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1 Introduction

1.1 The Schrödinger equation

Let us consider the evolution of one particle in Rd, with d “ 1, 2, 3 the physically relevant
choices of the dimension d. We will assume the particle to be pointlike. We suppose that
the particle is exposed to the action of an external potential V : Rd Ñ R.

In quantum mechanics, the state of the system is described by the wave function ψpt, xq,
ψ : Rˆ Rd ÞÑ C, square integrable:

}ψpt, ¨q}22 :“

ż

Rd
|ψpt, xq|2dx “ 1 . (1.1)

The physical interpretation of |ψpt, xq|2 is that of probability distribution for finding the
particle at px, tq. That is, the probability for finding the particle at the time t in the region
A Ă Rd is:

PψtpAq “
ż

A

|ψpt, xq|2dx . (1.2)

The evolution of the particle is defined by the time-dependent Schrödinger equation:

i~
B

Bt
ψpt, xq “ ´

~2

2m
∆xψpt, xq ` V pxqψpt, xq “: Hψpt, xq , (1.3)

where ~ is called the (reduced) Planck constant, and it has the dimensions of an action,
r~s “ renergys ˆ rtimes. The Laplace operator is defined as:

∆x “

d
ÿ

j“1

B2

Bx2
j

. (1.4)

The differential operator H is called the Hamiltonian of the system. The Schrödinger equa-
tion is an example of partial differential equation, and the discussion of existence and unique-
ness of solutions will be part of the present course.

Given a Hamiltonian H, the corresponding time-independent Schrödinger equation is:

Hψ “ Eψ , (1.5)

where the (real) number E has the interpretation of energy of the system. A square inte-
grable solution of the time-independent Schrödinger equation is called an eigenstate of the
Hamiltonian H. Notice that if ψ is an eigenstate of H, then ψptq “ e´iEt{~ψ is a solution of
the time-dependent Schrödinger equation.

Comparison with classical mechanics. Recall the motion of particle in classical
mechanics. The trajectory qptq P Rd of a classical particle is determined by Newton’s equa-
tion:

m:qptq “ F pqptqq “ ´∇V pqptqq , pqp0q, 9qp0qq “ pq0, 9q0q . (1.6)

This second order ordinary differential equation can be rewritten as a first order differential
equation for the pair ppptq, qptqq, with pptq “ m 9qptq the momentum of the particle. The
Hamilton’s equation of motion for the particle is:

d

dt

ˆ

pptq
qptq

˙

“

ˆ

´∇V pqptqq
1
mpptq

˙

”

ˆ

´∇qHpq, pq
∇pHpp, qq

˙

, (1.7)

with Hpp, qq “ |p|2

m ` V pqq the Hamiltonian of the particle. The Hamiltonian appearing
in the Schrödinger equation is called the canonical quantization of the classical Hamilto-
nian, obtained by replacing the position variable q by a multiplication operator x, and the
momentum variable p by the differential operator ´i~∇x.

Quantum mechanics is a more fundamental theory of nature than classical mechanics. A
natural question is to understand how classical mechanics emerges from quantum mechanics.
This question will be discussed later in the course, while introducing semiclassical analysis.
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The main goal of this course is to develop the mathematical theory of the Schrödinger
equation, for one particle and for many particle systems. Notice that the Schrödinger equa-
tion is a linear evolution equation, in contrast to Hamilton’s equation of motion; this seems
to suggest that its mathematical study should be “easy”. This is not true, due to the fact
that the solution of the equation lives in an infinite dimensional space, and that the operator
H is unbounded.

2 Function spaces

In this section we shall introduce function spaces that will play an important role in the
mathematical formulation of quantum mechanics. We shall only review some basic results,
and we will refer the reader to [3, 5] for more details.

2.1 Ck spaces

Definition 2.1. A multiindex α P Nd0 is a d-tuple α “ pα1, . . . , αdq, with αj P N0, and

|α| “
řd
j“1 αj. For x P Rd we define:

xα “ xα1
1 xα2

2 ¨ ¨ ¨xαdd and Bαx :“
B|α|

Bxα1
1 ¨ ¨ ¨ Bxαdd

. (2.1)

Definition 2.2. Let A Ď Rd, k P N0. We define:

CkpAq “
!

f | f : AÑ C, Bαx f is continuous for all α such that |α| ď k
)

. (2.2)

Also, we denote by Ckb pAq the restriction of CkpAq to functions with bounded derivatives:

Ckb pAq “
!

f | f P CkpAq and there exists cα ą 0 such that @|α| ď k sup
xPA

|Bαx fpxq| ď cα

)

.

(2.3)

Remark 2.3. It turns out that the space Ckb pAq is a Banach space, if endowed with the
following norm:

}f}Ckb pAq “
k
ÿ

n“0

ÿ

α:|α|“n

sup
xPA

|Bαx fpxq| . (2.4)

We also define the space of Ck functions with compact support.

Definition 2.4. Let:
supppfq “ tx P Dompfq | fpxq ‰ 0u (2.5)

be the support of the function f . Let A Ď Rd, k P N0. We define:

Ckc pAq “
!

f | f P CkpAq s.t. supppfq XA is compact.
)

(2.6)

Remark 2.5. Ckc pAq Ď Ckb pAq Ď CkpAq.

Example 2.6. (i) Let A “ R, and fpxq “ x. We have f P C8pRq. However, f R C8b pRq,
since f is unbounded. Also, f R C8c pRq, since supppfq “ R.

(ii) Consider the “bump function”:

fpxq “

"

exp
`

´ 1{p1´ x2q
˘

x P p´1, 1q
0 otherwise.

(2.7)

It is easy to see that all derivatives of f are continuous in x P R, and are compactly
supported in p´1, 1q. Thus, f P C8c pRq.
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2.2 Lp spaces

Definition 2.7. Let A Ď Rd, measurable. Let p P R, 1 ď p ă 8. We define:

LppAq :“
!

f | f : AÑ C, f measurable,

ż

A

dx |fpxq|p ă 8
)

. (2.8)

Remark 2.8. The integral
ş

A
dx ¨ ¨ ¨ has to be understood as a Lebesgue integral. If the

function f is Riemann integrable, then it coincides with the standard Riemann integral.
More generally, one could replace dx by a Lebesgue measure µpdxq. In that case, we shall
denote the corresponding Lp space by LppA, dµq. One can check that Lp is a vector space.

Besides being vector spaces, Lp spaces are also Banach spaces, if endowed with the
following norm.

Definition 2.9. Let f P LppAq, 1 ď p ă 8. We define:

}f}LppAq :“
´

ż

A

dx |fpxq|p
¯1{p

. (2.9)

One can check that the map } ¨ }LppAq has the following properties.

(i) }λf}LppAq “ |λ|}f}LppAq, λ P C.

(ii) }f}LppAq “ 0 ô fpxq “ 0 a.e.

(iii) }f ` g}LppAq ď }f}LppAq ` }g}LppAq (Minkowki inequality).

These properties imply that } ¨ }LppAq is a semi-norm. The reason why it is not a norm is
that it is easy to imagine functions such that }f}LppAq “ 0 and fpxq ‰ 0 (take f to be zero
everywhere except at a point). To ensure that }¨}LppAq defines a norm, one has to redefine Lp

by identifying functions that differ on a zero measure set (e.g., on a countable set of points).
Given f P Lp, we define an equivalent class of functions as

f̃ “
 

f 1 P Lp | f ´ f 1 “ 0 a.e.
(

(2.10)

We redefine Lp as the set of the equivalence classes of functions f̃ .

The L8 space is defined as follows.

Definition 2.10.

L8pAq :“ tf | f : AÑ C , f measurable , DK ą 0 s.t. |fpxq| ď K a.e. u . (2.11)

A norm on L8 is defined by taking the essential supremum of f :

}f}L8pAq :“ inf tK | |fpxq| ď K a.e. in Au . (2.12)

Here we shall list some important facts about Lp spaces, without proof. We refer the
reader to [3] for details. Whenever it does not generate ambiguity, we might replace } ¨ }LppAq
by } ¨ }p.

Theorem 2.11 (Completeness). Let 1 ď p ď 8, and let f i, i “ 1, 2, 3, ¨ ¨ ¨ be a Cauchy
sequence in LppAq:

lim
i,jÑ8

}f i ´ f j}p “ 0. (2.13)

Then, there exists f˚ P L
ppAq such that

lim
iÑ8

}fi ´ f˚}p “ 0 . (2.14)

Remark 2.12. We use the notation fi Ñ f˚ and we say that f i converges strongly to f˚ in
Lp.

Another important property of Lp spaces, for p ă 8, is that their elements can be
approximated arbitrarily well by smooth, compactly supported functions. In other words,
C8c pAq is dense in LppAq.

Theorem 2.13 (Approximation by C8c functions.). Let f P LppRdq, 1 ď p ă 8. Then,
there exists a sequence of functions tf iuiPN, f i P C8c pRdq such that f i Ñ f in Lp.
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2.3 Hilbert spaces

Let H be a vector space over C. A map x¨, ¨y : H ˆH Ñ C is called a scalar product (or a
inner product) over H if:

(i) it is linear in its second variable, that is:

xψ, αϕ1 ` βϕ2y “ αxψ,ϕ1y ` βxψ,ϕ2y (2.15)

(ii) it is antisymmetric, that is:
xψ,ϕy “ xϕ,ψy (2.16)

(iii) it is positive definite, that is:
xψ,ψy ě 0 (2.17)

for all ψ P H, with xψ,ψy “ 0 if and only if ψ “ 0.

Every scalar product induces a norm on H, defined through:

}ψ} “
a

xψ,ψy . (2.18)

The triangle inequality for } ¨ } follows from the Cauchy-Schwartz inequality

|xψ,ϕy| ď }ψ}}ϕ} . (2.19)

In fact:

}ψ ` ϕ} “
a

xψ ` ϕ,ψ ` ϕy

“
a

}ψ}2 ` }ϕ}2 ` 2Rexψ,ϕy

ď
a

}ψ}2 ` }ϕ}2 ` 2}ψ}}ϕ}

“ }ψ} ` }ϕ} . (2.20)

If the vector space H equipped with the scalar product x¨, ¨y is complete, the pair pH, x¨, ¨yq
is called a Hilbert space.

Example 2.14. (a) The space Cn equipped with the scalar product:

xx, yyCn “
n
ÿ

j“1

x̄jyj (2.21)

is a Hilbert space.

(b) The space `2 of the square summable sequences pxjqjPN, equipped with the scalar product:

xx, yy`2 “
8
ÿ

j“1

x̄jyj (2.22)

is a Hilbert space.

Example 2.15 (L2 space.). In quantum mechanics, a special role is played by the space of
square integrable functions, L2pAq. This space turns out to be a Hilbert space, if equipped
with the following scalar product:

xf, gy “

ż

dx fpxqgpxq . (2.23)

It is easy to see that the scalar product xf, gy is well defined, for all f, g P L2pAq:

|xf, gy| ď

ż

dx |fpxq||gpxq|

ď
1

2

ż

dx |fpxq|2 `
1

2

ż

dx |gpxq|2

”
1

2
}f}L2pAq `

1

2
}g}L2pAq ă 8 . (2.24)

Also, it is easy to see that Eq. (2.23) fulfills the properties (i)–(iii) spelled above.
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3 The free Schödinger equation

To start our mathematical study of the Schrödinger equation we shall consider the simplest
possible situation, corresponding to a free particle in Rd. We look for a solution ψ : RˆRd Ñ
C of the equation:

iBtψpt, xq “ ´
1

2
∆xψpt, xq , (3.1)

where we set ~ “ 1 and m “ 1. A special solution can be found by separation of variables.
Consider first the time-independent Schrödinger equation:

´
1

2
∆xφpxq “ λφpxq . (3.2)

Then, a solution of Eq. (3.1) is obtained by setting ψpt, xq “ e´iλtφpxq. We are left with
finding a solution of the time-independent equation (3.2). A family of solutions for such
equation is given by the plane waves on Rd:

φkpxq “ eik¨x “ eipk1x1`...`kdxdq for k P Rd . (3.3)

In fact:

´∆xφkpxq “
1

2
pk2

1 ` . . .` k
2
dqe

ik¨x ”
|k|2

2
φkpxq . (3.4)

Thus, we found a first solution of the free Schrödinger equation, Eq. (3.1):

ψkpx, tq “ e´i
k2

2 teik¨x . (3.5)

However, the above solution does not make sense in quantum mechanics, since ψpt, ¨q R
L2pRdq for all t:

ż

dx |ψkpt, xq|
2 “ `8 . (3.6)

Nevertheless, we can use the above unphysical solutions to construct physical solutions of the
Schrödinger equation, by using the fact that the Schrödinger equation is a linear equation:
a linear combination of solutions of Eq. (3.1) is a solution of Eq. (3.1). More precisely, we
shall consider solutions of the form:

ψpx, tq “

ż

Rd
ρpkqψkpx, tqdk ”

ż

Rd
ρpkqe´ip

k2

2 t´k¨xqdk . (3.7)

Formally, ψpx, tq is a solution of Eq. (3.1), with initial datum at t “ 0:

ψpx, 0q ” ψ0pxq “

ż

Rd
ρpkqeik¨xdk . (3.8)

The questions we will address here are: for which class of ρpkq does the function ψpt, xq
makes sense from a quantum mechanical viewpoint, namely ψpt, ¨q P L2pRdq?

3.1 The Fourier transform on L1

We are now ready to introduce the Fourier transform for L1 functions.

Definition 3.1. Let f P L1pRdq. We define the Fourier transform f̂ ” Ff as

pFfqpkq ” f̂pkq “
1

p2πq
d
2

ż

dx e´ik¨xfpxq, k P Rd. (3.9)

We define the inverse Fourier transform f̌ ” F´1f as:

pF´1fqpkq ” f̌pkq “
1

p2πq
d
2

ż

Rd
dx eik¨xfpxq . (3.10)
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Remark 3.2. Since |e´ik¨x| “ 1 and f P L1pRdq, f̂ and f̌ are well defined:

|f̂pkq| ď
1

p2πq
d
2

ż

dx |fpxq| “
1

p2πq
d
2

}f}1 . (3.11)

The next lemma will be useful to study the regularity properties of the Fourier transform.

Lemma 3.3. Let Γ Ă R be an open interval, and f : RdˆΓ Ñ C such that fpx, γq P L1pRdxq
for all γ P Γ. Let Ipγq “

ş

Rd fpx, γqdx. Then, the following is true.

(a) If the map γ ÞÑ fpx, γq is continuous for almost all x P Rd, and if there exists a function
g P L1pRdq such that supγPΓ |fpx, γq| ď gpxq for almost all x P Rd, then Ipγq is also
continuous.

(b) If the map γ ÞÑ fpx, γq is continuously differentiable for almost all x P Rd, and if there
exists a function g P L1pRdq such that supγPΓ |Bγfpx, γq| ď gpxq for almost all x P Rd,
then Ipγq is also continuously differentiable. Moreover:

dI

dγ
pγq “

d

dγ

ż

Rd
fpx, γqdx “

ż

Rd

B

Bγ
fpx, γqdx . (3.12)

Proof. The proof immediately follows from the dominated convergence theorem, see [3].

Lemma 3.3 has important consequences on the behavior of the Fourier transform.

Theorem 3.4 (Riemann-Lebesgue.). Let f P L1pRdq. Then:

f̂ P C8pRdq :“
!

f P CpRdq | lim
RÑ8

sup
|x|ąR

|fpxq| “ 0
)

. (3.13)

Proof. The continuity immediately follows from Lemma 3.3. The falloff at infinity will follow
from a result we will discuss later on.

Next, we will focus on the properties of the “nicest possible” functions, namely the
Schwartz functions. Later, we will come back on a more general class of functions, by using
approximation arguments.

Definition 3.5 (Schwartz functions.). The Schwartz space SpRdq is the set of functions
f P C8pRdq such that:

}f}α,β :“ }xαBβxf}8 ă 8 , (3.14)

for all multiindices α, β.

That is, the functions in SpRdq decay faster than any inverse polynomial in x, and the
same is true for all their partial derivatives. Obviously, if f P S then xαBβf P S for all
multiindices α and β. Also, SpRdq Ă LppRdq. Finally, the maps } ¨ }α,β : S Ñ r0,8q are
norms.

Remark 3.6. Notice that C8c pRdq Ă SpRdq, which means that SpRdq is dense in LppRdq,
1 ď p ă 8.

Definition 3.7. We say that fn Ñ f in S if limnÑ8 }f ´ fn}α,β Ñ 0 for all α, β P Nd0.

Proposition 3.8 (S is a metric space.). Convergence in S is equivalent to convergence with
respect to the metric:

dSpf, gq “
8
ÿ

n“0

2´n sup
|α|`|β|“n

}f ´ g}α,β
1` }f ´ g}α,β

. (3.15)

Remark 3.9. Notice that dSpf, gq ď 2.
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Proof. Let us first check that dSpf, gq is a metric. Positivity is trivial, and also symmetry:
dSpf, gq “ dSpg, fq. From the definition, we see that dSpf, gq “ 0 implies }f ´ g}0,0 “ }f ´
g}8 “ 0, that is f “ g. Also, the triangle inequality holds true: dSpf, gq ď dSpf, hq`dSph, gq,
since } ¨ }α,β satisfies the triangle inequality and the function hpxq “ x{p1` xq is monotone
increasing and satisfies hpx` yq ď hpxq`hpyq. This shows that dS is a metric. Convergence
in S immediately implies convergence with respect to dSpf, gq. On the other hand, suppose
that dSpfn, fq Ñ 0. To prove convergence in S we use that, for all α, β there exists a constant
Cα,β ą 0 such that:

}fn ´ f}α,β ď Cα,βdSpfn, fq . (3.16)

Therefore, convergence with respect to dS implies convergence in S.

Theorem 3.10. The Schwartz space is complete.

Proof. Let pfmq be a Cauchy sequence in S. Then, pfmq is a Cauchy sequence with respect
to the (semi-)norms } ¨ }α,β . Also, convergence in S implies that xαBβxfm Ñ gα,βpxq in L8

norm, with gα,β P CbpRdq, the space of continuous, bounded functions. This last fact is
implied by the completeness of CbpRdq with respect to the } ¨ }8 norm, recall Remark 2.3.

