64)

J—®0

This together with Eq. (9.62) proves the first claim in Eq. (9.57)). Consider now the second
claim. To prove it, we proceed as follows. Let h(z) = Ce |, and let K(z) = (h = h)(x).
Notice that K is a radial function: K(z) = K(|x|). Let us choose the constant C' such that:

f T K@ = % . (9.65)
0

In particular, by a change of variables:

1 Q0
= dt K (tlz —yl) . 9.66
il U (9.66)
We can further rewrite this as:
1 0
— = J dtt?’fdz hi(x — 2)h(y — 2) , hi(x — z) = h(t(x — 2)) . (9.67)
2|z —y| 0
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Therefore, using this decomposition of the Coulomb potential:
Q0
Diprpe) = [ dodymr(@paty) | dte® [ dehuto =ty - 2)
0

LOC dtt? fdz (p1 # he)(2)(p2 = he)(2) (9.68)

where the exchange of integrations is allowed by Fubini’s theorem. By Cauchy-Schwarz
inequality:

1/2
D(p1,p2) < J dtt3fdz (p1 * he)? f dtt?’sz (92 * he)? ))
= D(p17 p1)1/2D(p27 p2)1/2 . (969>
This concludes the proof of the second of Eq. (9.57)), and of the Lemma. L

We are now ready to prove Theorem [9.4]

Proof. Let p; be a minimizing sequence in Dy . The bounds used to prove the wellposedness
of the TF functional on Fy easily imply that:
5/3
Err(ps) = allp; H5/3 bN . (9.70)

Therefore, using that |Erp(p;)| < C (which follows from the finiteness of the j — 0o limit),
the above estimate allows to prove an a priori bound on |p;l|5/3:

lpills/s < K, (9.71)

for some constant K independent of j. Since [|p;[1 < IV for all j, by interpolation we get:
lbily<C,  Wpell,5/3]. (9.72)
By Banach-Alaoglu theorem, we know that, up to the extraction of a subsequence, p; — px
weakly in L?, for p € (1,5/3] (one can actually prove that the limit is independent of p).

Also, one can easily check that p, € Dy. Let us first prove that p, > 0. Suppose it is false.
Then, there exists a bounded set A — R3 such that:

de ps(2)xa(z) <0. (9.73)

However, since by weak convergence {dz py(z)xa(z) = limj_, § dz pj(x)xa(x), and p; = 0,
Eq. (9.73) would imply a contradiction. Thus, py > 0. In a similar way, one can prove that
lp«lli < N. Suppose it is false. Then, there exists a bounded set A such that:

Jd:r p«(2)xa(z) > N . (9.74)

Repeating the same argument as before, this implies a contradiction. Thus, p, € Dy. To
prove the claim (9.56)), we shall show that:

Err(ps) < Evp . (9.75)

Consider the kinetic energy contribution. By the lower semicontinuity of norms, one gets:
timnt ;] > s lss (9.76)
Consider now the electrons-nuclei interaction. We claim that:

tim f d p; (2)V () = fdx pa(2)V (@) . (9.77)
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To prove this, we write:

V(z) = V(z) + Va(z), (9.78)
with:

K K
Z; 7.
V) = 3 O - RIS, V@) = N e > 1) 079
j= j=

Consider first V~. This function belongs in LP for p > 3, which is the dual of L¥ | for
p’ € (1,3/2). Since p; — py in L? with (1,5/3] and (1,3/2) < (1, 5/3], we have:

lim | dzp;(z)Vs(z) = Jda: px(2)Vs () . (9.80)

J—®©

Consider now V.. This function belongs to L%2, which is the dual of L%3. Thus, by weak
convergence:

Jim fdac pi @)V () = f Az pa(2)Vo(2) - (9.81)
j—oo
Eqgs. (9.80)), (9.81)) imply Eq. (9.77)). Finally, we claim that:
timint D(ps,p3) > Dlpe pe) (9.82)

The proof of this inequality follows from Lemma [9.5] From

D(ps, px) = jh_{IOlOD(P*ij) (9.83)
and:
we get:
liminf D(pj, p;)"/ = D(ps, ps) '/ (9.85)

which proves Eq. (9.83). All in all,

Erp = lijm Err(p;) = 1imjinf CTFHP]‘“;;;: - lijm J dz V(z)p;(x) + limjinf D(pj, p;)
= Err(px) , (9-86)
which concludes the proof of the theorem. n

To conclude, we will prove convexity of the TF energy functional, that will be important
in establishing the uniqueness of the minimizer, and to understand the behavior in N of the
TF ground state energy.

Lemma 9.6 (Convexity of the TF functional.). The domain Dy is conver. Moreover, the
TF functional is strictly convex: for any p1,p2 € Dy, p1 # p2 and A€ (0;1):

ETF()\pl + (1 — )\)ﬂg) < )\STF(pl) + (1 — )\)ETF(pQ) . (987)

Proof. The convexity of Dy is a simple exercise (if p; and ps belong to Dy then it is easy to
check that the convex combination py = Ap; + (1 — A\)pa belongs to Dy ). Next, let us prove
the convexity of the TF functional. We shall study the different contributions separately.

Consider the kinetic energy term crp § dx p(z)®/3. This term is strictly convex, thanks to
the strict convexity of the function s — s°/3, for s = 0.

Consider the electron-nuclei interaction, §dz p(z)V(z). Being linear in p, this term is
trivially convext.

Finally, consider the electron-electron interaction, D(p, p). We have:

D(Ap1+ (1= X)p2, Ap1 + (1= N)pa) = XN*D(p1, p1) + (1 = A)2D(p2, p2) + 2A(1 — )\)D(Pz, P2))
9.88
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By Lemma [9.5] D(p1, p2) < D(p1,p1)"/2D(pa, p2)"/? < (1/2)(D(p1, p1) + D(p2. p2)). Hence,
D1+ (1= Np2, Apr + (1= A)p2) < A2D(p1,p1) + (1= A)*D(pa2, p2)

A= X) (D1, 1) + Dipa o)
< AD(p1,p1) + (1 =A)D(p2,p2) . (9.89)

This proves convexity of the electron-electron interaction, and concludes the proof of con-
vexity of Err(p). |

Uniqueness of the minimizer is an immediate consequence of strict convexity.

Corollary 9.7 (Uniqueness of the minimizer.). Let p1, p2 be two minimizers of Erpr(p) in
Dn. Then, p1 = ps.

Proof. Suppose p; # pa. By convexity of Dy, px = Ap1 + (1 — A)p2 € Dy, for A€ (0;1). By
convexity of the TF functional:

Err(pa) < Aerr(p1) + (1= NErr(p2) = AEY" + (1= N EY" = EXF . (9.90)

But this is absurd, since ELF is the smallest energy that can be reached in Dy. Hence
p1 = p2. u

9.4.4 Ionization in TF theory

In this section we shall investigate the behavior of the TF energy as a function of the
number of particles N. In particular, we would like to understand under which conditions
the ionization energy is positive: E%ﬂl < EXF. As we shall see, the validity of this inequality
is related to whether the minimizer in Dy is actually in Fr. We will start from the following
lower bound on the TF energy, that improves on . The bound shows that the energy
cannot be arbitrarily negative as IV increases.

Theorem 9.8. There exists a universal constant C > 0 such that, for all p e Dy :

K
errlp) > 0z} (2 22)". (9.91)

j=1
The proof of this theorem is based on the following important result, see [3] for a proof.

Theorem 9.9 (Newton’s theorem). Let u be a rotation invariant measure on R®. Then:

@) = | ntao) ey = o | Iu(dx>+fl Sz (09

z—y[ o

If one thinks of p as describing a charge distribution, the function ¢(x) has the inter-
pretation of electric potential generated by p. As a consequence, this theorem shows that
spherically symmetric charged objects are equivalent to pointlike charges. Another impor-
tant consequence of this result is that the electric potential generated by a uniformly charged
sphere is constant inside the sphere.