We are left with showing that g :“ g0,0 P C
8pRdq, and that xαBβxg “ gα,β . If so, g P S

and dSpfm, gq Ñ 0. For simplicity, let us consider the case d “ 1. We would like to show that
g P C1pRq and that Bxg “ g0,1. Higher derivatives and higher dimensions can be studied in
the same way. For fm P S, we write:

fmpxq “ fmp0q `

ż x

0

f 1mpyq dy . (3.17)

We know that fm Ñ g and f 1m Ñ g0,1 uniformly. Therefore, the mÑ 8 limit of Eq. (3.17)
is:

gpxq “ gp0q `

ż x

0

g0,1pyq dy . (3.18)

This proves that g P C1pRq with g1 “ g0,1.

Lemma 3.11 (Properties of F on S.). The maps F and F´1 are continuous, linear maps
from S into itself. Moreover, for all α, β it holds:

´

pikqαBβkFf
¯

pkq “
´

FBαx p´ixqβf
¯

pkq . (3.19)

Remark 3.12. In particular,

zpxfqpkq “ ip∇kf̂qpkq and {p∇xfqpkq “ ikf̂pkq . (3.20)

Proof. Let f P S. Recall:

f̂pkq “
1

p2πqd{2

ż

Rd
fpxqe´ik¨xdx . (3.21)

Then:

p2πqd{2
´

pikqαBβkFf
¯

pkq “

ż

Rd
pikqαBβk e

´ik¨xfpxq dx

“

ż

Rd
pikqαp´ixqβe´ik¨xfpxq dx

“

ż

Rd
p´1q|α|pBαx e

´ik¨xqp´ixqβfpxq . (3.22)

Integrating by parts:

p2πqd{2
´

pikqαBβkF
¯

pkq “

ż

Rd
e´ik¨x

`

Bαx p´ixq
βfpxq

˘

dx

” p2πqd{2
´

FBαx p´ixqβf
¯

pkq . (3.23)
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This shows that, in particular, Ff P C8. Moreover:

}f̂}α,β “
›

›kαBβk f̂
›

›

8
ď

1

p2πqd{2

ż

Rd
|Bαxx

βfpxq|
p1` |x|2qd

p1` |x|2qd
dx

ď
1

p2πqd{2
sup
xPRd

ˇ

ˇ

ˇ
p1` |x|2qdBαxx

βfpxq
ˇ

ˇ

ˇ

ż

Rd

1

p1` |x|2qd
dx

ď C
m
ÿ

j“0

sup
|α̃|`|β̃|“j

}f}α̃,β̃ , (3.24)

with m “ maxt|α|, |β|u`2d, and for C ą 0 independent of f . Therefore, Ff P S. Eq. (3.24)

also shows that fn Ñ f in S implies f̂n Ñ f̂ in S. In particular, Eq. (3.24) can be used to
show that F : S Ñ S is continuous, with respect to the topology induced by dSp¨, ¨q. In fact,
suppose that fn Ñ f with respect to dS . Then, by Eq. (3.24), there exists Cα.β ą 0 such
that:

}f̂n ´ f̂}α,β ď Cα,βdSpfn, fq . (3.25)

Theorem 3.13. The map F : S Ñ S is a continuous bijection, with inverse F´1.

Proof. We will show that F´1 ˝F “ 1S (the same proof gives F ˝F´1 “ 1S). Since F´1 ˝F
and 1S are both continuous in S, it is sufficient to prove their equality on a dense subset of
S.

Lemma 3.14. C8c pRdq is dense in SpRdq.

Proof. (of Lemma 3.14.) Let:

Gpxq “

"

exp
`

´ 1{p1´ |x|2q ` 1
˘

for |x| ă 1
0 otherwise.

(3.26)

Let f P SpRdq, and let fnpxq “ fpxqGpx{nq. Clearly, fn P C
8
c pRdq. Moreover, limnÑ8 }fn´

f}α,β “ 0 for all α, β.

Let us now come back to the proof of Theorem 3.13. By Lemma 3.14, it is sufficient to
prove the claim of Theorem 3.13 on C8c pRdq. Let f P C8c pRdq. Let us denote by Wm Ă Rd
a cube in Rd, centered in the origin, with side 2m. Let us choose m large enough so that
supppfq Ă Wm. Let Km “ π{mZd. We can express the function f on Wm as the uniformly
convergent Fourier series:

fpxq “
ÿ

kPKm

fke
ik¨x , (3.27)

with Fourier coefficients:

fk “
1

VolpWmq

ż

Wm

fpxqe´ik¨xdx “
1

VolpWmq

ż

Rd
fpxqe´ik¨xdx “

p2πqd{2

p2mqd
pFfqpkq . (3.28)

Therefore we have:

fpxq “
ÿ

kPKm

pFfqpkqeik¨x

p2πqd{2

´ π

m

¯d

. (3.29)

The observation is that the right-hand side of Eq. (3.29) is a Riemann sum, over cubes of
volume pπ{mqd and with k the center of the cube. Therefore, we have:

fpxq “ lim
mÑ8

ÿ

kPKm

pFfqpkqeik¨x

p2πqd{2

´ π

m

¯d

“
1

p2πqd{2

ż

Rd
pFfqpkqeik¨xdk “ pF´1 ˝ Ffqpxq .

(3.30)
This proves that F´1 ˝ F “ 1C8c pRdq.

10



Proposition 3.15. Let f, g P SpRdq. Then:
ż

Rd
f̂pxqgpxqdx “

ż

Rd
fpxqĝpxqdx . (3.31)

Moreover,
}f}2 “ }f̂}2 . (3.32)

Proof. By Fubini’s theorem,
ż

Rd

´

ż

Rd
e´ik¨xfpkqdk

¯

gpxqdx “

ż

Rd

´

ż

Rd
e´ik¨xgpxqdx

¯

fpkqdk . (3.33)

Therefore, p2πqd{2
ş

dx f̂pxqgpxq “ p2πqd{2
ş

dk ĝpkqfpkq. This proves Eq. (3.33). To prove

Eq. (3.32), we use that Ffpxq “ F´1fpxq, which can be easily checked. Thus, Eq. (3.32)
follows as a special case of Eq. (3.33), choosing gpxq “ Ffpxq.

Example 3.16 (The Fourier transform of a Gaussian.). Let λ ą 0, and let gλpxq “ exp
`

´

λ |x|
2

2

˘

be the Gaussian function. Then, we claim that:

ĝλpkq “ λ´
d
2 exp

ˆ

´
|k|2

2λ

˙

. (3.34)

To prove Eq. (3.34), we proceed as follows. By scaling, it is enough to consider the case

λ “ 1. Also, since g1pxq “
śd
i“1 exp

´

´
x2
i

2

¯

, it is enough to consider the case n “ 1. We

have:

ĝ1pkq “
1

p2πq
1
2

ż

dxe´ik¨xe´
x2

2 “
1

p2πq
1
2

ż

dxe´
px`ikq2

2 ´ k
2

2 ” g1pkqfpkq, (3.35)

where we defined fpkq “ 1

p2πq
1
2

ş

dxe´
px`ikq2

2 . By dominated convergence, we can differentiate

under the integral sign:

d

dk
fpkq “

ż

R

dx

p2πq
1
2

p´px` ikqqie´
px`ikq2

2 “

ż

R

dx

p2πq
1
2

i
d

dx
e´

px`ikq2

2 “ 0. (3.36)

This means that fpkq is a constant and, in particular, fpkq “ fp0q “ 1. This proves Eq.
(3.34).

3.2 Solution of the free Schrödinger equation

Let us now come back to the Schrödinger equation for one free particle in Rd:

iBtψpt, xq “ ´
1

2
∆xψpt, xq . (3.37)

Let us take the Fourier transform in both sides. Proceeding formally, we get:

iBtψ̂pt, kq “
1

2
|k|2ψ̂pt, kq . (3.38)

The advantage of taking the Fourier transform is that now we are left with an ordinary
differential equation of the first order. The solution is:

ψ̂pt, kq “ e´i
|k|2

2 tψ̂p0, kq . (3.39)

To get a solution of the original equation (3.37), we have to take the inverse Fourier transform.
We get:

ψpt, xq “ pF´1e´i
|k|2

2 tFψ0qpxq , (3.40)

with initial datum ψp0, xq “ ψ0pxq. The next theorem shows that the above formal manip-
ulation can be made rigorous for a suitable class of regular initial data.
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Theorem 3.17 (Existence of a unique global solution for the free Schrödinger equation.). Let
ψ0 P SpRdq. Then, there exists a global solution ψ P C8pRt,SpRdqq of the free Schrödinger
equation with ψp0, xq “ ψ0pxq for t ‰ 0, given by the expression:

ψpt, xq “
1

p2πitqd{2

ż

Rd
ei
|x´y|2

2t ψ0pyqdy . (3.41)

Moreover, }ψpt, ¨q}L2pRdq “ }ψ0}L2pRdq.

Proof. To begin, notice first that, for ψ0 P S, the expression (3.40) is well defined. Hence,
Eq. (3.40) is a solution of the free Schrödinger equation (3.37). Next, we shall show that

ψ P C8pRt,SpRdqq. Let us start by showing that t ÞÑ ψptq is differentiable. Let: 9ψpt, xq :“

´ipF´1 |k|
2

2 e´i
|k|2

2 tFψ0qpxq. Then, 9ψpt, ¨q P SpRdq. Furthermore, we claim that:

lim
hÑ0

›

›

›

ψpt` hq ´ ψptq

h
´ 9ψptq

›

›

›

α,β
“ 0 (3.42)

with respect to any } ¨ }α,β . By continuity of F and of F´1, this is equivalent to:

lim
hÑ0

›

›

›

ψ̂pt` hq ´ ψ̂ptq

h
´ 9̂ψptq

›

›

›

α,β
“ 0 , (3.43)

for all α, β. This follows from the smoothness of e´i
|k|2

2 t and from the decay of ψ̂0pkq:

›

›

›

ψ̂pt` hq ´ ψ̂ptq

h
´ 9̂ψptq

›

›

›

α,β
“ sup

kPRd

ˇ

ˇ

ˇ
kαBβk

´e´i
|k|2

2 pt`hq ´ e´i
|k|2

2 t

h
` i
|k|2

2
e´i

|k|2

2 t
¯

pFψ0qpkq
ˇ

ˇ

ˇ

Ñ 0 as hÑ 0. (3.44)

In the same way, one can prove that ψpt, xq P CkpRt,SpRdqq for any k ě 1, and hence
that ψpt, xq P C8pRt,SpRdqq. The uniqueness of the solution for ψ0 P S follows from the
uniqueness of the solution of (3.38). The formula (3.41) follows from an explicit computation,
using that:

lim
RÑ8

ż R

´R

e´αx
2

dx “

c

π

α
, (3.45)

for all α P C such that Reα “ 0. Finally, the isometry in L2 follows from the isometry
property of the maps F and F´1, proven in Eq. (3.32), and from the fact that |e´i|k|

2t{2| “ 1.

Remark 3.18 (Decay of the solutions of the Schrödinger equation.). The formula (3.41)
immediately implies that:

sup
xPRd

|ψpt, xq| ď
}ψ0}L1

p2πtqd{2
Ñ 0 as tÑ8. (3.46)

However, as we just proved, the L2 norm stays constant. This means that the solution of the
Schrödinger equation spreads in space. One speaks about the “spreading of the wave packet”.

Definition 3.19 (Polynomially bounded functions.). Let C8polpRdq be the space of the poly-

nomially bounded smooth functions: g P C8polpRdq if g P C8pRdq and if:

|Bαgpxq| ď Cαxxy
npαq :“ Cαp1` |x|

2q
npαq

2 , (3.47)

for all α.

Motivated by Lemma 3.11, we introduce the notion of pseudodifferential operator.

Definition 3.20 (Pseudodifferential operator.). Let f P C8polpRdq. Let Mf : S Ñ S be
the multiplication operator ψpxq Ñ fpxqψpxq. We define the pseudodifferential operator
fp´i∇xq : S Ñ S as:

pfp´i∇xqψqpxq :“ pF´1MfFψqpxq “ pF´1fpkqFψqpxq . (3.48)
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Remark 3.21. Notice that the mapping Mf : S Ñ S is continuous. The continuity of Mf

and of F implies the continuity of fp´i∇xq. For fpkq “ kα, one naturally has fp´i∇q “
p´iq|α|Bαx . For polynomial functions f , the corresponding pseudodifferential operators are
differential operators.

Example 3.22 (Translations and the free propagator.). Let a P Rd and Ta “ e´ia¨k. One
has Ta P C

8
pol and for ψ P SpRdq one has:

pTap´i∇qψqpxq “
1

p2πqd{2

ż

dk e´ik¨aeik¨xψ̂pkqdk “
1

p2πqd{2

ż

eik¨px´aqψ̂pkqdk “ ψpx´ aq .

(3.49)

The operator Tap´i∇q is called the translation operator. Another example is Pf pt, kq “

e´i
|k|2

2 t. One has Pf pt, ¨q P C
8
polpRdq and hence:

ψpt, xq “ pPf pt,´i∇xqψ0qpxq . (3.50)

This operator is also called the free propagator, and one also writes:

ψptq “ e
i
2 ∆xtψ0 . (3.51)

Example 3.23 (The heat equation and diffusion.). We can apply the previous theory to
solve the heat equation:

Btfpt, xq “
1

2
∆xfpt, xq , (3.52)

for fp0, ¨q “ f0 P SpRdq. Let t ą 0. The solution of Eq. (A.38) reads:

fptq “ e
1
2 ∆xtfp0q “W pt,´i∇xqf0 , (3.53)

with W pt, kq “ e´
k2

2 t. Notice that W ptq P C8pol only for t ě 0. In general, one cannot

establish existence of solutions of the heat equation for t ă 0. However, if f̂0 has compact
support, the corresponding solution of the heat equation exists for all times.

Definition 3.24 (Convolutions.). Let f, g P S. We define the convolution f ˚ g as:

pf ˚ gqpxq :“

ż

Rd
fpx´ yqgpyqdy . (3.54)

Here we list some properties of the convolution operation.

Theorem 3.25. Let f, g, h P S. The following is true.

(i) pf ˚ gq ˚ h “ f ˚ pg ˚ hq and f ˚ g “ g ˚ f .

(ii) The map g ÞÑ f ˚ g from S to S is continuous.

(iii) It follows that:
zf ˚ g “ p2πqd{2f̂ ¨ ĝ , (3.55)

and also xfg “ p2πq´d{2f̂ ˚ ĝ. Moreover, one has:

gp´i∇qf “ F´1pgf̂q “ p2πq´d{2ǧ ˚ f . (3.56)

Proof. The properties piq and piiiq easily follows from the definition. Concerning piiq, conti-
nuity follows from:

f ˚ g “ p2πqd{2F´1f̂Fg ; (3.57)

that is, the convolution with f corresponds to the combination of Fourier transform, mul-
tiplication by f , and inverse Fourier transform. All these maps are continuous, and their
composition preserves continuity. Thus piiq holds true.

Example 3.26 (The heat equation.). Consider:

Gpt, xq :“ p2πq´d{2pF´1W qpt, xq “
1

p2πtqd{2
e´

|x|2

2t . (3.58)

The function Gpt, xq is called the fundamental solution of the heat equation, and can be used
to construct more general solutions. In fact:

fpt, xq “ pW pt,´i∇xqf0qpxq “ pGptq ˚ f0qpxq “
1

p2πtqd{2

ż

Rd
e´

|x´y|2

2t f0pyqdy . (3.59)
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3.2.1 Comparison between Schrödinger, heat and wave equations

To conclude this section, let us compare the free Schrödinger equation to the heat equation
and the wave equation. For simplicity, we shall consider the case d “ 1.

The wave equation. The wave equation can be used to describe the motion of an
oscillating string of length L. Let fpx, tq be the wave deflection. The equation reads:

B2

Bt2
fpt, xq “

B2

Bx2
fpt, xq , (3.60)

with boundary conditions:
fpt, 0q “ fpt, Lq “ 0 . (3.61)

The acceleration of the string at the point is x is proportional to the curvature at the same
point, and this explains why the string oscillates.

The heat equation. The temperature profile for the temperature fpx, tq in a rod of
length L, which temperature is kept to zero at both ends, satisfies the heat equation:

B

Bt
fpt, xq “

B2

Bx2
fpt, xq , (3.62)

with boundary condition:
fpt, 0q “ fpt, Lq “ 0 . (3.63)

The rate at which the temperature changes at the position x is proportional to the curvature
at that point. Therefore, the temperature converges to the constant value fpxq “ 0.

The Schrödinger equation. The motion of one free quantum particle in one dimension
is described by the Schrödinger equation:

B

Bt
ψpt, xq “ i

B2

Bx2
ψpt, xq , (3.64)

with boundary condition:
ψpt, 0q “ ψpt, Lq “ 0 . (3.65)

As for the heat equation, it depends on the first time derivative. However, due to the presence
of the factor i, it gives rise to an oscillatory behavior of the solution. In fact, the function
ψpt, xq is now complex values, which we can picture as a time-dependent vector field in R2.
Even though the rate of change of the wave function is proportional to the curvature at the
point x, because of the i factor it is described by an orthogonal vector to ψpxq. Therefore,
in general both the argument and the modulus of ψpt, xq change in time.

3.3 Tempered distribution

The goal of this section is to extend the notion of partial differential equation to functions
that are not smooth, in fact not even differentiable in the standard sense. In particular, we
shall be interested in formulating the Schrödinger equation for initial data which are only in
L2pRdq.

Definition 3.27. The elements of the dual space S 1pRdq of SpRdq are called tempered dis-
tribution.

Remark 3.28. The dual space V 1 of a topological vector space V is the space of continuous
linear maps from V to C. For f P V and T P V 1, one defines the pairing of f and T as:

pf, T qV,V 1 :“ T pfq . (3.66)

Example 3.29. Let us discuss some examples of tempered distributions.
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(a) Let g : Rd ÞÑ C such that p1` |x|2q´mgpxq P L1pRdq for m P N. Then, the mapping

Tg : S ÞÑ C , f ÞÑ

ż

Rd
gpxqfpxq dx (3.67)

is linear and continuous, hence Tg P S 1.