Proof. (of Theorem([9.8]) The N-dependence of the nonoptimal lower bound came from
a naive control of the tail of the Coulomb attraction between the nuclei and the electrons.
Here, we will control the growth in N of this energetic contribution with the positive mutual
Coulomb repulsion of the electrons.
To begin, we write:
V(z) =Vo(z) + Va(x), (9.93)

where, for R > 0 to be chosen later:
K

Vo(z) = Z Zj min{é %} . (9.94)

a |z — R’
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The function V- (z) captures the long range contribution to the electron-nuclei electro-
static interaction, while V_(z) takes into account the singularity. By Newton’s theorem,

Z; min {ﬁ, %} is the electrostatic potential generated by a uniformly charged sphere,

centered in R;, with radius R:

, 11 1 Z;
%mmh%JMqﬁ=fwM®m_m,uww=hmﬂh&IR% (9.95)
Therefore,
1 K
Vo) = [l = ) = Y ). (9.96)
Hence: 1
ﬁmwumm—jmwmwmwm_mzzm%m, (9.97)

where, for two measures j1, i2, not necessarily absolutely continuous:

1 1
D =- d dy) — . .
(1.1m) = 5 [ mm)atty) = (9.95)
We then rewrite the TF energy functional as:
Err(p) = mﬂp\\i?i - de Ve(z)p(z) —2D(u, p) + D(p,p) + U

= CTFHPH:g - de V(z)p(z) + D(p— p p— p) — D(p, ) + U . (9.99)

The next crucial remark is that D(p— p, p— ), the electrostatic interaction of the net charge
distribution p — p, is positive: D(p — p, p — 1) = 0. The proof of this fact follows again from
the representation of the Coulomb interaction as in Eq. (9.67). In fact, setting v = p —

D) — 2 J (da)v(dy) J (d)v(dy) L i f dz hy(z — 2)he(y — 2)

|z -y

J dtt?’fdz vhy)(2)?* =0 (9.100)

where in the last step we exchanged integrations thanks to Fubini’s theorem. Using this fact,
we can bound from below the TF energy as:

xr(p) > exelpllfs ~ [ daVa(@)pta) = Dl + U (9.101)

Next, let us estimate the energetic contribution due to V.. We have:

Ve(z) =V(z) - Va(z) = ;:1 Z; <|x—1RJ| — min{|x_1Rj|, %})
gzjm_le' - %)X(p: ~R;|<R). (9.102)
Therefore, by Holder inequality:
| e ptayv- 22] @l Ryl < )
Z Zj |P5/3“w)‘5/2 <CR'S Z Zjlplsss - (9.103)
j j
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Finally, let us consider the D(u, i) term. We have:

1 1

D(p, p)

I

[N

—
=
—
ISH
S
=
S

= lfdmi Zj 0(jx — Zme{ 1}
2 ~4nR? |t — R;|" R

1 1
= 4 R2 deé |x| — mln{| "R R} (9.104)

Separating the ¢ = j terms from the ¢ # j terms:

1 Z:7;
Dlup) = 5 | dwdllal = B e T
i#] ! J
1 7Z?
+= Zjdxé |z| — | e
: 72
< NN 2 9.105
;\R R| 2;}2 +2;}2 (9.105)
Eqgs. (9.101)), (9.103), (9.105)) imply:
1 K
Erv(p) = ervlplls — CZotllpllss RY® — 5F Mz2. (9.106)
1=1

The final statement, Eq. (9.91), follows optimizing over R (that is, choosing the R > 0 that
maximizes the right-hand side). ]

The next lemma is an immediate consequence of convexity and of the uniform lower
bound.

Lemma 9.10. The TF ground state energy E LY is convex, nonincreasing and bounded below.

Proof. Boundedness follows from Theorem Let us prove convexity. Let p; be the
minimizer in Dy, and py be the minimizer in Dy,. We have:

EAN1+(1 NN S Err(Ap1 + (1 = A)p2) (9.107)
< Aérr(pr) + (1= NErr(p2) = AEN + (1= NEY; ,

which proves convexity. To prove that the energy is nonincreasing in N, we simply notice
that the set Dy grows with N, hence Dy can only decrease. L]

The previous result implies that the limit:
lim EXY = By, (9.108)
N—>w
exists. We define the critical number of particles N, as:
N, = inf {N | ETF = Ew} . (9.109)

Notice that we do not know yet whether N. < co. The next theorem characterizes the shape
of EXF as a function of N.

Theorem 9.11. For N < N, there exists a unique minimizer on Erp in Fn. The function
ELF is strictly convex and decreasing in [0,N.]. If N. < o« and N > N., there is no
minimizer in Fyn. The function py, is the unique minimizer in Dy. Moreover, ELY is
constant in [N, 00).
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Proof. Let N < N, and let py be the minimizer of &g in Dy. We claim that:
de p(x) =N . (9.110)

Suppose that §p, = N’ < N. Then, ps € Dy, which implies that E5t = ELF. Since
ETF is nonincreasing, ETF is constant in [N’, N]. Also, by convexity ETF is constant for
all N” = N’, which implies that N’ > N.. This however contradicts N’ < N < N,. Hence,
N’ = N. The above argument also proves strict convexity.

Suppose now that N, < co and that N > N.. Suppose that there is a minimizer in Fy.
Then, consider the trial state:

1
§<ch +on) (9.111)
which has (N + N;)/2 particles. We have:
1 1 1
ExNS = E(§(Nc + N)) < 5TF<§(PNC + PN)) < 3 (gTF(ch) + 5TF(,0N>)

1
= §(E£f + EN)

= EXF. (9.112)

The first step follows from the (assumed) constant profile of ELF for N > N¢; the second
from the variational principle; the third from strict convexity (since N. < N, pn. # pn!);
the fourth from the fact that py and py, are minimizers; and the last from the fact that ELF
is constant for N > N.. This gives a contradiction, and shows that there is no minimizer in
Fn for N > N.. u

All we are left to do is to determine the value of N.. To do this, we shall use that the
TF minimizer satisfies a self-consistent equation, called the TF equation.

Theorem 9.12. Let N < N.. Then, there exists p = 0 such that the unique minimizer
pN € Fn satisfies the equation:

03 (@) = (Vi) -

For N =N, n=0.

Remark 9.13. FEq. is called the Thomas-Fermi equation. One can actually prove
that solutions of the TF equation in L' ~ L%? are minimizers of the TF functional. The
number of particles is determined by the chemical potential .

1‘ « pn(z) — u) . (= gcTF) : (9.113)

B N

Proof. Let py be the minimizer in Fy. For any § > 0, for any bounded function f such
that:

| doxton (@) = 9)1@) -0, (9.114)

define:
pe = p + ef(@)x(p (@) > 6) . (9.115)
For € small enough (dependent of 4), p. = 0. Also, the assumption (9.114) implies that

lpclli = |lpwli = N. Finally, since f is bounded and x(pn(z) = 6) is supported on a
bounded set, p. € L. Hence, p. € Fn, and so:

Err(pe) = ETr(pn) - (9.116)

Together with differentiability in a neighbourhood of ¢ = 0 (which can be easily proven),
this implies:

d
-4 oo 11
0 dEgTF(p ) le=o0 (9.117)

Writing explicitly the right-hand side, one has:
1

0= LNB& da (vp?v/?»(x) +low s ) - V(a:))f(x) (9.118)
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for all bounded f such that SPN (@)>6 dx f(x) = 0. The arbitrariness of f in this class of
functions implies that:

@) + Ty @) = Vi) = . (9.119)

for some constant p, and for all « such that py(x) = §. Being py nonnegative, this implies:

1

03 () = (Vi) - [y en() - ok (9.120)

for all « such that py(z) > §. Taking the § — 0 limit, we found that py(z) satisfies the TF
equation for all x such that py(z) > 0. Let us now explore the region {z | py(x) = 0}. To
this end, consider the function:

pe(x) = pn(z) +ef (), (9.121)
fore >0, fe L2 L', f > 0o0n {z | py(z) = 0} and {dz f(z) = 0. The function p.

belongs to F. Hence, Err(pe) = Err(pn) for € = 0; taking the right derivative, one gets:

0< f (va(x)2/3 —V(z)+ pN(x))f(x) da . (9.122)

r
|-

Next, we split the integral in the right-hand side as:

fdx(...) - LN(I)_de(...) +LN($)>0dx(...) : (9.123)

using the previous result for the region px(z) > 0, we have:

0 < LN(I)=() dx (’YPN($)2/3 —Vix) + ﬁ * pN(as)>f(1:) - 'uf dz f(z)

pN(z)>0

where in the last step we used that SpN(z):O dx f(x) = — SpN(m)>0 dx f(x). The arbitrariness
of f implies that:

= J )0 dx (’YPN(Z‘)Q/B _ V(JT) + L * pN(l‘) + /,L)f(,]j) (9.124)

1
—p+ V() - —pn(z) <0 on x s.t. pn(z) = 0. (9.125)

Taking the positive part:

0= (— w+Vix) — ﬁp]\;(:ﬂ))Jr on z s.t. py(x) =0. (9.126)

Equivalently,

'yp%?’(x) = (— w+Vix) — %'p;\f(x))Jr on z s.t. pn(x) =0. (9.127)
Egs. , give the TF equation for all values of x. To conclude, let us comment
on the chemical potential u. Since py(x), V(z) and (ﬁ * pny)(x) decay at infinity, the TF
equation implies that p > 0 (otherwise the right-hand side would be nonzero for |z| — oo,
which would contradict decay for pi,/?’). Let us prove that for N = N, one as u = 0.

We repeat the trial state argument, with p. = pn, + f. We only assume that € > 0,
f = 0 and that f € L' A L%3. In this way, the number of particles is not Ng; this is
however not important, since py, is the density with the smallest energy. Hence, one has
Err(pe) = Etr(pn.), for € = 0. Taking the right derivative and proceeding as above:

e (@) > (V@)= pr V(@) s (9.128)
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by the TF equation:

(V(x) e V(z)— u) > (V(a:) —p V(z)) . (9.129)
+ +
Notice that the function V (z) —|-| 71 # pn, () has to be positive for some x, otherwise the TF
equation would prove that py. = 0. The assumption py, € L' n L% implies that |- | py. (2)
is bounded, and V(z) — +o0 in proximity of the nuclei; hence V(x) — | - |71 = py,(z) is
positive in a neighbourhood of the nuclei. For these values of z, Eq. (9.129)) implies that
= 0. This concludes the proof of Theorem [9.12 L]
The function: )
ola) = Vi) = 17 * o) (9.130)

is called the Thomas-Fermi potential. It describes the net electrostatic potential generated
by the nuclei plus the electrons. In terms of this function the TF equation reads:

o (@) = (#la) ~ n) - (9.131)
Therefore, the TF minimizer is supported for the values of  such that ¢(x) > p. This is
certainly true if x is close enough to one of the nuclei, since V(x) — oo there; hence, the
TF equation is telling us that the electrons are localized close to the nuclei, as expected.
The next proposition is an important property of the TF functional, that will be crucial to
compute the critical number of particles N..

Proposition 9.14. Let N < N.. Then:

¢(x)=0. (9.132)
Proof. Let A be the distributional Laplacian. Then:
1
A— = —=4(), (9.133)

with &(-) the Dirac’s delta. Hence, away from the nuclei:
Ap(z) = pn(2) . (9.134)

Now, using the TF equation we can rewrite the density as a function of ¢ as:

_ 1 32
ox = (V) - T en(e) - w),) =0 - w (9.135)
Therefore, the TF equation is equivalent to the following PDE:
Ad(x) = v (plx) — )Y . (9.136)
Let us consider the set:
A={zeR®|¢(z) <0}. (9.137)
Notice that the nuclei do not belong to such set, since V(x) — oo there and py * | -|7! is

bounded. Away from the nuclei, the function ¢(x) is continuous, and hence A is open. By
continuity the function ¢(x) vanishes on the boundary of A. Notice that the set A need not be
compact; nevertheless, the function ¢(x) is also vanishing at infinity, since ||t % px(2) — 0
as |xz| — o0, see Chapter 2 of [3]. Hence, ¢(x) vanishes on the boundary of A, and at infinity.
In A, the function —¢ is harmonic:

A(—=¢)(x) =0 for all x € A. (9.138)

By the maximum principle for harmonic functions [3| [I], the function —¢ reaches its max-
imum on the boundary of A (or at infinity, if A is unbouded). (Strictly speaking, the
maximum principle holds for open and connected domains; in case A is not connected, we
split A into connected components, and we repeat the argument in each component.)
Hence —¢(z) < 0 for all z € A, which implies that ¢(x) = 0 in A. That is, A is the empty
set. This proves that ¢(z) > 0 for all x. L]
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To conclude the section, we compute the critical number of particles N..

Theorem 9.15. N, = Z;,;.

Proof. The starting point is Newton’s theorem, for a uniformly distributed charge on a sphere

of radius r:
1 1 . 1 1
— dw —— :mln{f,—} . (9.139)
dmr |w|=r ‘w - y| r ‘y|

We then compute:

1
=) Jw=r dwp(w) =

M=

1 1 1 1
Z;— do—— — d (— )
Lo L Yo R dnr fu Ay rev) )

1 1 1 1 1
j min 7R 1 TQJ y pn (y) min ‘ Iy

1

<.
I

I
M=

1

o <.
. Il

= (9.140)
where the last inequality follows from Proposition [9.14] Taking r > |R;| for all j, we have:

Ztot
r

1
- J dy Inm{ }pN( ) (9.141)
lyl<r Tyl
which implies:
Ziot = J ‘ dy pn(y) - (9.142)
y|sr

Taking the r — oo limit:
Ziot 2 N = Zyoy = Nc . (9.143)

To conclude the proof, suppose now that Zi.w > N.. Let pn, be the minimizer with V.
particles. By the TF equation:

W@ = (V@) - @)
— % py.(z) (9.144)

where in the last step we used again the positivity of the TF potential. Averaging over a
sphere of radius r we get:

Y 2/3 1 J
d - d . 9.145
oz ) Al = g | dwet) (9.145)
On one hand, by concavity of s — s%/3:
1 1 2/3
— d 2/3 < (— f d ) ~ 9.146
e | o @< (s [ oo (9.146)

on the other hand, by Newton’s theorem, taking r > |R;| for all j:

Ztot f 11 Ztot J‘ 1 Ztot B Nc
d > — | dy— =—
o et ymin {2 on ) 2 =2 = [dy Lo () = 2
(9.147)
All together, for r > |R;|:
1 23 Zigy—N. _ C

d; z— 2 — .14

(e | dwomte) ™ > Dm0 (9.145)
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for some C > 0, since by assumption Ziot > N.. Now, let rewrite the number of particles
N, in spherical coordinates:

0
NCZJdJCpNC(ZE) = J derJ dw pn, (Tw)
( Jw|=1

)

* 1
= f dr 7"2—2 dw pn.(w) (9.149)

0 T Jlw|=r

where in the last step we performed a change of variables. By the lower bound ((9.148]):

o C
N, > J drr®— =+, (9.150)
max{|R;} T
which contradicts N. < Zio;. Hence, N. = Zioy. u

9.4.5 Scaling properties of the TF energy

One of the advantages of TF theory is that it allows to obtain a very simple prediction for
the energy of neutral atoms (K =1, Z = N). As we shall see, this prediction becomes exact
as N — 0.