Proof. Let fn Ñ f in S. Then,

lim
nÑ8

|Tgpfn ´ fq| ď lim
nÑ8

ż

Rd
|gpxq||fnpxq ´ fpxq| dx

ď }p1` |x|2q´mg}1 lim
nÑ8

}p1` |x|2qm|fn ´ f |}8 “ 0 . (3.68)

(b) The delta-distribution is defined as:

δ : S Ñ C , f ÞÑ δpfq :“ fp0q . (3.69)

Therefore, δ P S 1. One also writes:

δpfq “

ż

Rd
δpxqfpxq dx (3.70)

and:
ż

Rd
δpx´ aqfpxq dx “ fpaq . (3.71)

The expression Eq. (A.37) is formal: there exists no function δ : Rd ÞÑ C that
gives (A.37). Nevertheless, one can approximate δ P S 1 by functions, more and more
“peaked” at a, such that in the limit Eq. (A.37) holds true. For example, let g P L1pRq
with

ş

dx gpxq “ 1. Let:

gnpxq :“ ndgpnxq . (3.72)

Then, by dominated convergence, for any continuous bounded function f , and in par-
ticular for all f P S, one has:

lim
nÑ8

Tgnpfq “ lim
nÑ8

ż

R
gnpxqfpxq dx “ lim

nÑ8

´

ż

R
gnpxqfp0q dx`

ż

R
gnpxqpfpxq ´ fp0qq dx

¯

“ fp0q ` lim
nÑ8

ż

R
gpyqpfpy{nq ´ fp0qq dy “ fp0q ” δpfq . (3.73)

In the last step we used that the argument of the integral converges to zero pointwise in
x, as nÑ8, and dominated convergence theorem to bring the limit inside the integral.

Next, we shall introduce the notions of weak and weak˚ convergence.

Definition 3.30. Let V be a topological vector space and V 1 its dual.

(i) A sequence pmnq in V converges weakly to m P V if:

lim
nÑ8

T pmnq “ T pmq , for all T P V 1. (3.74)

One also writes w´ limnÑ8mn “ m or mn á m.

(ii) A sequence pTnq in V 1 converges in the weak˚ topology to T P V 1 if:

lim
nÑ8

Tnpmq “ T pmq , for all m P V . (3.75)

One also writes w˚ ´ limnÑ8 Tn “ T or Tn
˚
á T .

Theorem 3.31 (The adjoint map.). Let A : S Ñ S be a linear and continuous map. Then,
the map

A1 : S 1 Ñ S 1 , pA1T qpfq :“ T pAfq for all f P S (3.76)

is weak˚ continuous. The map A1 is called the adjoint of A.
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Proof. One has A1T P S 1, where A1T ” T ˝A is a continuous map on S. To prove the weak˚

continuity of A1 : S 1 Ñ S 1, we proceed as follows. Let Tn
˚
á T . Then, for each f P S:

lim
nÑ8

pA1Tnqpfq “ lim
nÑ8

TnpAfq “ T pAfq “ pA1T qpfq , (3.77)

that is A1Tn
˚
á A1T .

Remark 3.32. Strictly speaking, the above proof only shows sequential continuity in S 1.
This does not immediately imply continuity in S 1, since the topology of S 1 is not defined
through a metric. Nevertheless, the above argument can be repeated for a net on S 1, and net
continuity would imply continuity.

Next, we define the Fourier transform on S 1

Definition 3.33. For T P S 1, the Fourier transform pT P S 1 is defined as:

pT pfq :“ T pf̂q for all f P S. (3.78)

Remark 3.34. In other words, FS1 :“ F 1S . That is, the Fourier transform on S 1 is defined
as the adjoint of the Fourier transform on S.

Lemma 3.35. The Fourier transform F : S 1 Ñ S 1 is a weak˚ continuous bijection. More-
over, for f P S, pTf “ Tf̂ .

Proof. Since F : S Ñ S is continuous, it follows from Theorem 3.31 that F : S 1 Ñ S 1 is
weak˚ continuous. Also, since pF´1FT qpfq “ T pFF´1fq “ T pfq, the Fourier transform on
S 1 is also bijective, with inverse F´1. Finally, let f P L1. Then:

pTf pgq ” Tf pĝq “

ż

fpxqĝpxq dx “

ż

f̂pxqgpxq dx “ Tf̂ pgq , (3.79)

where the second equality follows from Proposition 3.15.

Example 3.36 (The Fourier transform of the δ-distribution.). Let δpfq be the delta distri-
bution, δpfq “ fp0q. Then:

δ̂pfq “ δpf̂q “ f̂p0q “
1

p2πqd{2

ż

fpxq dx ”

ż

1

p2πqd{2
fpxq dx “ Tgpfq , (3.80)

with g “ p2πq´d{2 the constant function. That is, the Fourier transform of the delta distri-
bution is the constant function g.

Let us now introduce the notion of derivative on the space of distributions S 1.

Definition 3.37 (The distributional derivative.). For T P S 1, we define its distributional
derivative BαxT P S 1 as:

pBαxT qpfq :“ T pp´1q|α|Bαx fq . (3.81)

Lemma 3.38. The distributional derivative Bαx : S 1 Ñ S 1 is weak˚ continuous and extends
the notion of derivative on S; that is, for g P S we have:

BαxTg “ TBαx g . (3.82)

Proof. As an adjoint map, the derivative Bαx is continuous thanks to Theorem 3.31. The
property Eq. (3.82) follows from the integration by parts formula:

pBαxTgqpfq “ Tgpp´1q|α|Bαx fq “

ż

gpxqp´1q|α|Bαx fpxq dx “

ż

fpxqBαx gpxq dx “ TBαx gpfq .

(3.83)

Example 3.39 (The derivative of the delta distribution.). It follows that:

pBαx δqpfq “ δpp´1q|α|Bαx fq “ p´1q|α|Bαx fp0q . (3.84)

For the Heaviside function θpxq “ 1r0,8qpxq on R one has: d
dxθ “ δ.
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Lemma 3.40. Let g P C8pol. Then, pgT qpfq “ T pgfq defines a weak˚ continuous map from
S 1 to S 1. In general, one cannot define the product of two distributions, but one can define
the product of a distribution and of a function in C8pol.

Proof. Exercise.

Lemma 3.41. Let g P S and g̃pxq “ gp´xq. Then pg ˚ T qpfq :“ T pg̃ ˚ fq defines a weak˚

continuous map from S 1 to S 1, which extends the convolution on S: g ˚Th “ Tg˚h for h P S.

Proof. Exercise.

This result allows to prove the following theorem.

Theorem 3.42. S is dense in S 1 in the weak˚ topology.

Proof. Let us give a sketch of the proof. We want to show that for all T P S 1 there exists
pϕnq Ă S such that:

Tϕn
˚
á T . (3.85)

We proceed as follows. Let pgnq Ă S such that pgn ˚ fq Ñ f in S (e.g., gnpxq “ ndgpnxq,
with g P S and

ş

g “ 1.) Then, we write:

pgn ˚ T qpfq “ T pg̃n ˚ fq

“ T
´

ż

dy g̃np¨ ´ yqfpyq
¯

“

ż

dy T pg̃n,yqfpyq , (3.86)

with g̃n,yp¨q “ g̃np¨ ´ yq. Thus, we would be tempted to say that pgn ˚ T q “ Tξn , with
ξnpyq “ T pg̃n,yq. To prove this, we simply notice that ξn P C8polpRdq (exercise), which
implies that ξnf P S, and hence that it is an integrable function. Thus, by the weak˚

continuity of the convolution, Lemma 3.41, we just proved that for each T P S 1 there exists
ξn P C

8
pol such that:

Tξn
˚
á T . (3.87)

To conclude, we would like to show that the sequence pξnq can be replaced by a sequence
pϕnq in S. We proceed as follows. Let Gpxq as in Eq. (3.26). Let: ϕnpxq “ ξnpxqGpx{nq.
Then, being Gpx{nq compactly supported, ϕn P S. Notice that Tϕnpfq “ TξnpGp¨{nqfq. Fix
ε ą 0. By what we just proved, for n large enough:

ˇ

ˇ

ˇ
TξnpGp¨{nqfq ´ T pGp¨{nqfq

ˇ

ˇ

ˇ
ď ε{3 . (3.88)

(Notice that the argument of the distributions is n-dependent. Nevertheless, this is not a
problem, since the } ¨ }α,β norms of Gp¨{nqf are all bounded uniformly in n.) Also, by the
continuity of T :

ˇ

ˇ

ˇ
T pGp¨{nqfq ´ T pfq

ˇ

ˇ

ˇ
ď ε{3 , (3.89)

where we used that Gp¨{nqf ´ f Ñ 0 in S, as nÑ8. Finally, again by Eq. (3.87):

ˇ

ˇ

ˇ
T pfq ´ Tξnpfq

ˇ

ˇ

ˇ
ď ε{3 . (3.90)

All together, for any f P S and for any ε ą 0 there exists n0 P N such that for n ě n0:

ˇ

ˇ

ˇ
Tξnpfq ´ Tϕnpfq

ˇ

ˇ

ˇ
ď ε . (3.91)

This, together with Eq. (3.87), implies that:

Tϕn
˚
á T . (3.92)
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Next, we discuss the solution of the free Schrödinger equation in the sense of distributions.
We say that ψptq P C8pRt,S 1pRdqq is a distributional solution of the Schrödinger equation
if:

i
d

dt
pf, ψptqqS,S1 “ pf,´

1

2
∆ψptqqS,S1 , (3.93)

for all functions f P SpRdq.

Proposition 3.43. Let ψ0 P S 1. Then, there exists a unique, global solution ψptq P
C8pRt,S 1pRdqq of the Schrödinger equation, given by

ψptq “ F´1e´i
|k|2

2 tFψ0 . (3.94)

Proof. By Lemma 3.35 and by the fact that F and F´1 are maps from S 1 to S 1, we know
that ψptq P S 1pRdq. To conclude, we show that ψptq is a solution of the Schrödinger equation
in the sense of distributions. Let f P S be a test function. Then:

i
d

dt
pf, ψptqqS,S1 “ i

d

dt
pFe´i

|k|2

2 tF´1f, ψ0qS,S1

“ pFe´i
|k|2

2 t |k|
2

2
F´1f, ψ0qS,S1

“ p´Fe´i
|k|2

2 tF´1 1

2
∆f, ψ0qS,S1

“ p´
1

2
∆f,F´1e´i

|k|2

2 tFψ0qS,S1

“ pf,´
1

2
∆ψptqqS,S1 . (3.95)

The regularity in time of the mapping ψptq : S Ñ C can be easily checked.

3.4 Long time asymptotics of the momentum operator

We have proven that, for ψ0 P S, the solution of the free Schrödinger equation is given by:

ψpt, xq “
1

p2πitqd{2

ż

dy ei
|x´y|2

2t ψ0pyq . (3.96)

The probability for finding the quantum particle in the region A Ă Rd is given by:

P pXptq P Aq “

ż

A

|ψpt, xq|2 dx . (3.97)

Next, we want to determine the “velocity distribution” of the quantum particle. Since the
velocity at a fixed time is not defined in standard quantum mechanics, we shall consider the
asymptotic speed for large times, which we define as:

lim
tÑ8

P
´Xptq

t
P A

¯

:“ lim
tÑ8

P pXptq P tAq “ lim
tÑ8

ż

tA

|ψpt, xq|2 dx . (3.98)

Notice that choice of the origin of the reference frame does not play any role. To get an
expression for the above limit, we shall use the next lemma.

Lemma 3.44. Let ψptq be the solution of the free Schrödinger equation, with ψp0q “ ψ0 P S.
Then:

ψpt, xq “
ei
x2

2t

pitqd{2
ψ̂0px{tq ` rpt, xq , (3.99)

with limtÑ8 }rptq}L2 “ 0.
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Proof. We have, by Eq. (3.96):

ψpt, xq “
ei
x2

2t

pitqd{2
1

p2πqd{2

ż

e´i
x
t y
´

ei
y2

2t ` 1´ 1
¯

ψ0pyq dy

“
ei
x2

2t

pitqd{2

´

ψ̂0px{tq `
1

p2πqd{2

ż

e´i
x
t y
´

ei
y2

2t ´ 1
¯

ψ0pyq dy
¯

“
ei
x2

2t

pitqd{2

´

ψ̂0px{tq ` ĥpt, x{tq
¯

, (3.100)

and hence:

rpt, xq “
ei
x2

2t

pitqd{2
ĥpt, x{tq . (3.101)

To prove the claim on the L2 norm, we proceed as follows:

}rpt, ¨q}2L2 “

ż

|rpt, xq|2 dx “
1

td

ż

|ĥpt, x{tq|2 dx “

ż

|ĥpt, yq|2dy “

ż

|hpt, yq|2dy . (3.102)

Now, notice that hpt, xq Ñ 0 pointwise as tÑ8. Also, |hpt, xq|2 ď 4|ψ0pxq|
2. Therefore, by

dominated convergence theorem:

lim
tÑ8

ż

|hpt, xq|2dx “ 0 . (3.103)

This concludes the proof.

Theorem 3.45. Let ψpt, xq be a solution of the free Schrödinger equation and let A Ă Rd
measurable. Then:

lim
tÑ8

P
´Xptq

t
P A

¯

“: lim
tÑ8

PψtptΛq “
ż

A

|ψ̂0ppq|
2dp . (3.104)

Proof. By Lemma 3.44, we have:
ż

tA

|ψpt, xq|2dx “
1

td

ż

tA

|ψ̂0px{tq|
2dx`Rptq “

ż

A

|ψ̂0ppq|
2dp`Rptq , (3.105)

where, following the proof of the Lemma:

lim
tÑ8

Rptq “ lim
tÑ8

ż

tA

|rpt, xq|2 dx` lim
tÑ8

2Re
´ 1

td

ż

tA

ψ̂0px{tqĥpt, x{tqdx
¯

“ lim
tÑ8

2Re
´

ż

A

ψ̂0ppqĥpt, pq
¯

. (3.106)

By the Cauchy-Schwarz inequality we have:

lim
tÑ8

ˇ

ˇ

ˇ

ż

tA

ψ̂0ppqĥpt, pqdp
ˇ

ˇ

ˇ
ď lim
tÑ8

}ψ̂0}L2}ĥptq}L2 “ 0 . (3.107)

Remark 3.46. • If we would not have set the mass m to 1, the probability in the left-
hand side of Eq. (3.104) should have been replaced by P pmXptq{t P Λq. Therefore,
the above result allows to control the asymptotic distribution of the momentum of the
quantum particle.

• The operator P :“ ´i∇x is called the momentum operator. The expectation value of
the momentum operator is given by:

EψtpP q :“ xψt, Pψty :“

ż

Rd
ψpt, xqpPψqpt, xqdx “

ż

Rd
ψ̂pt, pqpψ̂pt, pqdp “

ż

Rd
p|ψ̂p0, pq|2dp ,

(3.108)

where we used that |ψ̂pt, pq| “ |ψ̂p0, pq|. Thus, the quantum mechanical expectation
value of the momentum operator is equal to its expectation value with respect to the
asymptotic momentum distribution.
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3.5 Properties of Hilbert spaces

Recall the definition of Hilbert space, given in Section 2.3. In this section we shall spell out
some important properties of Hilbert spaces, that will play a role in the following discussion.

Definition 3.47. Let H be a Hilbert space. A sequence pϕnq in H is called an orthonormal
sequence if xϕn, ϕmy “ δn,m.

The next proposition is an immediate consequence of notion of orthogonality.

Proposition 3.48. Let pϕjqjPN be a orthonormal sequences in H. For any ψ P H, let us
rewrite:

ψ “

n
ÿ

j“1

xϕj , ψyϕj `
´

ψ ´
n
ÿ

j“1

xϕj , ψyϕj

¯

“: ψn ` ψ
K
n . (3.109)

Then, xψn, ψ
Ky “ 0 and:

xψ,ψy “ xψn, ψny ` xψ
K
n , ψ

K
n y . (3.110)

Proof. Exercise.

Proposition 3.48 implies the validity of two important inequalities, the Cauchy-Schwarz
inequality and the Bessel inequality.

Corollary 3.49. (a) Let pϕjqjPN be an orthonormal sequences in H. Let ψ P H and n P N.
Then:

}ψ}2 ě
n
ÿ

j“1

|xϕj , ψy|
2 (Bessel inequality). (3.111)

(b) Let ϕ,ψ P H. Then:

|xϕ,ψy| ď }ϕ}}ψ} , (Cauchy-Schwarz inequality). (3.112)

Proof. Eq. (3.111) immediately follows from Proposition 3.48. Eq. (3.112) follows from Eq.
(3.111), after choosing ϕ1 “ ϕ{}ϕ} and n “ 1.

Proposition 3.50 (Polarization identity.). Let H be a Hilbert space. Let ψ,ϕ P H. Then:

xϕ,ψy “
1

4
p}ϕ` ψ}2 ´ }ϕ´ ψ}2 ´ i}ϕ` iψ}2 ` i}ϕ´ iψ}2q . (3.113)

Proof. Eq. (3.113) follows from the following identity, valid for any sesquilinear form1 B :
X ˆX Ñ C, with X a complex vector space:

Bpx, yq “
1

4
pBpx`y, x`yq´Bpx´y, x´yq´iBpx`iy, x`iyq`iBpx´iy, x´iyqq . (3.114)

Definition 3.51. An orthonormal sequence pϕjqjPN in H is called an orthonormal basis if
for all ψ P H:

ψ “
8
ÿ

j“1

xϕj , ψyϕj . (3.115)

Remark 3.52. Notice that the series converges in H. In fact, by Bessel’s inequality,

n
ÿ

j“1

|xϕj , ψy|
2 ď }ψ}2 .

1A map B : X ˆX Ñ C is called a sesquilinear form if it is linear in the second variable and antilinear in the
first variable.
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Thus, limnÑ8

řn
j“1 |xϕj , ψy|

2 exists. Consider the sequence of partial sums
´

řn
j“1xϕj , ψyϕj

¯

.

Let n1 ą n. We have:

›

›

›

n
ÿ

j“1

xϕj , ψyϕj ´
n1
ÿ

j“1

xϕj , ψyϕj

›

›

›

2

“

n1
ÿ

j“n

|xϕj , ψy|
2 , (3.116)

which vanishes as n Ñ 8. Hence,
´

řn
j“1xϕj , ψyϕj

¯

is a Cauchy sequence in H. Being H
complete,

ř8

j“1xϕj , ψyϕj P H.

Definition 3.53. A topological vector space is called separable if it contains a countable,
dense subset.

Proposition 3.54. A Hilbert space is separable if and only if it contains an orthonormal
basis.

Proof. Let pϕjq be a ONB. Then, the following set is a dense and countable subset of H:

spanQ`iQtϕj | j P Nu :“
!

N
ÿ

j“1

paj ` ibjqϕj | N P N , aj , bj P Q
)

. (3.117)

Let us now prove the converse statement. Suppose that pϕjqjPN is a dense and countable
subset of H. Let pϕjqjPJ Ď pϕjqjPN be a subset of linearly independent vectors in pϕjqjPN,
dense in H. This subset can be used to define a ONB, via the Gram-Schmidt method.