Proposition 9.16. Let K = 1. We have pz(x) = %E(Zl/?’x/w), with p the minimizer of:

err(p Jdmp )33 — fdxp D(p,p) (9.151)

on Fi. Oe has:
EZ" = (eo/1) 273, (9.152)

with eq the ground state energy of erp(p) on Fi. Numerically, ey ~ —3.678.
Proof. For a given ¢ > 0, let us define the corresponding function p as:
pz(x) = Z03p(ZV30x) . (9.153)

Notice that p € L' n L%3, and |p|; = 1. To find the correct value of £, let us rewrite the
energy of pz as:

3 1
BY" =2 2°003 [dapla)’ = 22 [ doplo) s + Z4DG) . (0154)
The final claim follows setting vZ5/3¢% = Z2(, that is £ = Z'/3 /5. L]

Remark 9.17. The above proposition shows that the TF density profile has amplitude O(Z?),
and that it varies on scale Z~'/3. In other words, TF theory shows that the TF minimizer
is concentrated in a region of diameter O(Z~3) around the position of the nucleus. The
energy of a neutral atom takes a particularly simple form, Eq. ; remarkably, in the
N ~ Z — o0 limit, this prediction becomes quantitatively correct.

9.5 Stability of matter of the second kind via TF theory
9.5.1 The no-binding theorem

One of the limitations of TF theory is that it does not predict the existence of molecules:
this is the content of the no-binding theorem, due to Teller in 62 and proven by Lieb and
Simon in 77.

Suppose we are given a system of nuclei. Let us partition them in two sets, A and B.
We define the electrostatic potential of the nuclei in the set § = A, B as:

=y |$_R | Jduﬁ( )‘ iy| : (9.155)

JEd
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The TF energy of the system corresponding to the nuclei in f is:

) = e [ oo~ [ o)+ Do) + B 5 0

k JEli
We denote by E ~ the corresponding ground state energy: Eti N = infpepy & e (p).

Theorem 9.18 (No binding theorem.). Suppose N < Zyor = Zj=1 Zj. Then:
mln{EA Nl B Ng ‘ Nl Jr N2 - N} . (9.157)

We can think of E}¥ N T EEFNQ as the energy of the system after the sets A and B have
been pushed infinitely far away from each other, so that their mutual interaction is negligible.
Consider the configuration of N7 and Ny particles in the sets A and B such that the sum
of the two energies is minimal. The theorem is telling us that there is no energetic gain in
bringing the two systems close together. Of course, the argument can be iterated for A and
B separately, and so on.

The conclusion is that the energetic gain due to the formation of a molecule (a stable
system composed by more than one nucleus) is missed by TF theory. As we shall see later,
this limitation of TF theory will be used in a positive way, to give a very simple proof of
stability of matter of the second kind. But first, let us prove the no binding theorem.

A crucial role in the proof we shall present is due to the following lemma, due to Baxter.

Lemma 9.19. Let p > 0, p € LY(R3) n LP(R3), with p > 3/2. There exists g such that
0 < g < p such that:

ﬁ vg)@) = Va(®)  if plx) > g(z) > 0. (9.158)

Moreover, .
(R1*9@ <Val) i ple) = o(o). (9.159)

Proof. The proof is based on calculus of variations. Let us define the functional:

I(g9) = D(g,9) — fdwdy 9(x) r;A_(yy)' : (9.160)

The functional is well defined on D, = {g | 0 < g < p}, and it is bounded below. Let {g;} be
a minimizing sequence in D,. Then, |g;|, < ||pll, < C for p > 3/2. This means that there
exists a weakly convergent subsequence g € D, in L, that we shall still denote by g; with a
slight abuse of notation. We claim that:

liminf I(g;) > I(g) - (9.161)
J

This shows that g is a minimizer of I. The proof of (9.161] m ) follows from liminf; D(g;,g;) >

D(g,9), Eq. (9.83), and from lim; D(g;, na) = D(g, pua), Eq. (9.77).
To prove Egs. 19 158)), (9.159)) we shall use a trial state argument. Let us first explore
the region z : 0 < g(z) < p(x). Consider:

9e(x) = g(x) + ef ()x(6 < g(x) < p(z) —9), (9.162)

with f bounded and ¢ > 0. Clearly, g. € D, for |¢| small enough. Hence,

I(ge) = I(g) - (9.163)

Taking the derivative with respect to e (it can be proven that the function is differentiable):

d
= —1(g:) |e= =
0= 1(90) lomam 0 = |

d<g(z)<p(xz)—98

dz f(x) ((ﬁ +9)(x) ~ Va(a)) (9.164)
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By arbitrariness of f, taking the § — 0% limit:

(%' s g)@) = Va(z) i 0 < g(z) < pl(a). (9.165)

Let us now explore the region g(x) = p(x). Consider the trial state:
9e(x) = g(x) + e f (z)x(max{p(z) — 6,6} < g(z) < p(x)) , (9.166)

for e <0, f = 0. Taking the left derivative:

1
0> J dz f(z) ((7 « g)(z) VA(x)) . (9.167)
maxc{p(z)—6,0} <g(x) <p(x) |-
Again by arbitrariness of f, for § — 0T:
1 .
(7 *9)(@) < Va(z)  if g(z) = p(). (9.168)

Finally, let us consider the region g(x) = 0. Let us introduce the trial state:

0 (2) = g(a) + ef(@)x(0 < g(x) < min{d, p(z) - 8}) (9.169)

for € = 0, f = 0. Taking the right derivative:

1
0< J dxf(:c)((— +g)(x) — VA(:E)) (9.170)
0<g(z)<min{é,p(z)—8} ’
which implies, as § — 07:

(L s g)(a) = Va(z)  if g(a) = 0. (9.171)

|-
We are left with excluding the case (li % g)(x) > Va(z). To this end, consider the set:

1
pP= {m|(ﬁ*g)(x) >VA(x)}. (9.172)
Clearly, P c {z | g(z) = 0}. Notice that the points R;, the center of the nuclei, do not
belong to P: this is due to the fact that V4 (x) = 400 there, and ﬁ x g)(z) is bounded. Away

from these points, the function
1
(W *g)(x) — Va(z) (9.173)

is continuous. Hence, the set P is open, and (ﬁ * g)(x) — Va(z) = 0 on dP. Moreover,

Ax(ﬁ

since  # R; and P c {x | g(x) = 0}. Therefore, function (ﬁ # g)(x) — Va(z) is harmonic in

« g)(x) VA(x)) — —g(x) + palx) =0 VzeP, (9.174)

P. By the maximum principle, (ﬁ % g)(x) — Va(x) = 0, which proves that P is empty. ®
We are now ready to prove the no-binding theorem, Theorem [9.18

Proof. (of Theorem [9.18]) Let p = py be the minimizer of ETF in Fy, for N < Zior. To
prove the theorem, it is enough to show that there exists g, h such that 0 < g, h < p such
that g + h = p and:

EX"(9) + EET () <E™F(p) . (9.175)
Consider the kinetic energies. Since (a + b)*3 = a3 + b%/3 for all a,b > 0, we immediately
get:

fdxg(x)‘r’/?’ + Jdm h(z)®3 < de (9(z) + h(z))®3 . (9.176)
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Let us now study the interaction. In view of Eq. ((9.176|), to conclude the proof it is enough
to show that:

2,7
—2D(g,ua) + D(g.9) + Y, =21

= IR — R
k,jeA
YAV
~2D(h, pp) + D(h,h) + Y. —8
1R — Ryl
k<j
k,jeB
YA
< —2D(g+ h,ppa + pB) + D(g + h,g + h) + Z|R b R (9.177)
k<jg k
The inequality (9.177]) can be rewritten as:
YAV
0 < —2D(g,pup) —2D(h, pia) +2D(g,h) + ), ﬁ
k<j k J
keA,jeB
= _2D(97:U'B)_2D(ha/u'/1)+2D(gah)+2D(/~LAnuB)
= 2D(9—pah—pp). (9.178)