Proposition 3.55. Let pϕjq be an orthonormal basis for H. Then, the following inequality
holds true:

}ψ}2 “
8
ÿ

j“1

|xϕj , ψy|
2 (Parseval equality.) (3.118)

Proof. Eq. (3.118) immediately follows from the definition and the continuity of the scalar
product:

}ψ}2 “

A

lim
NÑ8

N
ÿ

j“1

xϕj , ψyϕj , lim
MÑ8

M
ÿ

i“1

xϕi, ψyϕi

E

“ lim
NÑ8

lim
MÑ8

A

N
ÿ

j“1

xϕj , ψyϕj ,
M
ÿ

i“1

xϕi, ψyϕi

E

“ lim
NÑ8

N
ÿ

j“1

|xϕj , ψy|
2 . (3.119)

Remark 3.56 (`2 as a coordinate space for a separable Hilbert space.). Let pϕjq Ă H be a
ONB. Then, the Parseval equality implies that the following mapping is an isometry:

U : HÑ `2 , ϕ ÞÑ pxϕj , ψyqjPN . (3.120)

In particular, for each sequence c P `2 we can associate a series
ř8

j“1 cjϕj, which converges
in norm:

›

›

›

8
ÿ

j“N

cjϕj

›

›

›

2

“

8
ÿ

j“N

|cj |
2 Ñ 0 as N Ñ8; (3.121)

this means that U is also surjective, i.e. it is an isometric isomorphism. Therefore, each
separable Hilbert space is isometrically isomorphic to `2 and each ONB generates an isometric
isomorphism. Thus, we can identify `2 as the coordinate space for separable Hilbert spaces
of infinite dimension.

Example 3.57. Consider L2pr0, 2πsq. It is a separable Hilbert space, and a ONB is provided
by ϕkpxq “

1?
2π
eikx, k P N. Let ψ P L2pr0, 2πsq, and consider its Fourier series:

ψ “
8
ÿ

k“´8

xϕk, ψyϕk . (3.122)

The Fourier series provides an isometric isomorphism between `2 and L2.
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Proposition 3.58 (Characterization of an orthonormal basis.). An orthonormal sequence
pϕjqjPI in H is an orthonormal basis of H if and only if:

xϕj , ψy “ 0 for all j P I ñ ψ “ 0 . (3.123)

Proof. Let pϕjqjPI be a ONB of H. Suppose that xϕj , ψy “ 0 for all j P I. Then, by
definition of ONB, Eq. (3.115), ψ “ 0. Let us now prove the converse implication. Let pϕjq
be an orthonormal sequence in H, and let φ P H. By Bessel’s inequality, we have, for all
n P N:

n
ÿ

j“1

|xϕj , φy|
2 ď }φ}2 . (3.124)

Being the sequence n ÞÑ
řn
j“1 |xϕj , φy|

2 nondecreasing and bounded, the n Ñ 8 limit

exists: limnÑ8

řn
j“1 |xϕj , φy|

2 “
ř

jPI |xϕj , φy|
2. In particular, this implies that the series

ř

jPIxϕj , φyϕj is convergent in H. Consider the vector:

ψ “ φ´
ÿ

jPI

xφ, ϕjyϕj . (3.125)

By construction, xψ,ϕjy “ 0 for all j P I. By assumption, this implies that ψ “ 0, hence:

φ “
ÿ

jPI

xφ, ϕjyϕj , for all φ P H. (3.126)

Therefore, tϕjujPI is an ONB of H. This concludes the proof.

Definition 3.59. Let M Ă H. We define its orthogonal complement as:

MK :“
!

ψ P H | xϕ,ψy “ 0 for all ϕ PM
)

. (3.127)

Remark 3.60. It follows that M XMK “ t0u. Also, being xϕ, ¨y linear and continuous, MK

is a closed subspace of M .

Theorem 3.61. Let M Ă H be a closed subspace of H. Then:

H “M ‘MK . (3.128)

That is, every element ψ P H can be rewritten in a unique way as ψ “ ϕ ` ϕK with ϕ P M
and ϕK PMK.

Proof. Let ψ P H. If ψ P M , or ψ P MK, there is nothing to prove. Suppose that ψ R M ,
ψ RMK. Let pvkq be a minimizing sequence:

lim
kÑ8

}ψ ´ vk}
2 “ inf

vPM
}ψ ´ v}2 . (3.129)

By using that } ¨ }2 “ x¨, ¨y, we have:

}ψ ´ v}2 “ F pvq ` }ψ}2 , F pvq :“ }v}2 ´ 2Re xψ, vy . (3.130)

Therefore, limkÑ8 F pvkq “ infvPM F pvq “: α. Our preliminary goal is to show that vk Ñ v
in M . To prove this, we write:

F pvkq ` F pvlq “ }vk}
2 ´ 2Re xψ, vky ` }vl}

2 ´ 2Re xψ, vly

“
1

2

´

}vk ` vl}
2 ` }vk ´ vl}

2
¯

´ 2Re xψ, vk ` vly

“ 2
›

›

›

vk ` vl
2

›

›

›

2

´ 4Re
A

ψ,
vk ` vl

2

E

`
1

2
}vk ´ vl}

2

“ 2F
´vk ` vl

2

¯

`
1

2
}vk ´ vl}

2 ě 2α`
1

2
}vk ´ vl}

2 . (3.131)
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Since F pvkq, F pvlq Ñ α as k, lÑ8, we get that }vk´vl} Ñ 0. Being pvkq a Cauchy sequence,
and since H is complete, vk Ñ v in H. Also, since M is closed, v PM . By continuity of the
scalar product, α “ F pvq. Our next goal is to show that ψ ´ v P MK. If so, this provides
one decomposition ψ “ v ` vK, with v PM and vK PMK.

Let ṽ PM and let fptq :“ F pv ` tṽq. Then, by definition of v:

fptq ě F pvq ” fp0q , for all t P R. (3.132)

Thus, t “ 0 is a minimum of fptq. In particular, f 1p0q “ 0. Let us compute the derivative.
A simple computation shows that:

0 “ f 1p0q “ 2Re xψ ´ v, ṽy . (3.133)

Replacing ṽ with iṽ, we get the same identity but with Re replaced by Ran. Hence:

0 “ xψ ´ v, ṽy “ 0 , for all ṽ PM . (3.134)

In conclusion, ψ ´ v P MK, as claimed; thus, ψ “ v` K v. Let us now prove uniqueness of
the splitting. Suppose there exists v1, v2 PM and vK1 , vK2 such that:

ψ “ v1 ` v
K
1 “ v2 ` v

K
2 . (3.135)

Then, v1´v2 “ vK2 ´v
K
1 , which means that v1´v2 “ 0 and vK1 ´v

K
2 “ 0, since MXMK “ t0u.

3.6 The Fourier transform in L2

Definition 3.62. Let X and Y be two normed spaces. An operator L : X Ñ Y between X
and Y is called bounded if there exists C ă 8 such that:

}Lx}Y ď C}x}X , for all x P X. (3.136)

Proposition 3.63. Let X and Y be two normed spaces. Let LpX,Y q be the set of the
bounded linear operators from X to Y . Let:

}L}LpX,Y q :“ sup}x}X“1}Lx}Y . (3.137)

Then, } ¨ }LpX,Y q defines a norm on LpX,Y q. Moreover, if Y is complete then LpX,Y q is
complete as well, that is it is a Banach space.

Proof. It is easy to check that } ¨ }LpX,Y q defines a norm on LpX,Y q. Let now prove that if
Y is complete then LpX,Y q is complete as well. Let pLnq be a Cauchy sequence in LpX,Y q:

}Ln ´ Lm}LpX,Y q Ñ 0 as n,mÑ8. (3.138)

Then, pLnxq is Cauchy sequence in Y , since

}Lnx´ Lmx}Y ď }Ln ´ Lm}LpX,Y q}x}Y . (3.139)

Being Y complete, LnxÑ y P Y , as nÑ8. We define Lx :“ y. It is easy to show that L is
a linear operator. Let us prove that L is a bounded operator. By the Cauchy property, we
have, for all ε ą 0, for n,m large enough:

sup
}x}X“1

}Lnx´ Lmx}Y ď ε . (3.140)

Therefore, dropping the sup and taking the mÑ8 limit:

}Lnx´ Lx}Y ď εñ }Lx}Y ď C , (3.141)

uniformly in x, for all x such that }x}X “ 1. This proves that L P LpX,Y q. Due to the
arbitrariness of ε, Eq. (3.141) also proves that Ln Ñ L in LpX,Y q. This concludes the
proof.
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Theorem 3.64. Let X and Y be two normed spaces. Let L : X Ñ Y be a linear operator.
Them, the following statements are equivalent:

(i) L is continuous at 0.

(ii) L is continuous.

(iii) L is bounded.

Proof. piiiq ñ piq. In fact, let }xn} Ñ 0. Then, }Lxn} ď }L}}xn} Ñ 0.
Let us now show that piq ñ piiq. Let }xn ´ x} Ñ 0 and let L be continuous at 0. Then,

}Lxn ´ Lx} “ }Lpxn ´ xq} Ñ 0.
Finally, let us prove that piiq ñ piiiq. Suppose that L is continuous but not bounded: that

is, there exists a sequence pxnq with }xn} “ 1 such that }Lxn} ě n. Then, let zn :“ xn
}Lxn}

.

It follows that }zn} ď
1
n , but }Lzn} “ 1, which contradicts continuity.

Example 3.65 (Unbounded linear operators.). Let `0 “ tpxnq P `
1 | DN P N : xn “ 0 @n ě

Nu be the space of finite sequences, equipped with the norm }x}`1 :“
ř8

n“1 |xn|. Then, the
operator T : `0 Ñ `0 such that x ÞÑ Tx “ px1, 2x2, 3x3, . . .q is unbounded, since }Ten} “ n
but }en} “ 1.

Theorem 3.66 (Extension of densely defined linear bounded operators.). Let Z Ă X be
a dense subspace of a normed space X and let Y be a Banach space. Let L : Z Ñ Y be
linear and bounded. Then, L admits a unique linear and bounded extension L̃ P LpX,Y q
with L̃ æZ“ L and

}L̃}LpX,Y q “ }L}LpZ,Y q . (3.142)

Proof. Let x P X. Then, there exists a sequence pznq Ă Z such that }zn ´ x}X Ñ 0.
Being pznq convergent, the sequence pznq is also a Cauchy sequence. Thus, }Lzn´Lzm}Y “
}Lpzn ´ zmq}Y ď }L}}zn ´ zm}X , which means that pLznq is also a Cauchy sequence in
Y . Since Y is complete, Lzn Ñ y P Y . Let us now prove that the limit y does not
depend on the choice of the sequence pznq (provided it converges to x). Let pz1nq be another
sequence in Z, such that }z1n ´ x}X Ñ 0. Consider the new sequence z1, z

1
1, z2, z

1
2, . . .. By

assumption, also this new sequence converges to x, and by following the previous argument,
Lz1, Lz

1
1, Lz2, Lz

1
2 . . . converges to ỹ P Y . But since every subsequence of a convergent

sequence converges to the same limit, we have y “ limLzn “ limLz1n “ ỹ. Therefore, we
can define L̃x :“ y. The linearity of L follows immediately from the previous construction.
The boundedness follows from:

}L̃x}Y “ lim
nÑ8

}Lzn}Y ď lim
nÑ8

}L}}zn}X “ }L}}x}X . (3.143)

Therefore, L̃ is bounded, and also continuous, by Theorem 3.64. Finally, the extension L̃ of
L is unique: this follows from the fact that two continuous maps which coincide on a dense
subset are equal.

Next, we shall extend the Fourier transform on L2.

Theorem 3.67 (The Fourier transform on L2.). The Fourier transform F : pSpRdq, }¨}L2q Ñ

L2pRdq can be uniquely extended to a bounded linear operator on L2pRdq. Moreover, for all
f P L2:

}Ff}L2 “ }f}L2 (3.144)

and FF´1 “ F´1F “ 1L2 .

Remark 3.68. Eq. (3.144) takes the name of Plancherel’s theorem.

Proof. By Theorem 2.13, the space S is dense in L2. The extension of F to a bounded linear
operator on L2 follows from Theorem 3.66. Moreover, as proven in Theorem 3.13,

F´1F æS“ FF´1 æS“ 1S . (3.145)

Being F ,F´1,1 continuous, and being S dense in L2, Eq. (3.145) holds as an identity on
L2.
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Definition 3.69 (Unitary operator.). A bounded linear operator U P LpH1,H2q is called
unitary if it is surjective and isometric, that is }Uψ}H2

“ }ψ}H1
for all ψ P H1.

Remark 3.70. By the polarisation identity, it immediately follows that U “preserves angles”,
that is:

xUψ,UϕyH2 “ xψ,ϕyH1 for all ϕ,ψ P H1. (3.146)

Remark 3.71. The Fourier transform F : L2 Ñ L2 is unitary.

As an application of the Fourier transform in L2, consider the propagator of the free
Schrödinger equation, defined in Eq. (3.50). By extending the Fourier transform to L2, the
free propagator can also be extended to an operator on L2:

Pfptq : L2pRdq Ñ L2pRdq , Pfptq “ F´1e´i
k2

2 tF . (3.147)

It follows that Pfptq is a unitary operator, for all t P R. Moreover, it satisfies the following
composition property:

PfpsqPfptq “ F´1e´i
k2

2 sFF´1e´i
k2

2 tF “ F´1e´i
k2

2 ps`tqF “ Pfps` tq . (3.148)

Therefore, one says that Pf : RÑ LpL2q is a unitary group. In the next section we will show
that the function:

ψptq :“ Pfptqψ0 , ψ0 P L
2pRdq (3.149)

solves the Schrödinger equation in the L2 sense. Before doing that, let us first check that

ψ : RÑ L2pRdq , ψ0 ÞÑ ψptq “ Pfptqψ0 (3.150)

is continuous. By dominated convergence:

}ψptq ´ ψpt0q}
2
L2 “ }pPfptq ´ Pfpt0qqψ0}

2
L2 “

ż

Rd

ˇ

ˇ

ˇ
e´i

k2

2 t ´ e´i
k2

2 t0
ˇ

ˇ

ˇ

2

|ψ̂0pkq|
2 dk Ñ 0 (3.151)

as t Ñ t0. This proves the continuity of ψptq. Let us now check differentiability. Again by
dominated convergence, we see that ψ : RÑ L2pRdq is differentiable if and only if:

|k|4|ψ̂0pkq|
2 (3.152)

is integrable, that is when |k|2ψ̂0pkq P L
2pRdq. To conclude, let us discuss the continuity

properties of the unitary group Pf. In particular, let us consider }Pfptq ´ Pfpt0q}LpL2q, with
} ¨ }LpL2q defined in Proposition 3.63. We have:

}Pfptq ´ Pfpt0q}LpL2q “

›

›

›
e´i

k2

2 t ´ e´i
k2

2 t0
›

›

›

LpL2q
“ sup
kPRd

ˇ

ˇ

ˇ
e´i

k2

2 t ´ e´i
k2

2 t0
ˇ

ˇ

ˇ
“ 2 , (3.153)

where we used that F is unitary, and that it leaves L2 invariant. Therefore, the unitary
group Pf is not continuous with respect to the topology of the bounded operators. However,
one might have continuity with respect to different topologies.

Definition 3.72. Let pAnq be a sequences in LpHq and A P LpHq.
(a) We say that An converges to A in norm if:

lim
nÑ8

}An ´A}LpHq “ 0 . (3.154)

One writes also limnÑ8An “ A or An Ñ A.

(b) We say that An converges strongly (or pointwise) to A if:

lim
nÑ8

}Anψ ´Aψ}H “ 0 for all ψ P H. (3.155)

One writes also s´ limnÑ8An “ A or An
s
Ñ A.
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(c) We say that An converges weakly to A if:

lim
nÑ8

|xϕ, pAn ´Aqψy| “ 0 for all ϕ,ψ P H. (3.156)

One writes also w´ limnÑ8An “ A or An
w
Ñ A.

Remark 3.73. These notions of convergence verify the following chain of implications:

norm convergence ñ strong convergence ñ weak convergence. (3.157)

The reverse implications are in general not correct.

3.7 Unitary groups and their generators

In this section we shall discuss in which sense ψptq “ Pfptqψ0 with ψ0 P L
2 solves the free

Schrödinger equation:

i
d

dt
ψptq “ ´

1

2
∆ψptq . (3.158)

As we have seen in the previous section, ψptq is differentiable in the strong sense if |k|2ψ̂ptq P
L2. Moreover, the distributional derivative:

´
1

2
∆ψptq “ F´1 |k|

2

2
ψ̂ptq (3.159)

is in L2 if and only if |k|2ψ̂ptq P L2. Also,

|k|2ψ̂ptq “ |k|2e´i
k2

2 tψ̂0 P L
2 (3.160)

if and only if |k|2ψ̂0 P L
2. Therefore, if the initial datum satisfies |k|2ψ̂0 P L

2, then |k|2ψ̂ptq P
L2 for all times, and ψptq solves the Schrödinger equation in the L2 sense: Eq. (3.158) holds
as an identity between L2 functions.

Definition 3.74 (Sobolev spaces.). Let m P Z. The m-th Sobolev space HmpRdq Ă S 1pRdq
is the set of distributions f P S 1pRdq such that f̂ is a measurable function and:

p1` |k|2q
m
2 f̂ P L2pRdq . (3.161)

For m ě 0, it follows that Hm Ă L2.

Remark 3.75. Let us consider again the propagator of the free Schrödinger equation:

Pf : RÑ LpL2q , t ÞÑ Pfptq “ F´1e´i
k2

2 tF . (3.162)

It satisfies the following properties:

(a) Pfptq is unitary for all t P R.

(b) Pf is strongly continuous: t ÞÑ Pfptqψ is continuous for all ψ P L2.

(c) Pf has the group property: PfpsqPfptq “ Pfpt` sq for all s, t P R.

Moreover,

(d) For all ψ0 P L
2, ψptq “ Pfψ0 is a solution in the sense of distributions.

(e) For all ψ0 P H
2 Ă L2, ψptq “ Pfptqψ0 is a solution in the L2 sense: the map R Q t ÞÑ

ψptq P L2 is differentiable and the derivative satisfies:

i
d

dt
ψptq “ ´

1

2
∆ψptq (3.163)

where ´ 1
2∆ψptq P L2.

The items paq ´ pcq motivate the following definition.
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Definition 3.76 (Strongly continuous one-parameter group.). A family Uptq, t P R, of
unitary operators Uptq P LpHq is called a strongly continuous one-parameter group if:

(i) U : RÑ LpHq, t ÞÑ Uptq is strongly continuous.

(ii) Upt` sq “ UptqUpsq for all t, s and moreover Up0q “ 1H.