Let now now choose g, p to be as in Lemma We rewrite D(g — pa,h — pup) as

Dlg—pah—ps) = | @) ps)e (0w - Vaw)

1
+ L:g(z)<p(m) dz (h(x) — pp(x)) * ((W x g)(z) — VA(J:))

1

_ L o dz pup(z) * ((‘ 7t 9)(z) — VA(:U)) (9.179)

where we used that h(z) = 0 if g(x) = p(x) and that (ﬁ % g)(x) — Va(z) =0 if g(z) < p(x),
by Lemma Also, the same lemma implies that (| r#g)(@) — Va(z) <0 for g(z) = p(x),

hence D(g—pa, h—pup) = 0, which proves Eq. ( m This concludes the proof of Theorem
9. 18 u

The next result is a simple corollary of the no-binding theorem, that will play a crucial
role in the proof of stability of matter of the second kind for the many-body problem.
Corollary 9.20. For any pe L' n L3, p >0, for any v > 0:

Erp(p) > — 2078 Z z7*. (9.180)

Proof. Consider a collection of K nuclei, and separate one, say the one in R; with charge
Zy, from the rest: A = {R;} and B = {Rj}JK=2. By the no-binding theorem, using that
ETF ETF .

BN 7 T Zeos
Err(p) > EL z T inf{ggf,...,zk ()| PE Fzys..zi}

~3.678 .
2P if{ERY 2 (0) | p e Fravaic} s (9.181)

where in the last step we used Proposition Iterating the argument K — 1 times, the
claim follows. ]

9.5.2 Proof of stability of matter

As we shall see in this section, the no binding theorem of Thomas-Fermi theory can be used
to proved stability of matter of the second kind for the full many-body probblem, described
by the Hamiltonian Hy i (Z, R) on L2 ;(R3Y). We shall prove the following theorem.

anti
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Theorem 9.21 (Stability of matter of the second kind.). There exists a constant C(Z) > 0
such that, for all Yy € H! (R3N), [¥n]2 = 1:

Wn, Hnx(Z, R)Yn)y = —C(Z)(N + K) . (9.182)

This lower bound is compatible with the fact that the ground state energy of the initial
many-body problem grows linearly with the number of particles. If not, matter could not
be extensive (recall the discussion in Section : splitting the system into subsystems
could produce an enormous increase/decrease of the energy. The first proof of stability of
matter was given by Dyson and Lenard in ’67. Here we shall discuss the proof of Lieb and
Thirring ’77, much simpler than the original one, based on Thomas-Fermi theory and on the
Lieb-Thirring kinetic energy inequality.

Theorem 9.22 (LT kinetic energy inequality.). There exists K > 0 such that for any
wN e L2 (RBN).'

anti

N
Wn, 2 ANy = KJ.d:I: py(z)d (9.183)
=1

where Py (x) = N §dzs ... dzn [N (z,22,...,2N)[? is the density associated to .

This inequality is a consequence of another important result in quantum mechanics, the
Lieb-Thirring inequality for sums of negative eigenvalues. Let H = —A + V on L?*(R%) be
a self-adjoint Schrédinger operator, with V e L'*%2(R4), and V satisfying the assumptions
in Section @ needed in order to define the eigenvalues with the min-max principles. Let F;
be the eigenvalues of H (which can be defined as in Section . Then, the Lieb-Thirring
inequality states that:

D) 1Bl < Ldfdx V(z) 2, (9.184)
j:Ej<0

for some explicit Ly > 0 (see [3] for generalizations). This inequality is compatible with
the semiclassical approximation for the sum of negative eigenvalues, recall the discussion of

Section Let us show how Eq. (9.184]) implies the kinetic energy inequality ((9.183]).

Proof. (of Theorem ) Let 71(;) be the reduced one-particle density matrix of ¥y, and
consider a class of Schrodinger operators H = —A + V with V such that (9.184) holds true.
Let Hy =), H©_ By the definition of density matrix:

(n, Hyony = Te HyY (9.185)
Being 'yfpl) a nonnegative, trace-class operator, it can be written as *yf;) = 23 Al fi)<fil, for

some orthonormal f; € L?(R9) and 0 < Aj < 1, due to the fact that 0 < 'yf;) < 1, recall
Section 0.2 Therefore:

©
by, Hypwy = DN TrHP; = > N fi, Hs) (9.186)
j j=1
Clearly, {fo, H fo) = Ey, the ground state of H. Hence:

Wn, HNwy = Eo + 3, At H 5 (9.187)
j=2

Being f1 orthogonal to fo, {fi, Hf1) = Ei, the first excited state of H. The argument can
be iterated for all negative eigenvalues; we have:

Wn Hyony = D) Bj+ 2 N Hi (9.188)

J:E;<0 J
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where the asterisk denotes that f; are orthogonal to all eigenfunctions ¢; of the negative
eigenvalues. Therefore, by the variational characterization of eigenvalues, (f;, Hf;) = 0,
which gives:

W Hyiny> Y, B> =C [doVo(@)'t | (9.159)

jZEj <0

where the last step follows from Eq. (9.184)). Now, let us choose:
V(z) = —cpy(z)7 . (9.190)
Since py € LY, V(x) € L%2 . For this choice of V, Eq. (9.189)) implies:

N N
(b, D) =Djpny = —Cct T2 Jdiﬂ Py (@)= N, > V(@) en)

j=1 j=1
—Cctrd fdac py ()12 cjdw py(x)FHe o (9.191)
The claim follows after optimizing over ¢ > 0. u

We are now ready to prove Theorem [9.21]

Proof. By the Lieb-Thirring kinetic energy inequality:

1/JN>+U

(9.192)
Let us now find a useful lower bound for the many-body interaction, in terms of the TF

interaction. Let us apply Corollary for Z; =1, R; = z; and K = N. In this setting,
U=, ﬁ The bound (9.180) implies the following lower bound:

N

N, Hy kYN = deimﬁw 58 _ EZdepw() +<¢N,Z|
j=1

|z — = 4

1 3.678
> — N—f )53 f -D 1
T ® 1| e pto) +Z deple) 2oy = Dlop) (0199

1<j |

for any v > 0 and for any p e L' n L%3, p > 0. Choose p = Pyn > Then, plugging the bound

(19.193)) in (9.192) we get:

Ny Hy gon) = (K — 77 Jdmpd, )53 — sz‘pd, R TR
3.678
+2Jd33p <¢N, — |1/JN> Dpw,pw)JrU—TN
3 )P/3 _ 1
(K—g’)’) dz py () Z dx py( )W‘FD(W’W)‘FU
j=1 J

.67

—%N (9.194)

The first line reconstructs the TF energy functional, with a new constant cpr (positive,
choosing the old 7 small enough). Therefore, the final claim follows from Corollary u

9.6 TF theory as the N — oo limit of quantum mechanics

In this section we shall give a rigorous derivation of TF theory starting from many-body
quantum mechanics. As we shall see, TF theory becomes ezact once the number of particles
goes to infinity. We shall prove a theorem that provides a rigorous bound for the energy
difference of large quantum systems and the TF approximation.
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The result will hold in a suitable scaling regime, that we shall describe here. Let N° € N,
and let Qy = N/N°. Also, let Z° € N¥, and let Z = QnZ°. Finally, let R® € R3¥ and let
R = QJ_\,1/3EO. It is not difficult to see that:

EXY(Z,R) = QY B (2°,R") . (9.195)

That is, as N — o0, every contribution to the TF ground state energy scales as Q%S. We
shall suppose that N° < Z2 | to make sure that the TF minimizer has Ny particles. We will
prove the following theorem.

Theorem 9.23. Let v = (672)%3. Then, there exists § > 0 independent of N such that:
|ER(Z,R) - QU BJI(2°, R%)| < CNT/*0 . (9-196)

Therefore, the theorem proves that Thomas-Fermi theory becomes ezact in the N — oo,
for the ground state energy:

o _ EREZR)
N=w QUPETF(2° RO)

=1. (9.197)

The proof of the theorem will be based on matching upper and lower bounds for the ground
state energy.

9.6.1 Upper bound

Let us start by proving an upper bound for the ground state energy, that gives the TF energy
at leading order in N. To do this, we shall use Hartree-Fock theory.
Consider a Slater determinant:

1
= —— ) sgn(m)fry(®1) - fr TN), 9.198
N \/ﬁ; en(m) fray(@1) - fr vy (ZN) ( )
with reduced one-particle density matrix given by:
N
w= D XSl - (9.199)
j=1

As we have seen in Section the energy of a fermionic wave function is expressed in terms
of the one- and two-particle density matrices. For the special case of Slater determinants, it
turns out that the energy is a functional of the one-particle density matrix only. Consider a
many-body Hamiltonian of the form:

Hy =Y hi+ Y. Vizi — ;) . (9.200)
5 i<
Then:
Wn, Hnpn) = Enr(w) (9.201)

where &gy is the Hartree-Fock energy functional:
1
Euan(w) = Teho + 5 [ dady Va = y)eo(as Dholyin) ~ (i) ). (9.202)

The last term describes the many-body interaction in HF theory. It is given by a sum of two
terms: the first is called the direct term, the second is called the exchange term. Notice that
for a positive potential, the exchange term is negative.

We define the HF ground state energy as the smallest energy of a Slater determinant.
Due to the one-to-one correspondence between Slater determinants and rank— /N orthogonal
projections, the HF ground state energy is:

ENF = inf Epp(w), (9.203)

wEPN
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where Py := {w : L?(R3) — L?(R3) | w? = w* = w, Trw = N}. Since Slater determiants
form a subset of L2(R3*N), we trivially have:

H
EQ— i YN HNY pne (9.204)

 ynel2(RN) Yy, YN

The idea will be to come up with a good trial state for the HF energy functional, that
reproduces EE[F at leading order in N. To do that, we shall rely on the next Theorem.

Theorem 9.24. Suppose that V > 0. Let K : L?*(R3) — L%(R®) be an admissible one-
particle density matriz: 0 < K < 1, Tr K = N. Then, there exists a Slater determinant ¥y
such that:

N, Hn) < Enrp(K) . (9.205)

This theorem immediately implies the Lieb’s variational principle:

EXY = Eur(K) . (9.206)

inf
K admissible
Hence, it gives us the freedom to look for a larger class of trial states:
ES < BWF < &up(K)  for any admissible K. (9.207)

Proof. (of Theorem [9.24]) We shall prove the theorem in the case K is finite rank: K =
Zij\il Xl fiX{fil, with 0 < A; < 1. The general case follows from an approximation argument,
that we leave as an exercise. Define:

W) = (frhfiy, VD = n fo, Ve A fo) (9-208)

where fr A fo = %(fk ® fo — fe® fr). Then, a simple computation gives:

1
Enr(K) = 3 Mh®) 4+ 2 % MeAv 0 (9.209)
k kL

Suppose M > N. If not, M = N and there is nothing to prove. Then, there exists at least
two eigenvalues A\, and A, such that 0 < Ay, A\; < 1. Without loss of generaily, we assume
that:

WD+ 3 AV ED < p@ 4 v k) (9.210)
k k
Let 6 = min{\,,1 — A\1}. Clearly, § > 0. Define:
K = ) Mlfodfel + Qo = DX fol + (g + 0| £l
k¢{p,qa}
= D Mlffil - (9.211)
k

Obviously, K is admissible. Notice that if § = A, then A, = 0, and if § = 1 — ), then \, = 1.
Hence, the number of eigenvalues of K that are neither 0 or 1 is strictly smaller than the
same quantity for K. After iterating the above procedure at most M times, we will be left
with a density matrix with eigenvalues equal to either 0 or 1, i.e. the reduced one-particle
density matrix of a Slater determinant. To conclude the proof, we have to make sure that
the energy does not increase in the process:

SHF(F) < gHF(K) . (9.212)
To do this, we compute, recalling Eq. (9.209)):

Enr(K) — Enr(K) = 5(h(1’) N EEIVEICEEY vww) — 82V, (9.213)
4 Y4

where the term in parenthesis is > 0, by Eq. (9.210), and V,, > 0, as a consequence of
V = 0. This implies Eq. (9.212)), and concludes the proof. n
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Legitimated by Lieb’s variational principle, we will choose a trial state K for the HF
functional that is not a projetcion. Since TF theory is a semiclassical approximation of
quantum mechanics, it makes sense to use coherent states. We define:

1 .
K= (27)3 Jdpdq M(p, q)pq , Tpg = [Fpg){Fpql Fpg(x) = PGz —q) . (9.214)

We shall assume that 0 < M(p,q) < 1, and that ﬁ §dpdq M (p,q) = N. This implies that

K is admissible. The idea is to try to choose M(p,q) so to make the energy as small as
possible. A good ansatz is:

M(p,q) = x(P* = ¢1r(q) < —p) (9.215)

with ¢1p the Thomas-Fermi potential and p > 0 chosen so that K is admissible. Using the
TF equation, Eq. (9.215)) can be rewritten as:

M(p,q) = x(p* < (¢1r(q) — 1)+) = x(p* < vp(0)*®) , (9.216)

with p the N-particle TF minimizer. Notice that:

TK—LJddM( i Wfd (¢) =N (9.217)
I - (27_[_)3 p q pvq - (277)3 3 qp q - I .
provided vy = (672)%/3. Also:
1
LAk - o | dadp 210, 0)" + 1VGR)
3
= 37| dantay + NIVGIE (9.215)

Hence, we get, using that the exchange term is nonpositive:

Ear(K) < 2 [dop@) — [de V@)K (,2) + ;5 | dody 2 K@) 50

5 |z =yl
+U + CON||VG|3 . (9.219)

The first line looks very much like the TF functional, except that K(z,z) appears instead
of p(x). We compute:

K(z;z) =

G | ddn M .| =0 = [ dap@)]Gla - 0 = (p+IGF) @) - (9:220)

Consider the density-density interaction. We rewrite it as:

D(p*|GI%,p % |G?) = %fd (p* [GI2) () (p* |G = ﬁxx) , (9.221)

that is as a L? scalar product. Rewriting it in Fourier space, and using that the Fourier
transform of the convolution is the product of the Fourier transforms:

1 . — 1
Dip« |GP.px GF) = 5 [ dblpw)PIGPOIP 5 < Dlpp), (9:222)

where we used that: g o
IGPM)| < NGl < NIGP[1 =1 (9.223)

Thus, the bound ([9.222) reproduces the TF density-density interaction. To conclude, con-
sider the electron-nuclei interaction. We rewrite it as:

- fda: V(z)K(z;2) = — fda: V(z)p(z) + Jdm Vi(z)(p(x) — K(z;x)) . (9.224)
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The last term is an error term, that we have to estimate. We rewrite it as:

deV(m)(p( ) Zz jdxp (m_gﬁ* |.1Rj|(x)>. (9.225)

Let us suppose that:
G(z) = R™32Gy(x/R) , Go(x) = Go(|z]) , (9.226)
with Gy compactly supported for |z| < 1 and |Go2 = 1, [VGoll2 < C. With this choice,
IVG|3 = R7?|VGol - (9.227)

Thus, |G(x)|? is a spherically symmetric charge distribution, with total charge 1: by Newton’s
theorem,

1 1
G| = for |z — R;| > R. 9.228
GF o @ = gy Pl Rl (9.225)
Hence, we can rewrite Eq. (9.225)) as:
| wv@ o - Y e (g 168 @)
= Ry|<R [z — R |- =Ry
<3 1
dx p(x) ——— (9.229)
; Lc R;|<R |z — ;|
Now, from the TF equation for the minimizer:
K
Z 1
vo(a)? = e —px () —
(LR @ n),
K
7.
< —I (9.230)
j; |z — R,
Assuming that R « |R; — R;| for i # j, we get:
73/2
SC—2 9.231
p(z) |$ — Rj|3/2 ( )
Hence, plugging this bound in Eq. (9.229) we get:
1
J dz V(z)(p(x) — K (z;2)) < CZ22, f dxH—m < CNP®2RYZ, (9.232)
lz|<rR T

All in all, plugging the bounds (9.222]), (9.232)) in Eq. (9.219) we find:

Enr(K) < ERF + CONR™2 + CN®2RY2 (9.233)

The optimal value of R is R = CN~%® which is indeed such that R « |R; — R;| for i # j
(recall that, by assumption, the internuclear distance is order N~'/3). With this choice:

ER < &nr(K) < EXF + CNY/S (9.234)

Since EAF ~ N7/3 the error term is subleading as N — co. This concludes the proof of the
upper bound.