The items pdq ´ peq motivate the following definition.

Definition 3.77 (Generator of a unitary group.). A densely defined linear operator H with
domain DpHq Ď H is called a generator of a strongly continuous unitary group if:

(i) DpHq “ tψ P H | t ÞÑ Uptqψ is differentiableu.

(ii) For all ψ P DpHq it follows that i ddtUptqψ “ UptqHψ.

Example 3.78 (The free Hamilton operator.). Consider the free Hamilton operator:

H0 “ ´
1

2
∆ with DpH0q “ H2pRdq (3.164)

is the generator of the unitary group Pfptq. This can easily be checked from the definition
(3.162), and from the fact that FF´1 “ F´1F “ 1.

Proposition 3.79 (Properties of the generators.). Let H be a generator for Uptq. Then:

(i) DpHq is invariant under Uptq, that is UptqDpHq “ DpHq for all t P R.

(ii) H commutes with Uptq, that is:

rH,Uptqsψ :“ HUptqψ ´ UptqHψ “ 0 for all ψ P DpHq. (3.165)

(iii) H is symmetric, that is:

xHψ,ϕy “ xψ,Hϕy for all ϕ,ψ P DpHq. (3.166)

(iv) U is uniquely determined by H.

(v) H is uniquely determined by U .

Proof. (i) We notice that the map s ÞÑ UpsqUptqψ “ Ups ` tqψ is differentiable if and
only if the map s ÞÑ Upsqψ “ Up´tqUps ` tqψ is differentiable. The derivative of the
first map at s “ 0 is: p´iqUptqHψ. The derivative of the second map at s “ 0 is:
p´iqUp´tqUptqHψ. Thus, ψ P DpHq if and only if ψ P UptqDpHq.

(ii) Let ψ P DpHq. Then:

UptqHψ “ Uptqi
d

ds
Upsqψ |s“0“ i

d

ds
UptqUpsqψ |s“0“ i

d

ds
UpsqUptqψ |s“0“ HUptqψ .

(3.167)
To get the third equality we used that UptqUpsq “ Upt`sq “ UpsqUptq, and that Uptqψ
is in DpHq, by what we proved before.

(iii) By unitarity, xψ,ϕy “ xUptqψ,Uptqϕy for all ψ,ϕ P H. Therefore,

0 “
d

dt
xψ,ϕy “

d

dt
xUptqψ,Uptqϕy “ x´iHUptqψ,Uptqϕy ` xUptqψ,´iHUptqϕy

“ ixUptqHψ,Uptqϕy ´ ixUptqψ,UptqHϕy “ ixHψ,ϕy ´ ixψ,Hϕy . (3.168)

(iv) Suppose that rUptq is generated by H. Then, by symmetry of H:

d

dt

›

›pUptq ´ rUptqqψ
›

›

2
“ 2

d

dt

´

}ψ}2 ´ Re xUptqψ, rUptqψy
¯

“ ´2Re
´

x´iHUptqψ, rUptqψy ` xUptqψ,´iH rUptqψy
¯

“ ´2Re
´

ixHUptqψ, rUptqψy ´ ixUptqψ,H rUptqψy
¯

“ 0 , (3.169)
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for all ψ P DpHq (for the second term, we actually use that rUptqDpHq “ DpHq). Eq.

(3.169) together with Up0q “ rUp0q “ 1, implies that Uptq æDpHq“ rUptq æDpHq for all

t P R. Moreover, from DpHq “ H (recall that, by definition, the generator H is densely

defined in H), we conclude that U “ rU on H.

(v) This is an immediate consequence of the definition of H.

Example 3.80 (Translations as unitary groups on L2). (a) Let T ptq : L2pRq Ñ L2pRq
with ψ ÞÑ pT ptqψqpxq :“ ψpx ´ tq be the group of translations. It follows that T ptq is
a strongly continuous unitary group, generated by D0 “ ´i

d
dx , with domain DpD0q “

H1pRq.
(b) The definition of the translations on L2pr0, 1sq is a bit more delicate. Let 0 ď t ă 1

and θ P r0, 2πq. We define:

pTθptqψqpxq :“

"

ψpx´ tq if x´ t P r0, 1s
eiθψpx´ t` 1q if x´ t ă 0.

(3.170)

This definition allows to define the translation to the right for all t ě 0. Intuitively,
whatever “exits the interval r0, 1s from the right”, “comes back from the left” with a
phase factor eiθ. One can easily check that Tθptq is unitary, and that it satisfies the
group composition property. However notice that for θ ‰ θ1 one has Tθptq ‰ Tθ1ptq for
t ‰ 0: different phase factors produce different translation groups. Thus, according to
Proposition 3.79, these groups must have different generators.

However, for t small enough the function pTθptqψqpxq does not depend on θ: how can
this be, if the generators of Tθ, Tθ1ptq differ for different θ, θ1? The difference lies in
the domains of Dθ, which differ for different values of θ. One has Dθ “ ´i

d
dx , with

domain:
DpDθq “ tψ P H

1pr0, 1sq | eiθψp1q “ ψp0qu . (3.171)

One can check that DpDθq is invariant under Tθptq, and that Dθ is the generator of
Tθ. Here, H1pr0, 1sq is the local Sobolev space, defined as follows:

H1pr0, 1sq :“ tψ P L2pr0, 1sq | such that there exists ϕ P H1pRq with ϕ ær0,1s“ ψu .
(3.172)

As we will prove later H1pRq Ă CpRq, which means that the pointwise constraint in the
definition of DpDθq makes sense.

Remark 3.81. The operator ´i ddx equipped with the maximal definition domain Dmax “

H1pr0, 1sq does not generate any unitary group, since H1 is not invariant under Tθ. The
same is true if one chooses a too small domain, for instance Dmin “ tψ P H1pr0, 1sq |
ψp0q “ ψp1q “ 0u.

Remark 3.82. For ψ,ϕ P H1pr0, 1sq it follows that:

xψ,´i
d

dx
ϕy “

ż 1

0

dxψpxqp´i
d

dx
ϕpxqq “ ´ipψp1qϕp1q ´ ψp0qϕp0qq `

ż 1

0

dx p´i
d

dx
ψpxqqϕpxq

“ ´ipψp1qϕp1q ´ ψp0qϕp0qq ` x´i
d

dx
ψ, ϕy . (3.173)

That is, the operator ´i ddx on Dmax is not symmetric. As we shall see later, this implies

that ´i ddx is not a generator. Instead, ´i ddx on Dθ and on Dmin is a symmetric operator,

since the boundary term in Eq. (3.173) vanishes. However, ´i ddx is a generator only if
defined on Dθ. The symmetry of the operator is a necessary but not sufficient condition to
define the generator of a unitary group.

Before discussing further how to characterize the generator of a unitary group, we con-
clude this section by discussing a regularity result for functions in Sobolev spaces.

Lemma 3.83 (Sobolev.). Let ` P N0 and f P HmpRdq with m ą ` ` d
2 . Then, f P C`pRdq

and Bαf P C8pRdq for all |α| ď `.
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Proof. We will prove that kαf̂pkq P L1pRdq for all α P Nd0 with |α| ď `. Then, Bαf P C8pRdq
follows thanks to the Riemann-Lebesgue lemma, Theorem 3.4.

From the definition of Hm one has p1`|k|2qm{2f̂pkq P L2pRdq, and therefore for all α P Nd0
with |α| ď `:

ż

Rd
|kαf̂pkq| dk ď

ż

Rd
p1` |k|2q`{2|f̂pkq| dk

“

ż

Rd
p1` |k|2qm{2|f̂pkq|p1` |k|2q

`´m
2 dk

ď }p1` |k|2qm{2f̂pkq}L2pRdq

´

ż

Rd

1

p1` |k|2qm´`
dk

¯1{2

, (3.174)

where in the last step we used the Cauchy-Schwarz inequality. The last integral is finite if
and only if 2pm´ `q ą d.

4 Selfadjoint operators

4.1 The Hilbert space adjoint

Let V and W be normed spaces and A P LpV,W q. Then, the dual spaces V 1 and W 1 are
Banach spaces and one can define the adjoint operators A1 : W 1 Ñ V 1 for w1 PW 1:

pA1w1qpvq :“ w1pAvq for all v P V . (4.1)

Therefore, A1 P LpW 1, V 1q and from the Hahn-Banach theorem one also has }A1} “ }A}. For
Hilbert spaces, it follows that H1 – H, which means that if A P LpHq then A1 P LpH1q can
also be seen as an operator in LpHq. We shall clarify these points in the following.

Theorem 4.1 (Riesz). Let H be a Hilbert space and T P H1. Then, there exists a unique
ψT P H such that:

T pϕq “ xψT , ϕyH , for all ϕ P H. (4.2)

Proof. Let T P H1. We would like to prove that T can be understood as a “projection” over
a vector ψT P H. If so, we can think M :“ KerpT q as being the orthogonal complement of
ψT . Since T is continuous, M is closed. If M “ H then T “ 0 and ψT “ 0 provides the
required vector.

Suppose that M ‰ H. Then, we claim that MK is one dimensional. Let ψ0, ψ1 PM
Kzt0u.

Let α :“ T pψ0q

T pψ1q
. We have:

T pψ0 ´ αψ1q “ T pψ0q ´ αT pψ1q “ 0 . (4.3)

That is, ψ0 ´ αψ1 P M XMK “ t0u, which proves that ψ0 “ αψ1, and hence that MK is
one-dimensional. Now, by Theorem 3.61, for any ϕ P H there is a unique splitting:

ϕ “ ϕM ` ϕMK “ ϕM `
xψ0, ϕy

}ψ0}
2
ψ0 , (4.4)

where the last step follows from the fact that dimpMKq “ 1. Now, let ψT :“ T pψ0q

}ψ0}2
ψ0. We

have:

T pϕq “ T pϕM `
xψ0, ϕy

}ψ0}
2
ψ0q “ xψ0, ϕy

T pψ0q

}ψ0}
2
” xψT , ϕy , (4.5)

where the second equality follows from the linearity of T , and from the fact that ϕM P KerpT q.
This proves the claim (4.2). The uniqueness follows from the definition of scalar product.

Riesz Theorem, together with the next proposition, shows thatH andH1 are isometrically
isomorphic. In other words, H is selfdual.
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Proposition 4.2 (Selfduality of Hilbert spaces). Consider the map:

J : HÑ H1 , ϕ ÞÑ Jϕ :“ xϕ, ¨y . (4.6)

J is a linear map. Moreover, J is an isometry:

}Jϕ}H1 “ }ϕ}H . (4.7)

Remark 4.3. Theorem 4.1 proves that H and H1 are isomorphic. Proposition 4.2 proves
that the isomorphism that associates to an element of H an element of H1 is an isometry.

Proof. The linearity of J immediately follows from its definition. Let us now prove Eq. (4.7).
We have:

}Jϕ}H1 “ sup
ψPH

|Jϕpψq|

}ψ}H

“ sup
ψPH

|xϕ,ψy|

}ψ}H

“ }ϕ}H , (4.8)

since |xϕ,ψy| ď }ϕ}}ψ} by Cauchy-Schwarz inequality and xϕ,ϕy “ }ϕ}2.

Definition 4.4 (Hilbert space adjoint). Let A P LpHq. The Hilbert space adjoint operator
A˚ : HÑ H is defined as:

A˚ “ J´1A1J . (4.9)

Proposition 4.5. For A P LpHq it follows:

xψ,Aϕy “ xA˚ψ,ϕy for all ψ,ϕ P H. (4.10)

This relation defines A˚ uniquely.

Proof. By the definition of A˚ it follows that:

xψ,Aϕy “ JψpAϕq “ A1Jψpϕq “ JJ´1A1Jψpϕq “ JA˚ψpϕq “ xA˚ψ,ϕy . (4.11)

Also, the map ϕ ÞÑ xψ,Aϕy is continuous and linear. Therefore, by Theorem 4.1 there exists
a unique vector η P H with xψ,Aϕy “ xη, ϕy for all ϕ P H. This proves uniqueness of A˚.

Theorem 4.6 (Properties of the Hilbert space adjoint). Let A,B P LpHq and λ P C. Then:

(i) pA`Bq˚ “ A˚ `B˚ and pλAq˚ “ λA˚.

(ii) pABq˚ “ B˚A˚.

(iii) }A˚} “ }A}.

(iv) A˚˚ “ A.

(v) }AA˚} “ }A˚A} “ }A}2.

(vi) KerA “ pRanA˚qK and KerA˚ “ pRanAqK.

Proof. piq ´ piiiq follows immediately from the definition of Hilbert space adjoint. The
property pivq follows from:

xψ,Aϕy “ xA˚ψ,ϕy “ xϕ,A˚ψy “ xA˚˚ϕ,ψy “ xψ,A˚˚ϕy for all ψ,ϕ P H. (4.12)

The property pvq follows from:

}Aϕ}2 “ xAϕ,Aϕy “ xϕ,A˚Aϕy ď }ϕ}2}A˚A} , (4.13)

therefore:
}A}2 “ sup

}ϕ}“1

}Aϕ}2 ď }A˚A} ď }A˚}}A} “ }A}2 . (4.14)
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To conclude, the property pviq follows from:

ϕ P KerA ðñ Aϕ “ 0

ðñ xψ,Aϕy “ 0 for all ψ P H (4.15)

ðñ xA˚ψ,ϕy “ 0 for all ψ P H (4.16)

ðñ ϕ P pRanA˚qK . (4.17)

Example 4.7. Let T : `2 Ñ `2 be the right shift, px1, x2, . . .q ÞÑ p0, x1, x2, . . .q. We have:

xx, Tyy “
8
ÿ

j“2

xjyj´1 “

8
ÿ

j“1

xj`1yj “: xT˚x, yy , (4.18)

with T˚ the left shift operator, px1, x2, . . .q ÞÑ px2, x3, . . .q. Notice that the rightshift is
isometric, but not surjective and hence not unitary. It follows that T˚T “ 1, but TT˚ ‰ 1.

Proposition 4.8. U P LpHq is unitary if and only if U˚ “ U´1.

Proof. Suppose that U is unitary. Then:

pU˚Uψ ´ ψ,ϕq “ pUψ,Uϕq ´ xψ,ϕy “ 0 for all ψ,ϕ P H. (4.19)

Therefore, U˚U “ 1. Since U is surjective, for any ϕ P H there exists ψ P H such that
Uψ “ ϕ. Also, UU˚ϕ “ UU˚Uψ “ Uψ “ ϕ. This implies that UU˚ “ 1. That is,
U˚ “ U´1.

Suppose now that U˚ “ U´1. Then, U is surjective, and moreover:

xUϕ,Uψy “ xU˚Uϕ,ψy “ xU´1Uϕ,ψy “ xϕ,ψy . (4.20)

This proves that U is unitary.

Definition 4.9 (Bounded selfadjoint operator). A P LpHq is called selfadjoint if A “ A˚.

Proposition 4.10. Let A P LpHq. Then:

A is selfadjoint ðñ A is symmetric. (4.21)

Proof. The proof immediately follows from Proposition 4.5.

Remark 4.11. In general, for unbounded operators the implication ð does not hold true.

Theorem 4.12 (Bounded generator.). Let H P LpHq with H˚ “ H. Then, the operator

e´iHt “
8
ÿ

n“0

p´iHtqn

n!
(4.22)

defines a unitary group with generator H, with DpHq “ H. Moreover, the map RÑ LpHq :
t ÞÑ e´iHt is differentiable.

Proof. Exercise.

Definition 4.13 (Unbounded operators.). (a) An unbounded operator is a pair pT,DpT qq
of a subspace DpT q Ă H together with a linear operator T : DpT q Ñ H. If DpT q “ H,
we say that T is densely defined.

(b) An operator pS,DpSqq is called an extension of pT,DpT qq if DpSq Ą DpT q and S æDpT q“
T . We say that T Ă S.

(c) An operator pT,DpT qq is called symmetric if for all ϕ,ψ P DpT q it follows that:

xϕ, TψyH “ xTϕ, ψyH . (4.23)
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Example 4.14. The free Hamilton operator H0 “ ´
1
2∆ on DpH0q “ H2pRdq is a symmetric

unbounded operator, densely defined.

As we have seen in Example 3.80, the solution of the Schrödinger equation generated
by a symmetric operator H might leave DpHq, if DpHq is chosen too small. We would
like to understand what is exactly missing to imply that a given symmetric operator is the
generator of a unitary group. Let pH0, DpH0qq be a symmetric operator, and let pH1, DpH1qq

be a symmetric extension. Suppose that the equation:

i
d

dt
ψptq “ H1ψptq , (4.24)

with initial datum ψp0q P DpH0q has, at least for small times, a solution ψptq that belongs
at least to DpH1q but not to DpH0q. The question we ask is where does ψptq go after leaving
DpH0q. For ϕ P DpH0q Ă DpH1q it follows that:

xH1ψptq, ϕy “ xψptq, H1ϕy “ xψptq, H0ϕy . (4.25)

Therefore, if ψptq does not belong to DpH0q, then it is at least in the domain of the adjoint
operator H˚0 , defined as follows.

Definition 4.15 (The adjoint operator). Let T be a densely defined linear operator on a
Hilbert space H. Then, the domain DpT˚q of the adjoint operator T˚ is defined as:

DpT˚q :“ tψ P H | Dη P H s.t. xψ, Tϕy “ xη, ϕy @ϕ P DpT qu . (4.26)

Since DpT q is densely defined, η is uniquely defined and we define, for all ψ P DpT˚q:

T˚ : DpT˚q Ñ H , ψ ÞÑ T˚ψ :“ η . (4.27)

Remark 4.16. By Theorem 4.1, Definition 4.15 is equivalent to:

DpT˚q :“ tψ P H | ϕ ÞÑ xψ, Tϕy is continuous on DpT q.u (4.28)

Proposition 4.17. pT˚, DpT˚qq is a linear (not necessarily densely defined) operator and:

xψ, Tϕy “ xT˚ψ,ϕy for all ψ P DpT˚q and ϕ P DpT q. (4.29)

Proof. It immediately follows from Definition 4.15.

Definition 4.18 (Self-adjoint operator). Let pT,DpT qq be a densely defined linear operator.
If DpT˚q “ DpT q and T “ T˚ holds true on DpT q, then we say that pT,DpT qq is a selfadjoint
operator.

Example 4.19. In order to clarify the above definition, let us come back to Example 3.80.