9.6.2 Lower bound

To conclude the proof of Theorem [9.23] we need a lower bound on the ground state energy
that agrees with TF at leading order.
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A Properties of Sobolev spaces

Here we shall collect some basic properties of Sobolev spaces. We refer the reader to [3} [I]
for more details. Given an open set U < RY, recall the definition of Sobolev space W*»(U):

WHFP(U) = {u:U — C | ®ue LP(U) for all a s.t. |a| <k} . (A1)
The norm | - |y is defined as:
[allyemry = >0 10%ul, - (A.2)
ala|<k

A special role in quantum mechanics is played by HY(U) := W12(U). More generally,
we define H*(U) = W*2(U). We shall also denote by Wéc’p(U) the space of functions in
W¥P(U) which are vanishing on the boundary of U.

A.1 Sobolev inequality

The Sobolev inequality allows to bound from below L?P norms of Du with L¢ norms of u.
As we shall see, this cannot be true for all p,q. Let u e CP(R?), u # 0, uy(x) := u(Ax).
Suppose that there exists C' > 0, independent of A\, such that:

|uallparay < ClIVul ey - (A.3)

By a change of variables,

1 1
7 1\
sl = ( [ dotus@i)” = (55) " Pulsagee

, (A.4)
P A
Vsl = ([etvun@P) = () I9uliogeo
Therefore, Eq. (A.3) implies:
_d 4
HUHL‘I(]Rd) <ON'Trte HVUHLP(Rd)- (A.5)

Thus, zf177+ # 0, by taking either A — 0 or A — o0, Eq. Would imply ||ul| r(ray < 0,
P
that is u = 0, Wthh is a contradiction.
Therefore, we might only hope to prove Eq. (A.3)) for:

d d 1 1 1
14 - ——-=0=-=- -2, A6
q D q p d (4.6)

Let 1 < p < d. We define the Sobolev conjugate of p as the number ¢ = p* for which Eq.

(A.6) holds true:

pFi=— (A7)

Notice that p* > p.

Theorem A.1 (Gagliardo-Nirenberg-Sobolev inequality). Let 1 < p < d. There exists a
constant C' = C(d,p) such that

lul Lok oy < CIVU|Lr@ay,  Yue CHR?). (A-8)

The proof will be based on the generalized Holder inequality:

J “_[ul d$<H||UiHLm(U), Z
U'i=1 i=1 i=1

Remark A.2. The proof crucially relies on the fact that u is compactly supported: the
inequality is trivially false if uw = 1. However, the constant C' does not depend on the support

of u.

1
T (A.9)

127



Proof. Let us start with the case p = 1. Using the compact support of u,
T
u(z) :J dyiuz, (T1, - i1, Yis Tig1, 0 5 Td) (A.10)
—0

thus "
lu(z)| <f dyi|Vu(zy, -y, ,xa)l|- (A.11)
[ee)
For p = 1 the Sobolev conjugate of p is p* = d%‘ll. Therefore, it is natural to consider:
L e
@l < T ([ dnlVator e anl) (A12)
i=1 \W—®0

We have:
o0 4 o0 d o0 ﬁ
f dzq|u(x)]| 7T < J dxln (J dy;|Vu(xy, - ,yl,)|> = (A.13)
—0o0 —a0 i=1 —o0

0 © =T " 0 T
0 i=2 [e¢]

—o0 —

0 T oo d 0 P
=<f dy1|Du(y1,~-->|) f dxlﬂ(f dyiDu<:c1,---,yi7~-->|) .
0 o i—9 o

- 7

Let us now apply the generalized Holder inequality, with p; = d — 1. We have

0 ) 0 = n 0 s
J dzy|u(z)| 7T < (J dy1|Vu(y1,”~)> H <f dridy;|Vu(zy, - - ,yz,)|) :
0

—00 - i=2 =0
(A.14)
Next, let us integrate over xo. We get:
0 d
J dzxydzs|u(z)|a-T
—00
o T 4 o T
< [, <j dy1|w<y1,-~)|> I (f dindys| V(o - y)>
—00 i=2 \J—©
" i " A (A.15)
([ andmivutere-1) " [as ([ anivutman-n)
—o —o0
d 0 ﬁ
H(J dxldyi|vu(xlax27'“ 7y27)|) .
i=3 W=

Using again the generalized Holder inequality for the x5 integration, choosing p; = d — 1, we
have

© =1
(A.15) < <J dxidxs|Vu(zy, xg - - - )|)

—0o0

. . . L (A.16)
H <J dwzf dridy;|Vu(@, -y, ,$d)|> :
i=3 \J—© —
Iterating the same procedure n times (i.e. integrating again over drg,--- ,dzg) we finally

get

d

E=
de1~-~dmd|u(x)|d%l < (fdx1-~-dxd|Vu(x1,--- 7ncd)|) ) (A.17)

which proves the inequality for p = 1.
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Let us now consider 1 < p < d. Let v := |u|”, v > 1 to be chosen later. By Eq. (A.17),
we have

ot . 2 »
U|u|£“1dx) < J|V|umdx = yf|uw*1\w|dx <~ <J|u|(7_1)p—1dx> <J|vu|p) ,
(

A.18)

where in the last step we used the Holder with ¢ = p/(p —1). Now let us choose « such that

% = (y—1);%;. That is,

7(dil_pr__pf1:7<(d_pl)_(;_1)>_—pfl, (A.19)

i.e. v =p(d—1)/(d—p) > 1. Plugging this choice into Eq. (A.18)) we get:

(o) (o) 7 s(fow) .

with d—1 1 d—1)—d 1 d 1
d p dp dp p*
and hence J y
e pa A.29
i1 dp " (A.22)
We conclude that:
1 1
¥ P
<J dx|up*) <7 (J dx|Vup) , l<p<d, (A.23)
which is what we wanted to prove. u

This inequality can be used to prove that, in some cases, Sobolev spaces are embedded in
L7 spaces.

Theorem A.3 (Sobolev embedding). Let U < R% open and bounded. Let u € Wy*(U),
1<p<d. Then
lulzew) < CIVulr@w), — Vae[lp®], (A.24)

with C = C(p,q,U).
Remark A.4. i) In particular, ¢ = p is allowed, since p* > p. We have:
lull ey < ClIVul Lo, (A.25)

which takes the name of Poincaré inequality.

i) The Poincaré inequality allows us to prove that on H{(U), the norms |Vul r»y and
|ull ey are equivalent. In fact, one trivially has:

IVul ey < llullge ) (A.26)
and, by Poincaré inequality:
1
flzr) < (1l + V0120 00) 7 < CIVUlLr o) (A.27)
it1) Theorem is telling us that
we HY(U) = ue LYU), Vg € [1,p*]. (A.28)

e stress that the smallest suc space 18 . Indeed, by Holder:
W hat th ll h LU is LP™ (U). Indeed, by Hold

Jull, = (L ozx|u(:c)|q)é < (L dx|u(x)|qp)“1” (L dx)pl/ <Clulye,  (A29)

where ; +% =landp= % > 1. We say that the space HY(U) is embedded in LP* (),

* d
D :ﬁ71<p<n.
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i) Finally, the Sobolev inequality can be extended to functions in HP(U), under
the assumption that the boundary of U is of class C*.