(a) Let us consider first Dmin “ ´i
d
dx with:

DpDminq “ tϕ P H
1pr0, 1sq | ϕp0q “ ϕp1q “ 0u . (4.30)

For ϕ P DpDminq we have:

xψ,Dminϕy “

ż 1

0

dxψpxq
´

´ i
d

dx
ϕpxq

¯

“

ż 1

0

dx
´

´ i
d

dx
ψpxq

¯

ϕpxq “ x´i
d

dx
ψ, ϕy

“: xη, ϕy ,(4.31)

provided d
dxψ P L2pr0, 1sq, which is implied by ψ P H1pr0, 1sq. Therefore, one has

DpD˚minq “ H1pr0, 1sq Ľ DpDminq which implies that Dmin is not selfadjoint.

(b) Let Dθ “ ´i
d
dx with:

DpDθq “ tϕ P H
1pr0, 1sq | eiθϕp1q “ ϕp0qu . (4.32)

32



One has, for ϕ P DpDθq:

xψ,Dθϕy “

ż 1

0

dxψpxq
´

´ i
d

dx
ϕpxq

¯

“ ipψp0qϕp0q ´ ψp1qϕp1qq `

ż 1

0

dx
´

´ i
d

dx
ψpxq

¯

ϕpxq “ x´i
d

dx
ψ, ϕy

” xη, ϕy , (4.33)

provided that ψ P H1pr0, 1sq and that:

ψp0qϕp0q ´ ψp1qϕp1q “ 0 ðñ
ψp0q

ψp1q
“
ϕp1q

ϕp0q
“ e´iθ . (4.34)

It follows than that DpD˚θ q “ DpDθq and that D˚θ “ ´i ddx “ Dθ. That is, Dθ is
selfadjoint.

Theorem 4.20 (Generator of a unitary group). A densely defined operator pH,DpHqq is a
generator of a unitary group Uptq “ e´iHt if and only if H is selfadjoint.

Remark 4.21. The Spectral Theorem, to be stated later, will imply that every selfadjoint
operator generates a unitary group. The converse implication, that is that every unitary
group is generated by a selfadjoint operator, is called the Stone Theorem. Both will be proven
later; Theorem 4.20 will then follow as an immediate corollary.

Definition 4.22 (Direct sum of Hilbert spaces). Let H1 and H2 be two Hilbert spaces. Then,
their direct sum is defined as:

H1 ‘H2 :“ H1 ˆH2 , (4.35)

equipped with the scalar product

xϕ,ψyH1‘H2 :“ xϕ1, ψ1yH1 ` xϕ2, ψ2yH2 . (4.36)

Remark 4.23. pH1 ‘H2, x¨, ¨yH1‘H2q is a Hilbert space.

Definition 4.24 (Graph of an operator, closed operator, closure). (a) The graph of a lin-
ear operator T : DpT q Ñ H is the space:

ΓpT q “ tpϕ, Tϕq P H‘H | ϕ P DpT qu Ă H‘H . (4.37)

(b) An operator T is called closed if ΓpT q is a closed subspace of H‘H.

(c) An operator T is called closable if it admits a closed extension. In this case, the smallest
closed extension T is called the closure of T .

Remark 4.25. It is easy to see that:

ΓpT q “ ΓpT q . (4.38)

Remark 4.26. Therefore, an operator T is closed if for every sequence pϕnq Ă DpT q such
that ϕn Ñ ϕ and Tϕn Ñ η in H, then ϕ P DpT q and Tϕ “ η.

Theorem 4.27 (The adjoint of an operator is always closed.). Let pT,DpT qq be densely
defined. Then, T˚ is closed.

Proof. We shall show that ΓpT˚q is a closed subspace of H‘H. To do this, let us first notice
that:

pψ, ηq P ΓpT˚q ðñ xψ, Tϕy “ xη, ϕy for all ϕ P DpT q

ðñ xψ, Tϕy ´ xη, ϕy “ 0 for all ϕ P DpT q (4.39)

ðñ xpψ, ηq, p´Tϕ, ϕqyH‘H “ 0 for all ϕ P DpT q. (4.40)

Let us introduce the unitary map:

W : H‘HÑ H‘H : pϕ1, ϕ2q ÞÑ p´ϕ2, ϕ1q . (4.41)
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Therefore, we rewrite Eq. (4.39) as:

pψ, ηq P ΓpT˚q ðñ xpψ, ηq, φyH‘H “ 0 for all φ PW pΓpT qq. (4.42)

That is, ΓpT˚q “ pW pΓpT qqqK. Being the orthogonal complement a closed set, it follows
that ΓpT˚q is closed and hence that T˚ is a closed operator.

Proposition 4.28 (Extension of symmetric operators via their adjoint). A densely defined
operator T is symmetric if and only if T Ă T˚.

Proof. If T is symmetric, it follows that DpT q Ă DpT˚q, because for every ψ P DpT q one
can set η “ Tψ “: T˚ψ. Conversely, if T Ă T˚, then for every ψ P DpT q Ă DpT˚q we have
xψ, Tϕy “ xT˚ψ,ϕy “ xTψ, ϕy for all ϕ P DpT q.

Remark 4.29 (Symmetric operators are closable). Since for symmetric operators one has
T Ă T˚ and T˚ is closed, then the symmetric operators are always closable.

Remark 4.30. For general symmetric operators T , the identity T “ T˚ does not have to be
true. In fact, it is not difficult to see that T is symmetric, while T˚ may not be.

Proposition 4.31. Let T be densely defined and T Ă S. Then, S˚ Ă T˚.

Proof. With the notation of the proof of Theorem 4.27, one has ΓpS˚q “ pWΓpSqqK. Since
T Ă S, one has ΓpT q Ă ΓpSq, and also WΓpT q ĂWΓpSq. Hence:

ΓpS˚q “ pWΓpSqqK Ă pWΓpT qqK “ ΓpT˚q . (4.43)

Proposition 4.32. Let T be densely defined and closable. Then, T˚ is also densely defined.

Proof. We shall prove that DpT˚q is dense in H by showing that DpT˚qK “ 0. Let η P
DpT˚qK. Then (recall that the orthogonal complement is a closed set):

pη, 0q P ΓpT˚qK “ pWΓpT qqKK “WΓpT q . (4.44)

Since WΓpT q “ tp´Tϕ, ϕq | ϕ P DpT qu, there exists a sequence pϕnq in DpT q with ϕn Ñ 0,
such that ´Tϕn Ñ η. Being T closable, we have that T0 “ η “ 0.

Proposition 4.33. Let T densely defined and closable. Then:

(a) T˚˚ “ T .

(b) pT q˚ “ T˚ “ T˚˚˚.

Proof. Being W unitary, it follows that for every subspace M Ă H ‘ H then W pMKq “

pW pMqqK.

(a) We already know that ΓpT˚q “ pWΓpT qqK. Replacing T with T˚ we have:

ΓpT˚˚q “ pWΓpT˚qqK “ pW ppWΓpT qqKqqK “W˝W pΓpT qKKq “ ´ΓpT q “ ´ΓpT q “ ΓpT q .
(4.45)

(b) Thanks to the previous equality it turns out that T
˚
“ T˚˚˚. Moreover,

ΓpT
˚
q “ pWΓpT qqK “WΓpT q

K
“ pWΓpT qqK “ ΓpT˚q . (4.46)
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4.2 Criteria for symmetry, selfadjointness and essential selfadjoint-
ness

Selfadjoint operators play an important role in quantum mechanics, since they are the only
operators that can generate time evolution. Nevertheless, we would like to have criteria that
allows to check whether a given operator is selfadjoint. Before doing this, let us discuss a
simple criterion to determine whether an operator is symmetric.

Lemma 4.34 (Criterium for symmetry). Let T be a linear operator on a complex Hilbert
space H. Then:

xϕ, Tϕy P R for all ϕ P DpT q ðñ T is symmetric. (4.47)

Proof. The fact that T is symmetric immediately implies that xϕ, Tϕy P R, since xϕ, Tϕy “
xTϕ, ϕy. Let us now prove the converse implication. Suppose that xϕ, Tϕy P R for all
ϕ P DpT q. We would like to show that

xϕ, Tψy “ xTϕ, ψy for all ψ,ϕ P DpT q. (4.48)

Consider the identity:

xϕ, Tψy “ (4.49)

1

4
pxϕ` ψ, T pϕ` ψqy ´ xϕ´ ψ, T pϕ´ ψqy ´ ixϕ` iψ, T pϕ` iψqy ` ixϕ´ iψ, T pϕ´ iψqyq

Let us take the complex conjugate of both sides, recalling that, by assumption, xϕ, Tϕy P R
for all ϕ P DpT q. We have:

xϕ, Tψy “ xTψ, ϕy “ (4.50)

1

4
pxϕ` ψ, T pϕ` ψqy ´ xϕ´ ψ, T pϕ´ ψqy ` ixϕ` iψ, T pϕ` iψqy ´ ixϕ´ iψ, T pϕ´ iψqyq .

Therefore, interchaging ψ with ϕ:

xTϕ, ψy “ (4.51)

1

4
pxϕ` ψ, T pϕ` ψqy ´ xϕ´ ψ, T pϕ´ ψqy ` ixψ ` iϕ, T pψ ` iϕqy ´ ixψ ´ iϕ, T pψ ´ iϕqyq

“
1

4
pxϕ` ψ, T pϕ` ψqy ´ xϕ´ ψ, T pϕ´ ψqy ` ixiψ ´ ϕ, T piψ ´ ϕqy ´ ixiψ ` ϕ, T piψ ` ϕqyq

” xϕ, Tψy

where the last step follows by comparison with Eq. (4.49).

Example 4.35. (i) Let f : R Ñ C measurable. Consider the multiplication operator
pAfψqpxq “ fpxqψpxq, for all ψ P DpAf q “ tψ P L

2pRq | fψ P L2pRqu. We then have
that Af is a symmetric operator if and only if fpxq is real valued.

Let us compute the adjoint of A˚f . To begin, notice that DpAf q is dense in L2pRq. This

follows from C8c pRq Ă DpAf q Ă L2pRq. The adjoint operator on DpAf q is given by:

pA˚fψqpxq “ fpxqψpxq . (4.52)

Thus, A˚f “ Af if and only if f is real valued.

(ii) Consider the distributional Laplacian ´∆ on H2pRdq. For all ψ P H2pRdq Ă L2pRdq:

xψ,´∆ψy “ xFψ,F ´∆F´1Fψy “
ż

dk |ψ̂pkq|2k2 P R . (4.53)

Hence, ´∆ is a symmetric operator.

Sometimes, one has to deal with non-closed symmetric operators. Of course, these oper-
ators cannot be self-adjoint (self-adjoint operators are always closed). The relevant question
here is whether the closure of a symmetric operator is selfadjoint.
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Definition 4.36 (Essentially selfadjoint operator). A symmetric, densely defined operator
is called essentially selfadjoint if its closure is selfadjoint.

Corollary 4.37. A symmetric, densely defined operator T is essentially selfadjoint if and
only if T˚ is symmetric. In this case T “ T˚ and T is the unique selfadjoint extension of T .

Proof. Suppose that T˚ is symmetric. We would like to show that pT q˚ “ T , that is T is
essentially selfadjoint. By Proposition 4.33 pbq, pT q˚ “ T˚, hence it is enough to check that
T˚ “ T . By Theorem 4.27, T˚ is closed. Moreover, being T symmetric, by Proposition 4.28
T Ă T˚. Thus, T Ă T˚. To conclude, we would like to show that T˚ Ă T . We claim that
T˚˚˚ Ă T˚˚. If so, by Proposition 4.33, we have: T˚ “ T˚˚˚ Ă T˚˚ “ T , which proves
that T˚ Ă T and hence that T˚ “ T . The claim T˚˚˚ Ă T˚˚ follows from the fact that, for
T symmetric, T˚˚ Ă T˚. In fact: by Proposition 4.33 pbq, we have T˚ “ pT q˚; since T is
symmetric and densely defined, pT q˚ Ą T , by Proposition 4.28; finally, Proposition 4.33 paq
implies that T “ T˚˚.

Now, suppose that T is essentially selfadjoint. Then, T is selfadjoint, and in particular
symmetric. Moreover, T˚ is symmetric as well, since, by Proposition 4.33, T˚ “ pT q˚ “ T ,
where the last equality follows from the definition of essential selfadjointness.

To conclude, we have to show that T is the unique selfadjoint extension of T . Suppose
that S is another selfadjoint extension of T . Then, T Ă S implies that T Ă S “ S (since,
by Theorem 4.27, selfadjoint operators are closed). The reverse implication follows from
Proposition 4.31: S “ S˚ Ă T˚ “ T , i.e. S “ T .

Definition 4.38. Let pT,DpT qq be a selfadjoint operator. A subspace D0 Ă DpT q, dense in
H, is called core of T if pT,D0q is essentially selfadjoint, that is if:

T æD0
“ T . (4.54)

Remark 4.39. Equivalently, D0 is a core for pT,DpT qq if and only if D0 is dense in DpT q
with respect to the graph norm:

}ϕ}2ΓpT q :“ }Tϕ}2H ` }ϕ}
2
H . (4.55)

Example 4.40. (a) As we have seen in Example 4.19, the operator p´i ddx , Dminq is sym-
metric but not selfadjoint. Let us check whether it is essentially selfadjoint. To do so,
let us compute the closure of the operator, and check whether the closure is selfadjoint.
Being T “ ´i ddx symmetric on its domain, we know that T “ T˚˚ Ă T˚. Therefore,

for all ψ P DpT˚q “ H1pr0, 1sq and all ϕ P DpT q, recalling that T Ă T˚ “ ´i ddx :

0 “ xψ, Tϕy ´ xT˚ψ,ϕy

“ xψ,´i
d

dx
y ´ x´i

d

dx
ψ, ϕy “ irϕp0qψp0q ´ ϕp1qψp1qs , (4.56)

which implies that ϕp0q “ ϕp1q “ 0 (because ψ P DpT˚q “ H1pr0, 1sq does not need
to satisfy any boundary condition). We conclude that DpT q Ă tψ P DpT˚q | ψp0q “
ψp1q “ 0u ” Dmin. On the other hand, it is easy to check that every ψ P H1pr0, 1sq
with ψp0q “ ψp1q “ 0 is also in DpT˚˚q “ DpT q. In fact, for any ψ P Dmin and any
ϕ P DpT˚q “ H1pr0, 1sq, integrating by parts:

xψ, T˚ϕy “ xψ,´i
d

dx
ϕy “ x´i

d

dx
ψ, ϕy “: xη, ϕy , (4.57)

with η P L2pRq given by ´i ddxψ. Therefore, DpT q “ Dmin, and Tψ “ ´i ddxψ for all

ψ P DpT q. Hence, T is a symmetric operator on Dmin, but not selfadjoint; that is
pT,Dminq is not essentially selfadjoint.

(b) We already know that p´i ddx , Dθq is selfadjoint. Hence, it is in particular essentially
selfadjoint.
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The distinction between closed symmetric operators and self-adjoint operators may seem
just a technicality, but it is actually very important. The spectral theorem, which plays
a very important role in quantum mechanics, only holds for selfadjoint operators, not for
general closed symmetric operators. Similarly, only selfadjoint operators, and not general
closed symmetric operators, generate a unitary evolution. Unfortunately, while it is easy to
check whether an operator is symmetric, it is much more difficult to decide whether it is
selfadjoint; we need criteria to prove selfadjointness. The basic criterium is stated in the
following theorem.

Theorem 4.41 (Criteria for seldadjointness). Let pH,DpHqq be densely defined and sym-
metric. Then, the following statements are equivalent:

(i) H is selfadjoint.

(ii) H is closed and KerpH˚ ˘ iq “ t0u.

(iii) RanpH ˘ iq “ H.

Proof. piq ñ piiq. Let H be selfadjoint. Then, H is closed (since H˚ is closed, Theorem
4.27). Let ϕ˘ P KerpH˚ ˘ iq. Then, Hϕ˘ “ ¯iϕ˘. Since the eigenvalues of a symmetric
operators are always real, it follows that ϕ˘ “ 0.
piiq ñ piiiq. This implication will be postponed to the next lemma.
piiiq ñ piq. Being H symmetric, it follows that H Ă H˚, by Proposition 4.28. We are

left with showing that H˚ Ă H. To this end, let ψ P DpH˚q. Then, by the assumption
RanpH ˘ iq “ H, there exists ϕ P DpHq such that

pH˚ ´ iqψ “ pH ´ iqϕ . (4.58)

By H Ă H˚, it also follows that:

pH˚ ´ iqψ “ pH˚ ´ iqϕ , (4.59)

that is ϕ ´ ψ P Ker pH˚ ´ iq. As the next lemma will show, this implies that ϕ ´ ψ “ 0,
that is ψ “ ϕ P DpHq, which shows that DpH˚q Ă DpHq. Also, by Eq. (4.58), H “ H˚ on
DpHq, which concludes the proof.

Lemma 4.42. Let pT,DpT qq be densely defined. Then:

(a) For all z P C it follows that Ker pT˚ ˘ zq “ Ran pT ˘ zqK. In particular:

Ker pT˚ ˘ zq “ t0u ðñ Ran pT ˘ zq “ H . (4.60)

(b) If T is closed and symmetric, then the sets Ran pT ˘ iq are closed.

Remark 4.43. Let us check how this lemma allows to conclude the proof of Theorem 4.41.
Let us check that piiq ñ piiiq. Eq. (4.60) implies that: Ker pH˚ ˘ iq “ t0u ñ Ran pH ˘ iq “
H. Finally, being H closed and symmetric, item pbq above implies that RanH is closed. This
proves the implication piiq ñ piiiq.

To conclude the proof of the implication piiiq ñ piq above, we have to show that piiiq
implies that Ker pH˚ ´ iq “ t0u. Since Ran pH ˘ iq Ă Ran pH ˘ iq, and Ran pH ˘ iq “ H
by assumption, Eq. (4.60) implies that Ker pH˚ ´ iq “ t0u, which concludes the proof of
Theorem 4.41.

Proof. (of Lemma 4.42.) To prove paq, notice first that pT ` zq˚ “ T˚ ` z. Then:

ψ P Ran pT ˘ zqK ðñ xψ, pT ˘ zqϕy “ 0 for all ϕ P DpT q

ðñ ψ P DpT˚q and pT˚ ˘ zqψ “ 0

ðñ ψ P Ker pT˚ ˘ zq . (4.61)

This proves paq. Let us now prove pbq; we start by choosing `i. The proof for ´i is exactly the
same. For symmetric T , it follows that xψ, Tψy “ xTψ, ψy “ xψ, Tψy, that is xψ, Tψy P R.
Therefore, for any ψ P DpT q:

}pT ` iqψ}2 “ xpT ` iqψ, pT ` iqψy “ }Tψ}2 ` }ψ}2 ´ 2Re ixψ, Tψy

“ }Tψ}2 ` }ψ}2 ě }ψ}2 . (4.62)
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Therefore, T ` i is injective and pT ` iq´1 : RanpT ` iq Ñ DpT q exists and it is bounded.
Let pψnq be a sequence in Ran pT ` iq such that ψn Ñ ψ. Let ϕn :“ pT ` iq´1ψn. The
boundedness of pT ` iq´1 implies that ψn is a Cauchy sequence, which therefore converges
to ϕ P H. Being T closed, ΓpT q is a closed set; therefore, the sequence pϕn, ψnq P ΓpT ` iq
converges to pϕ,ψq “ pϕ, pT ` iqϕq P ΓpT ` iq, which shows that ψ P Ran pT ` iq.