Proof. Let u € Wy*(U). Then, there exists {Uum }men, Um € CP(U) such that u,, — u in
WLP(U). Let us extend u,, to R?, setting u,, = 0 on RA\U. By the GNS inequality,

[tm — willpx < C|D(tm —w)|p =0 as m,l — 0. (A.30)
Thus, {u,} is a Cauchy sequence in LP* (U), and hence u,, — @ in LP* (U). Being U
bounded, @ € L4(U), Vg : 1 < ¢ < p*. In particular, @ € LP(U), which shows that u = @, and
therefore that u € L? for all ¢ € [1, p*].
By the GNS inequality:
HumHLP* () < CHVumHLp(U) . (A.31)

Then, by convergence in W1P(U):

IVum| Loy = IV (um —u +u)| oy = |Vu|rr@w) asm — oo (A.32)
Also,
”UmHLp*(U) = Cllum| Loy, V1 <gq<p* (A.33)
and
[t | Laqory = 1t — v+ | Loy = |[ulLaqry as m — . (A.34)

by convergence in LP* (U). All in all:
lul 2oy < ClIVul Lo (), (A.35)

for some C = C(U,d,p). [ ]

A.2 'Weak to strong convergence
Here we shall use the result of the previous section to prove the following result.

Theorem A.5 (Weak to strong convergence). Suppose that 1; — v weakly in H*(R?). Let
A c R? be any set of finite measure and let x 4 be its characteristic function. Then:

XAt — xav strongly in LP(R?) (A.36)

for every 1 < p < 2d/(d — 2) when d = 3, every p < o0 when d = 2 and every p < o when
d = 1. In fact, for d =1 the convergence is pointwise and uniform.

Proof. The proof is based on an approximation argument via the heat kernel e®t. We claim
that for any 1 € H'(RY):
[ —e®epll2 < [ Vel2vE, (A.37)

where:

(€0)(@) = s |, expl=le — v /Aoy (A.39)

The estimate (A.37)) follows from Plancherel theorem:
o= el = | 19U - exp{—lkPH)Pak
< | BwEkEe= Vol (A.39)

where we used that (1 —exp{—|k|?*t} < min{1, |k|?t}. By the uniform boundedness principle,
see Theorem 2.12 of [3], the weak convergence ¥; — ¢ in H'(R?) implies that |[V;[2 < C
uniformly in j. Therefore,

[ = el < VEC . (A.40)
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Now, let ¢; = et1p;. Assuming for the moment that ¢; converges strongly in L?(R?) to
¢ = eA), we shall prove that y 417 converges strongly to x 4t. Simply note that:

Ixa(Wj — )2 < [xa(®; — &5)l2 + [xal(d; — D)2 + [xald —¥)]2 - (A.41)
The first and the last term can be bounded using that:
Ixaw; =65l <y = 65l2 < VEIV]2
Ixa(é =)z l6 — vz < ViV (A.42)

Again by the uniform boundedness principle, [V1);[2 < C. Also, by the lower semicontinuity
of norms, Theorem 2.11 of [3],

<
<

[Vle < liminf [V, < © (A.43)
]—)

we see that the sum of the first and of the last term in Eq. (A.41) is estimated by 2C+/t.
Therefore, under the assumption that ¢; converges strongly to ¢, for any € > 0 we can find
t and j such that:

Ixa(W; — )2 <2CVE+ |xald; —d)|2<e. (A.44)

This proves the claim Eq. (A.36) for p = 2. It remains to prove that x 4¢; — xa¢ strongly
in L2(R%). To see this, note that by (A.38) and Holder inequality:

@I6y@)] < Ary 2 ( [epi-2e/ands) o). ()

By the uniform boundedness principle, |l < [[¢;]g, < C. Therefore, ¢; is bounded
uniformly in j. On the other hand, ¢;(z) — ¢(x) pointwise, since ¥; — 1) weakly in H'
and for every fixed z the function y > exp{—|z — y|?/4t} is in the dual of H'. Therefore,
pointwise convergence follows from dominated convergence. This concludes the proof of

(A.36) for p = 2.
Let us now prove Eq. (A.36) for all p such that 1 < p < 2d/(d — 2). Consider first
1 < p < 2. By Hoélder inequality:

Ixa® =¥y < Ixalrlxa@® =52, (A.46)

with 1/p = 1/r + 1/2. Using that x4 € L" for all r, this proves the theorem for 1 < p < 2.
Finally, consider p > 2. Again by Holder:

Ixa(@ =)y < Ixat — )13 Ixa(® = v;)lg™ (A.47)

with o = (1/p — 1/q)(1/2 — 1/q), which is strictly positive if p < ¢. Then, by the Sobolev
inequality:

Ixa(® = )l Loy = ¥ = ¥illLecay < O

where we used again the uniform boundedness principle and the lower semicontinuity of the
norm. [

VY[ L2@ay + [V ]L2a)) < C7, (A.48)

B Bathtub principle

In this appendix we shall briefly discuss the bathtub principle, used for instance in Section
We refer the reader to [3] for a more extensive discussion. Let p be a Borel measure,
and let f be a real valued function, such that u(z : f(z) < t) is bounded for all ¢t. Consider
the functional

I(g) = j dpu(z) F(@)g(x) (B.1)

defined on g(x) such that 0 < g(z) < 1 and {du(z) g(z) = G. We are interested in minimizing
I(g) over all such functions. We claim that:

inf I(g) = I(g+) ,  g«(x) = x(f(z) < 5) + ex(f(z) = s), (B.2)
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where the numbers s and ¢ are defined as:

s =sup{t | pulz: f(z) <t) <G}, cu(z: flz)=5)=G—p(z: f(x) <s). (B.3)

Notice that §du(z)g«(z) = G. First of all, let us prove that ¢ < 1. Suppose that u(f(z) =
s) # 0; otherwise, ¢ is undetermined. Suppose that ¢ > 1. Then:

Jan@x(r) < 9) < [duta) 9.(0) = 6 (B.4)

Moreover,

p(f(z) < s)

f du(z) x(f(z) < 3)

[ dnto) Jim x(¢@) < s+ 1)
Tim (/@) < s+ 1/n) (B.5)

where the last step follows from monotone convergence theorem: the function x(f(z) <
s+1/n) is nonincreasing in n, and its integral is bounded uniformly in n, by the assumptions
on f. Therefore:

lim p(f(x) <s+1/n) <G (B.6)

n—0o0

which means that there exists IV large enough such that:
p(f(z) <s+1/N)<G. (B.7)

This however contradicts the definition of s in Eq. (B.3)), hence ¢ < 1.
To prove that g, is a minimizer, it is enough to show that given any h such that 0 <
h(z) <1 and §du(z) h(z) = G, one has I(gsx — h) < 0. Let us check this. We write:

Ige—h) = f du(z) () (g () — h(z)) + f du(2) (@) (ge(z) — h(@))

>s

" j @) f(@)(ga(x) ~ h(a)

< 5| du@)on@) ~h@) + | du@)fie)(-hi)
f<s f>s
s f dp()(gs(x) ~ h))
< s Jf<sdu(ﬂf)(g*(fc) @) + s ff dyu(x)(~h(x)

bs | duo)oul@) - b))
= o] au@onte) ~n@) + | au@)onte) - i)
f<s f>s

| dute)oua) - ) (B3)

where in the first inequality we used that g4 (x) = 1is f(z) < s, and in the second inequality
that g (z) = 0 if f(z) > s. Therefore,

Hgs = 1) < 5 [ du(a) g (2) ~ (@) = (G = ) =0, (B.9)

which concludes the proof of the claim.
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