Remark 4.44. Suppose that H is nonnegative, that is xψ,Hψy ě 0 for all ψ P DpHq. Then,
it is not difficult to see that the condition for selfadjointness Ran pH ˘ iq “ H in Theorem
4.41 can be replaced by Ran pH ` 1q “ H.

From Theorem 4.41, we also obtain criteria for essential selfadjointness.

Corollary 4.45 (Criteria for essential selfadjointness). Let H be densely defined and sym-
metric. Then, the following statements are equivalent:

(i) H is essentially selfadjoint.

(ii) Ker pH˚ ˘ iq “ t0u.

(iii) Ran pH ˘ iq “ H.

Proof. Exercise.

Example 4.46. (a) Let us give a simple proof of the fact that the operator H “ ´i ddx on
Dmin “ tψ P H1pr0, 1sq | ψp1q “ ψp0q “ 0u is not essentially selfadjoint, based on
Corollary 4.45. The equation:

H˚ϕ˘ “ ´i
d

dx
ϕ˘ “ ¯iϕ˘ (4.63)

is solved by ϕ˘ “ e˘x, which lies in DpH˚q “ H1pr0, 1sq. Therefore, KerpH˚˘iq ‰ t0u,
which disproves essential selfadjointess.

(b) For H0 “ ´∆ on C8c pRdq it follows that DpH˚0 q “ H2pRdq and the equation

H˚0 ϕ˘ “ ´∆ϕ˘ “ ¯iϕ˘ (4.64)

has no solution in H2, since ´∆ is a symmetric operator. Therefore, Ker pH˚0 ˘iq “ t0u
and H0 is essentially selfadjoint on C8c pRdq.

To conclude this section, let us prove that p´∆, H2pRdqq is a selfadjoint operator. We
could use Theorem 4.41, by checking that Γp´∆q is closed. An easier proof will be provided
by the following lemma.

Lemma 4.47. Let U : H1 Ñ H2 be a unitary operator, and pH,DpHqq be a selfadjoint
operator on H1. Then, pUHU˚, UDpHqq is selfadjoint on H2.

Proof. Exercise.

Let H1 “ H2 “ L2pRdq, H “ ´∆ and Dp´∆q “ H2pRdq. Choose U “ F , the Fourier
transform on L2pRdq. Then, UHU˚ “ F ´ ∆F´1 ” Af with f “ k2 (multiplication
operator). Being f measurable and real valued, selfadjointness immediately follows from
Example 4.35.

4.3 Selfadjoint extensions

If a symmetric operator is nonnegative, there is a simple way of constructing a selfadjoint
extension via the Friedrichs extension.

Definition 4.48. A densely defined linear operator pT,DpT qq on a Hilbert space H is called
nonnegative, T ě 0, if:

qT pψq :“ xψ, Tψy ě 0 for all ψ P DpT q. (4.65)

It is called positive, T ą 0, if qT pψq ą 0 for all ψ P DpT q.

38



Remark 4.49. The functional qT p¨q is called the quadratic form associated to T .

Remark 4.50. Lemma 4.34 implies that every nonnegative operator is symmetric.

Proposition 4.51. Let pT,DpT qq be a densely defined, linear, nonnegative operator. Given
ψ,ϕ P DpT q, let xϕ,ψyT :“ xϕ, Tψy`xϕ,ψy. Then, x¨, ¨yT defines a scalar product on DpT q.

Proof. Exercise.

Remark 4.52. Therefore, } ¨ }T :“
a

x¨, ¨yT defines a norm on DpT q. Being T nonnegative,
we have }ψ}2T “ xψ, Tψy ě xψ,ψy “ }ψ}

2.

Definition 4.53. The completion HT of DpT q is the set of equivalence classes of sequences
in DpT q which are Cauchy with respect to the } ¨ }T norm. Two sequences pψnq, pϕnq belong
to the same equivalence class in HT if }ψn ´ ϕn}T Ñ 0.

Remark 4.54. If a sequence is Cauchy with respect to the } ¨ }T norm, it is also Cauchy
with respect to the } ¨ } norm (recall Remark 4.52).

Proposition 4.55. Let rpϕnqnPNs P HT , such that ϕn Ñ ϕ P H. The map rpϕnqnPNs ÞÑ ϕ is
well defined and injective.

Proof. Let us start by proving that the map is well defined. Let pϕnq, pψnq be two sequences
in HT , with }ϕn ´ ψn}T Ñ 0. That is, the two sequences belong to the same equivalence
class, and have the same limit ϕ in H since, by Remark 4.52, }ϕn´ψn} Ñ 0. Thus, the map
rpϕnqnPNs ÞÑ ϕ is well defined.

Let us now prove that the map is injective. Suppose that pψnq, pϕnq are two sequences
in HT . Suppose that they converge to the same limit, }ϕn ´ ψn} Ñ 0. Then, we claim that
}ϕn ´ ψn}T Ñ 0, that is they belong to the same equivalence class. This follows from:

}ψn ´ ϕn}
2
T “ xψn ´ ϕn, ψn ´ ϕn ´ pψm ´ ϕmqyT ` xψn ´ ϕn, ψm ´ ϕmyT (4.66)

ď }ψn ´ ϕn}T }ψn ´ ϕn ´ pψm ´ ϕmq}T ` }pT ` 1qpψn ´ ϕnq}}ψm ´ ϕm}

ď C}ψn ´ ϕn ´ pψm ´ ϕmq}T ` }pT ` 1qpψn ´ ϕnq}}ψm ´ ϕm} ,

where we used that every Cauchy sequence is bounded and that T is a symmetric operator.
For any ε ą 0, by choosing n,m large enough, C}ψn ´ ϕn ´ pψm ´ ϕmq}T ď ε{2. Also, for
any n we can choose m large enough so that }pT `1qpψn´ϕnq}}ψm´ϕm} ď ε{2. Therefore,
}ψn ´ ϕn}

2
T ď ε, that is }ϕn ´ ψn}T Ñ 0.

Remark 4.56. (i) This proposition is useful because it allows to identify HT with a sub-
space QpT q Ă H, by associating to each equivalence class rpϕnqns its limit ϕ P H.
Obviously, DpT q Ă QpT q Ă H (every element of DpT q is the limit of a sequence in HT :
just take the constant sequence).

(ii) The scalar product x¨, ¨yT , originally defined on DpT q, can be naturally extended to
QpT q. This is done by using the continuity of the scalar product on H, and the fact
that every element of QpT q is the limit of a sequence in DpT q. (Exercise).

Definition 4.57. The subspace QpT q is called the form domain T . The extension of the
quadratic form qT to QpT q is defined as:

qT pψq :“ xψ,ψyT ´ }ψ}
2 for all ψ P QpT q, (4.67)

where x¨, ¨yT is the extension of the scalar product induced by T to QpT q ˆQpT q.

Remark 4.58. If ψ P DpT q, then qT pψq “ xψ, Tψy.

Theorem 4.59 (Friedrichs extension). Let pT,DpT qq be a linear, symmetric, densely defined
operator, bounded from below by γ: xψ, Tψy ě γ for all ψ P DpT q. Let:

Dp rT q :“ DpT˚q XQpT ´ γq

rTψ :“ T˚ψ for all ψ P Dp rT q. (4.68)

Then:
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(i) rT is an extension of T , and rT ě γ.

(ii) rT is selfadjoint.

(iii) rT is the only selfadjoint extension of T with Dp rT q Ă QpT ´ γq.

Proof. For simplicity, we shall set γ “ 0. If not, replace T by T ´ γ in what follows.

(i) We claim that T Ă rT . By Proposition 4.28, we have that T Ă T˚. Since DpT˚q Ą DpT q

and QpT q Ą DpT q, then DpT q Ă Dp rT q. Moreover, T “ rT on DpT q, since T “ T˚ on

DpT q. This proves that T Ă rT . Let us now prove that rT ě 0. Let ψ P Dp rT q, and
pψnq Ă DpT q such that ψn Ñ ψ and pψnq is Cauchy in } ¨ }T . Then:

xψ, rTψy “ lim
nÑ8

xψn, rTψy . (4.69)

We further write:

xψn, rTψy “ xψn, T
˚ψy (4.70)

“ xTψn, ψy

“ xTψn, ψmy ` xTψn, ψ ´ ψmy

“ xTψm, ψmy ` xT pψn ´ ψmq, ψmy ` xTψn, ψ ´ ψmy “: I` II` III .

Clearly, I ě 0. Pick ε ą 0. Consider II. We have, for n,m large enough:

|II| ď }ψn ´ ψm}T }ψm}T ď
ε

2
, (4.71)

where we used that pψnq is Cauchy in }¨}T and that every Cauchy sequence is bounded.
Consider now III. We have, for m large enough:

|III| ď }ψn ´ ψm}T }ψ ´ ψm} ď
ε

2
. (4.72)

Therefore, xψ, rTψy ě 0.

(ii) Let us now show that rT is selfadjoint. We shall use Theorem 4.41 piiq. Being rT ě 0, rT
is symmetric. Our goal is to show that Ran pT ` 1q “ H (recall Remark 4.44). Recall:

Dp rT q :“ tψ P QpT q | Dη P H s.t. xψ, Tϕy “ xη, ϕy for all ϕ P DpT qu , (4.73)

where the vector η is unique (by density of DpT q is H). From the definition x¨, ¨yT , this
is equivalent to:

Dp rT q “ tψ P QpT q | Dη P H s.t. xψ,ϕyT “ xη, ϕy for all ϕ P DpT qu . (4.74)

Also, being DpT q dense in QpT q:

Dp rT q “ tψ P QpT q | Dη P H s.t. xψ,ϕyT “ xη, ϕy for all ϕ P QpT qu , (4.75)

where now x¨, ¨y is the extension of x¨, ¨yT to QpT q ˆ QpT q (see Remark 4.56). By

definition, rTψ “ T˚ψ “ η ´ ψ for all ψ P Dp rT q, that is:

p rT ` 1qψ “ η . (4.76)

We will show that for every η P H there exists ψ such that Eq. (4.76) holds true, i.e.

that Ran p rT ` 1q “ H, as claimed. For any η P H, the map QpT q Q ϕ ÞÑ xη, ϕy is a
bounded linear functional on QpT q, with respect to } ¨ } and hence to } ¨ }T . Thus, by
Riesz theorem (Theorem 4.1), there exists ξ P QpT q such that xη, ϕy “ xξ, ϕyT for all

ϕ P QpT q. Comparing this equation with Eq. (4.75), we find that ξ P Dp rT q. Also,

by Eq. (4.76), we have p rT ` 1qξ “ η, which shows that Ran p rT ` 1q “ H; therefore,

Theorem 4.41 and Remark 4.44 imply that rT is selfadjoint.
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(iii) To conclude, let us prove uniqueness of the selfadjoint extension. Suppose that pT is

another selfadjoint extension of T with Dp pT q Ă QpT q. Let ψ P Dp pT q and ϕ P DpT q Ă

Dp pT q. Then:

xϕ, p pT ` 1qψy “ xp pT ` 1qϕ,ψy “ xpT ` 1qϕ,ψy “ xψ, pT ` 1qϕy “ xψ,ϕyT “ xϕ,ψyT .
(4.77)

By density of DpT q in QpT q and continuity of the scalar product, taking the complex
conjugate:

xp pT ` 1qψ,ϕy “ xψ,ϕyT for all ψ,ϕ P Dp pT q. (4.78)

This implies that ψ P Dp rT q, since ψ P QpT q and xψ,ϕyT “ xη, ϕy holds for all ϕ P

DpT q Ă Dp pT q, with η “ p pT ` 1qψ. Thus, Dp pT q Ă Dp rT q. Moreover, by Eq. (4.76),

p rT ` 1qψ “ η: therefore, rTψ “ pTψ for all ψ P Dp pT q. In other words, pT Ă rT . By taking

the adjoint, and recalling Proposition 4.31, we also have rT˚ Ă pT˚, but then rT “ pT ,
since rT˚ “ rT and pT “ pT˚.

4.4 From quadratic forms to operators

Theorem 4.59 shows how to construct a selfadjoint extension of a nonnegative operator using
the quadratic form associated with the operator. Later, we will be interested in defining a
selfadjoint operator given a certain quadratic form.

Proposition 4.60. Let Q Ă H, let spϕ,ψq be a sesquilinear form on QˆQ, with quadratic
form qpψq “ spψ,ψq. Suppose that q is real valued and that q is semibounded: there exists
γ P R such that qpψq ě γ}ψ}2. Let:

xψ,ϕyq :“ spψ,ϕq ` p1´ γqxψ,ϕy . (4.79)

Then, x¨, ¨yq is a scalar product on Q.

Proof. Exercise.

Remark 4.61. Recall that a map sp¨, ¨q : Q ˆ Q Ñ C is called a sesquilinear form if it is
linear in the second variable and antilinear in the first variable.

We would like to know whether x¨, ¨yq can be thought as the scalar product generated
by an operator T with quadratic form qT “ q and form domain Q “ QpT q. This is true,
provided we make some assumptions on q.

Definition 4.62. A real valued quadratic form q is called closable if for any sequence pψnq Ă
Q such that }ψn} Ñ 0 and which is Cauchy with respect to } ¨ }q then }ψn}q Ñ 0.

Remark 4.63. This is the analog of the property that allowed us to identify HT with QpT q Ă
H, recall Eq.(4.66).

Let Hq be the completion of Q with respect to } ¨ }q. For closable q, this space can be
identified with a subspace of H, that we shall denote by Qq.

Definition 4.64. The extension of q to Qq is called the closure of q. The quadratic form is
called closed if Qq “ Q.

Theorem 4.65. For every densely defined, closed, semibounded form q : Q Ñ R there is a
unique selfadjoint operator T such that Q “ QpT q and q “ qT . If s is the sesquilinear form
associated with q, then:

DpT q “ tψ P Q | Dη P H s.t. spψ,ϕq “ xη, ϕy for all ϕ P Qu (4.80)

and Tψ “ η.
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Proof. For simplicity, we assume that q ě 0 (that is, γ “ 0). Since Q is dense, T is well
defined (there cannot be two different η1, η2 with spψ,ϕq “ xη1, ϕy “ xη2, ϕy for all ϕ P Q).
By construction, we have qT pψq “ qpψq for all ψ P DpT q. It follows that T is symmetric and
nonnegative. Proceeding as in the proof of Theorem 4.59, we find that Ran pT ` 1q “ H and
hence T is selfadjoint. Uniqueness is proven again as in the proof of Theorem 4.59.

Definition 4.66. A quadratic form is called bounded if |qpψq| ď C}ψ}2. The norm of q is
given by:

}q} “ sup
}ψ}“1

|qpψq| . (4.81)

Remark 4.67. For bounded quadratic forms, the norm induced by x¨, ¨yq is equivalent to
the standard norm. In this case, we obtain Hq “ H and the operator T associated with
q is bounded, by the Hellinger-Toeplitz theorem (every symmetric operator defined on the
full Hilbert space H is bounded). Together with the polarization identity, it is not difficult to
check that a closed semibounded form q is bounded if and only if the corresponding selfadjoint
operator T is bounded. In this case, }T } “ }q}. In particular, it follows that:

}A} “ sup
}ψ}“1

|xψ,Aψy| (4.82)

for all symmetric operators.

5 The spectral theorem

5.1 The spectrum

Definition 5.1 (Resolvent, resolvent set and spectrum). Let pT,DpT qq be a linear operator
on H. We define the resolvent set of T as:

ρpT q :“ tz P C | pT ´ zq : DpT q Ñ H is a bijection with continuous inverse.u (5.1)

For z P ρpT q we define the resolvent of T at z as:

RzpT q :“ pT ´ zq´1 P LpHq . (5.2)

The spectrum of T is defined as the complement of the resolvent set:

σpT q :“ CzρpT q . (5.3)

Remark 5.2. For closed operators, the continuity requirement in Eq. (5.1) can be dropped.
This is a consequence of the closed graph theorem, stating that a linear map T : X Ñ Y
between two Banach spaces X, Y is continuous if and only if T is closed.

Proposition 5.3. If T is not closed, then ρpT q “ H.

Proof. Suppose that pT ´ zq : DpT q Ñ H is a bijection. Then, pT ´ zq is invertible, and it is
not difficult to see that ΓpT q “ ΓpT ´ zq “ ΓppT ´ zq´1q (modulo switching the order of the
pairs in the definition of graph). Thus, if ΓpT q is not closed, ΓppT ´ zq´1q is not closed as
well. This means that there exists pϕnq Ă H such that ϕn Ñ 0 but limnÑ8pT ´ zq

´1ϕn ‰ 0.
Therefore, pT ´ zq´1 is not continuous. Hence, ρpT q “ H.

Definition 5.4. Let pT,DpT qq be a closed, linear operator. Then, its spectrum σpT q is
partitioned according to the following criteria:

(a) σppT q :“ tz P C | T ´ z is not injectiveu

is called the point spectrum, and it coincides with the set of eigenvalues of the operator.

(b) σcpT q :“ tz P C | T ´ z is injective, not surjective, with dense rangeu

is called the continuous spectrum.

(c) σrpT q :“ tz P C | T ´ z is injective, not surjective, with no dense rangeu

is called the residual spectrum.
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Remark 5.5. In conclusion, for closed operators:

σpT q “ σppT q Y σcpT q Y σrpT q , (5.4)

and if dimH ă 8 then σpT q “ σppT q is the set of eigenvalues.

Example 5.6. (i) Consider the position operator x̂, with domain:

D̂pxq “ tψ P L2pRq | xψpxq P L2pRqu (5.5)

defined via x̂ : ψ ÞÑ xψ. It follows that px̂ ´ zq´1 is the multiplication by the function
px´ zq´1, which is bounded for all z P CzR. Therefore, σpx̂q “ R.

The map px̂´ λq has a dense range for all λ P R. To see this, for all ψ P L2 we define:

ϕn :“ χRzrλ´ 1
n ,λ`

1
n s

ψ

x´ λ
. (5.6)

Then, px ´ λqϕn Ñ ψ in L2, and hence the range of x ´ λ is dense. Therefore,
σpx̂q “ σcpx̂q “ R.

(ii) Let U P LpHq unitary. Then, σpT q “ σpUTU´1q. This follows from the fact that T ´z
is bijective if and only if UpT ´ zqU´1 “ UTU´1 ´ z is bijective.

Therefore, the momentum operator p̂ “ ´i ddx on L2pRq has real continuous spectrum,
σpp̂q “ σcpp̂q “ R, since p̂ “ F x̂F´1 and the Fourier transform is unitary.

Theorem 5.7 (Properties of the resolvent and of the spectrum). Let pT,DpT qq be a densely
defined operator on a Hilbert space H. Then:

(a) ρpT q is open, that is the spectrum σpT q is closed.

(b) The resolvent map:

ρpT q Ñ LpHq , z ÞÑ RzpT q :“ pT ´ zq´1 (5.7)

is analytic, that is RzpT q can be written locally as a pointwise convergent series with
coefficients in LpHq.

(c) If T P LpHq, then |z| ď }T } for all z P σpT q. In particular, the spectrum is compact.

(d) For z, w P ρpT q the first resolvent identity holds true:

RzpT q ´RwpT q “ pz ´ wqRwpT qRzpT q . (5.8)

In particular, the resolvents commute:

RwpT qRzpT q “ RzpT qRwpT q . (5.9)

The proof of this theorem is based on the following proposition.

Proposition 5.8 (Neumann series). Let X be a Banach space and T P LpXq with }T } ă 1.
Then, 1´ T is continuously invertible and:

p1´ T q´1 “

8
ÿ

n“0

Tn , (5.10)

and:
}p1´ T q´1} ď p1´ }T }q´1 . (5.11)

Proof. Exercise.

Proof. (of Theorem 5.7.)

(a) Let z0 P ρpT q and |z ´ z0| ă }Rz0}
´1. Then,

T ´ z “ T ´ z0 ´ pz ´ z0q “ pT ´ z0qp1´ pz ´ z0qRz0pT qq . (5.12)

Then, the next proposition implies that }pz ´ z0qRz0} ă 1, which means that 1 ´
pz ´ z0qRz0 is continuously invertible, and hence pT ´ zq is continuously invertible.
Therefore, z P ρpT q.
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(b) Thanks to the Neumann series :

Rz “ p1´ pz ´ z0qRz0q
´1Rz0 “

8
ÿ

n“0

pz ´ z0q
nRn`1

z0 , (5.13)

where the coefficients Rn`1
z0 belong to LpHq.

(c) Let |z| ą }T }. Then, 1´ T
z is invertible, and T ´ z as well. Therefore, z P ρpT q.

(d) We have:

RzpT q´RwpT q “ RzpT qpT ´wqRwpT q´RzpT qpT ´ zqRwpT q “ pz´wqRzpT qRwpT q .
(5.14)

Theorem 5.9 (Spectrum of a selfadjoint operator). Let pH,DpHqq be a selfadjoint operator.
Then, σpHq Ă R and for all z P CzR:

}pH ´ zq´1} ď
1

|Impzq|
. (5.15)

Proof. Let z “ λ ` iµ, with λ, µ P R and µ ‰ 0. Then, pH ´ λq{µ is selfadjoint on DpHq
and, by Theorem 4.41:

Ker
´H ´ λ

µ
´ i

¯

“ Ker pH ´ λ´ iµq “ t0u (5.16)

and:

Ran
´H ´ λ

µ
´ i

¯

“ Ran pH ´ λ´ iµq “ H . (5.17)

Eq. (5.16) implies that H ´ z : DpHq Ñ H is injective, while Eq. (5.17) implies that it is
surjective, Therefore, H ´ z : DpHq Ñ H is a bijection. Moreover, the inverse is bounded,
since:

}pH ´ λ´ iµqψ}2 “ }pH ´ λqψ}2 ` }µψ}2 ě µ2}ψ}2 , (5.18)

which implies that }pH ´ zq´1} ď 1{|µ|. Therefore, z P ρpHq.

Lemma 5.10. Let T : DpT q Ñ H be a symmetric operator, and suppose that σpT q Ă R.
Then, T is selfadjoint.

Proof. If σpT q Ă R, then T ´ z : DpT q Ñ H is a bijection for all z P CzR. In particular,
RanpT ´ zq “ H; being T symmetric, Theorem 4.41 implies that it is selfadjoint.

Remark 5.11. Therefore, Theorem 5.9 and Lemma 5.10 imply that a symmetric operator
T is selfadjoint if and only if σpT q Ă R.

Lemma 5.12. Let T : DpT q Ñ H be a closed, densely defined operator. Then,

}Rz0pT q} ě distpz0, σpT qq
´1 (5.19)

for all z0 P C.

Remark 5.13. If T is bounded, we have tz P C | |z| ą }T }u Ă ρpT q.

Proof. The radius of convergence of the Neumann series (5.13) is }Rz0pT q}
´1. Also, the

series cannot converge if z P σpT q; therefore, }Rz0pT q}
´1 ď distpz0, σpT qq.

Remark 5.14. For selfadjoint operator, one actually has:

}pH ´ zq´1} “
1

distpz, σpHqq
. (5.20)

The next theorem provides a useful criterion to decide whether z P σpAq.
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Theorem 5.15 (Weyl criterion.). Let T : DpT q Ñ H be a closed densely defined operator.
Suppose that there exists a sequence ψn P DpT q with }ψn} “ 1 for all n P N and such
that }pT ´ zqψn} Ñ 0 (such a sequence is known as a Weyl sequence at z). Then, z P σpT q.
Conversely, if z P BρpT q Ă σpT q (recall that σpT q is closed), then there exists a Weyl sequence
at z.

Proof. Let ψn be a Weyl sequence at z. If z P ρpT q, we would have

}ψn} “ }RzpT qpT ´ zqψn} ď }RzpT q}}pT ´ zqψn} ď C}pT ´ zqψn} Ñ 0 , (5.21)

thus giving a contradiction. Hence, z P σpT q. On the other hand, suppose that z P BσpT q.
Then, there exists a sequence zn P ρpT q with zn Ñ z. From Theorem 5.12, we have
}RznpT q} Ñ 8. Hence, there exists pϕnq Ă H such that }RznpT qϕn}{}ϕn} Ñ 8. Let
ψn “ RznpT qϕn{}RznpT qϕn}. Then, }ψn} “ 1 for all n and:

}pT ´ zqψn} ď }pT ´ znqψn} ` |z ´ zn|}ψn} “
}ϕn}

}RznpT qϕn}
` |z ´ zn| Ñ 0 . (5.22)

Hence ψn is a Weyl sequence.

Another useful result is the following lemma, that establishes a relation between the
spectrum of T and the one of its inverse T´1 (which is a densely defined operator on H, if
T is injective and RanT is dense).

Lemma 5.16. Let T be injective and RanT be dense. Then, T´1 : RanT Ñ H is such that:

σpT´1qzt0u “ pσpT qzt0uq´1 . (5.23)

Furthermore, Tψ “ λψ if and only if T´1ψ “ λ´1ψ.

Proof. Let z P ρpT qzt0u. Since, for every ϕ P H:

pT´1 ´ z´1qp´zqTRzpT qϕ “ pT ´ zqRzpT qϕ “ ϕ (5.24)

and for all ψ P DpT´1q “ Ran pT q we can write ψ “ Tϕ, we have:

p´zqTRzpT qpT
´1 ´ z´1qψ “ p´zqTRzpT qpT

´1 ´ z´1qTϕ

“ TRzpT qpT ´ zqϕ “ Tϕ “ ψ . (5.25)

This shows that T´1´ z´1 : DpT´1q Ñ H is a bijection, with inverse given by p´zqTRzpT q.
Therefore, z´1 P ρpT´1q and:

Rz´1pT´1q “ ´zTRzpT q “ ´z ´ z
2RzpT q . (5.26)

Inverting the roles of T and T´1 we have that z´1 P ρpT´1qzt0u implies z P ρpT q. Thus,
recalling that σpT q “ CzρpT q, we have that z P σpT qzt0u if and only if z´1 P σpT´1qzt0u.

To prove the relation between point spectra, notice that if Tψ “ λψ holds, then λψ is in
the range of T , and hence ψ is in the range of T . Therefore, we can apply T´1 to both sides
of the equation and obtain ψ “ λA´1ψ, that is λ´1ψ “ A´1ψ.

5.2 Postulates of quantum mechanics

5.2.1 Observables

As discussed already in Section 1, quantum mechanical systems are described by vector
in Hilbert spaces. Physically measurable quantities, called observables, correspond to self-
adjoint operators on H. The expected value associated with the self-adjoint operator T in
the state ψ is given by xψ, Tψy.

The vector ψ does not only determine the expectation of T , but also the distribution of
its possible values. Let us consider the simple case in which A has the decomposition:

T “
ÿ

j

λjPϕj , (5.27)
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with λj P R the eigenvalues of T , and Pϕj the orthogonal projection onto the normalized
eigenvector ϕj . That is:

Pϕψ “ xϕ,ψyϕ . (5.28)

One also uses the notation Pϕ “ |ϕyxϕ|. Then, we have:

xψ, Tψy “
ÿ

j

λj |xψ,ϕjy|
2 . (5.29)

Eq. (5.27) is called the spectral representation of the operator T . The spectral theorem
for unbounded operators, that will be discussed later on, implies that the vectors ϕj form
an ONB for H (this is clear if dimH ă 8, from the spectral theorem for matrices). In
particular,

ř

j |xψ,ϕjy|
2 “ 1. So far, we are assuming that the spectrum of the observable

T coincides with its point spectrum. As we shall see, the spectral theorem will allow to
generalize the expression (5.27) to cases in which σppT q ‰ σpT q, introducing the concept of
projection-valued measure.

The interpretation of the identity (5.29) is the following: the eigenvalues λj are the
possible values of the observable T and |xψ,ϕjy|

2 is the probability that, if the system is
in the state ψ, a measurement of T gives the value λj . If for example ψ “ ϕj , then a
measurement of T will produce the value λj with probability 1. In general, however, ψ will
be a linear combination of different ϕj ’s. Hence, a measurement of T will give different
values with different probabilities. It makes sense, therefore, to define the variance of T in
the state ψ by setting:

∆Tψ “ xψ, pT ´ xψ, Tψyq
2ψy “ xψ, T 2ψy ´ xψ, Tψy2 . (5.30)

If, as before, T “
ř

j λjPϕj , a simple computation shows that:

∆Tψ “
ÿ

j

pλj ´ xψ, Tψyq
2|xψ,ϕjy|

2 . (5.31)

An important property of quantum systems is that noncommuting observables cannot be
measured simultaneously with arbitrary precision.

Theorem 5.17 (Heisenberg’s uncertainty principle.). Let A,B be two self-adjoint operators
acting on H. Then, we have:

∆Aψ∆Bψ ě
1

4
|xψ, rA,Bsψy|2 . (5.32)

Proof. For simplicitly, suppose that xψ,Aψy “ xψ,Bψy “ 0 (if not, redefine A,B by sub-
tracting their average values on ψ). Then,

xψ, rA,Bsψy “ xψ,ABψy ´ xψ,BAψy “ 2iImxψ,ABψy . (5.33)

Therefore,

|xψ, rA,Bsψy| ď 2|xψ,ABψy| ď 2|xAψ,Bψy| ď 2}Aψ}}Bψ} “ 2p∆Aψq
1
2 p∆Bψq

1
2 . (5.34)

That is:

∆Aψ∆Bψ ě
1

4
|xψ, rA,Bsψy|2 . (5.35)

In particular, choosing A “ x̂i (position operator) and B “ p̂j ” ´i∇j (momentum
operator), assuming that }ψ}2 “ 1, we obtain the relation:

∆xi,ψ∆pj,ψ ě
δij
4
. (5.36)
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5.2.2 Time evolution

In every quantum system there is an observable that plays a particularly important role, the
Hamiltonian. It generates time evolution via the Schrödinger equation:

iBtψptq “ Hψptq . (5.37)

If H is a bounded operator, the unique solution of the Schrödinger equation can be written
as

ψptq “ e´iHtψp0q , (5.38)

where the exponential of H is defined via its Taylor expansion, which converges for all times
for bounded operators. More generally, if H has the spectral decomposition H “

ř

j λjPϕj ,
the exponential map is defined as:

e´iHt “
ÿ

j

e´iλjtPϕj . (5.39)

In particular, the solution of the Schrödinger equation associated to the initial datum ψp0q “
ϕj is simply given by:

ψptq “ e´iλitϕi . (5.40)

In this case, the expectation of an arbitrary self-adjoint operator T is given by:

xψptq, Tψptqy “ xϕi, Tϕiy , (5.41)

and does not depend on t. Physically, the vectors ψptq “ e´iλjtϕj describe the same state
for all times.

The spectral theorem will allow to introduce a spectral decomposition for any self-adjoint
operators, even unbounded ones, and will allow to make sense of the exponential of the
Hamilton operator. This in particular proves existence and uniqueness of the solution of the
Schrödinger equation for general Hamiltonians.

5.3 Projection valued measures

As explained in Section 5.2.1, the spectral representation of a self-adjoint operator T is often
useful in quantum mechanics. It tells us what are the possible outcomes of a measurement of
the observable associated to T , and the probability with which possible values are assumed.
Moreover, as we shall see later, it allows to define a functional calculus, that is to make sense
of functions of operators. An important example is the unitary evolution e´iHT associated
to the Hamiltonian H.

In this section we will discuss how to define functions of self-adjoint operators, satisfying
the properties:

pf ` gqpT q “ fpT q ` gpT q , pfgqpT q “ fpT qgpT q , fpT q “ fpT q˚ . (5.42)

The question is, for which class of functions f do we want to define fpT q. As long as f
is a polynomial, we can define fpT q by simply takinng powers of T . However, for several
purposes, including solving the Schrödinger equation, taking powers of T is not enough. The
next guess would be to consider functions that can be approximated by polynomials, like
analytic functions. This works for bounded operators, but does not work well for unbounded
operators: taking high powers of an unbounded operator typically makes the domain smaller
and smaller.

A better approach consists in defining χΩpT q for all characteristic functions of Borel sets
Ω Ă R, and then in using the bounded operators χΩpT q to construct measurable functions of
A. The main advantage of this approach is that, since χ2

Ω “ χΩ “ χΩ, the operator χΩpT q is
an orthogonal projection, for all Borel sets Ω Ă R. On the other hand, we have to show how
to use the orthogonal projections χΩpT q to define fpT q for a general measurable function f ,
We start by discussing the second step, and we postpone the first.
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Definition 5.18 (Projection-valued measure). Let H be a Hilbert space. Let BpRq be the
Borel σ-algebra over R. We say that a map P : BpRq Ñ LpHq is a projection valued measure
if:

(i) P pΩq2 “ P pΩq “ P pΩq˚, for all Ω P BpRq.
(ii) P pRq “ 1H.

(iii) (Strong σ-additivity) If Ω “
Ť

nPN Ωn with Ωn X Ωm “ H for all n ‰ m, then:

ÿ

nPN
P pΩnqψ “ lim

NÑ8

N
ÿ

n“0

P pΩnqψ “ P pΩqψ , (5.43)

for all ψ P H.

Example 5.19. (a) Let H “ Cd and T P LpCdq be a symmetric d ˆ d matrix. Let
λ1 ă λ2 ă . . . ă λd be the eigenvalues of T , and P1, . . . , Pd be the corresponding
eigenprojectors (for simplicity, we assume the eigenvalues to be simple). Then, we can
define:

P pΩq “
ÿ

j:λjPΩ

Pj . (5.44)

It is easy to check that P : BpRq Ñ LpCdq is a projection-valued measure.

(b) Let H “ L2pRq and set P pΩq “ χΩpxq, with χΩ the characteristic function of the set
Ω. Also in this case, P defines a projection valued measure on H.

Remark 5.20. In the definition of projection valued measure we request σ-additivity to hold
in a strong sense (that is, after application to a fixed ψ P H), and not in norm (that is,
taking the supremum over all ψ). This is an important point. Already in the simple example
discussed above, where P pΩq “ χΩpxq is a multiplication operator over L2pRq, we do not
have σ-additivity in norm, because the operator norm of multiplication operators is the L8

norm and thus:

}P pΩq ´ P pΩ1q} “ }χΩ∆Ω1}8 “

"

0 if µpΩ∆Ω1q = 0
1 if µpΩ∆Ω1q ą 0

(5.45)

where Ω∆Ω1 “ pΩzΩ1q Y pΩ1zΩq is the symmetric difference of the two sets and µp¨q denotes
the Lebesgue measure on R. Eq. (5.45) implies that σ-additivity does not hold in norm.

Remark 5.21. In Definition 5.18, strong σ-additivity is actually equivalent to weak σ-
additivity. In other words, Eq. (5.43) is equivalent to the condition:

ÿ

nPN
xψ, P pΩnqϕy “ xψ, P pΩqϕy , for all ψ,ϕ P H. (5.46)

This follows from the fact that, if Pn is a sequennce of orthogonal projections and P is an
orthogonal projection with w ´ limnÑ8 Pn “ P then, for any ψ P H:

}Pnψ}
2 “ xPnψ, Pnψy “ xψ, Pnψy Ñ xψ, Pψy “ }Pψ}2 . (5.47)

The weak convergence Pn Ñ P together with }Pnψ} Ñ }Pψ} implies that Pnψ Ñ Pψ. Hence,
Pn Ñ P strongly.

Next, we discuss some important properties of projection-valued measures.

Proposition 5.22. The following properties are true.

(i) P pHq “ 0 and P pΩcq “ 1´ P pΩq

(ii) P pΩ1 Y Ω2q “ P pΩ1q ` P pΩ2q ´ P pΩ1 X Ω2q.

(iii) P pΩ1 X Ω2q “ P pΩ1qP pΩ2q

(iv) P pΩ1q ď P pΩ2q if Ω1 Ă Ω2.

Proof. Exercise.
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Definition 5.23 (Resolution of the identity). For every projection-valued measure P we
define the resolution of the identity p : RÑ LpHq via ppλq :“ P pp´8;λsq.

Remark 5.24. Then, ppλq is clearly an orthogonal projection for all λ P R. Monotonicity
of P implies that ppλ1q ď ppλ2q if λ1 ď λ2. Also, strong σ-additivity implies that for every
ψ P H and every sequence λn such that λn ď λ for all n P N and such that λn Ñ λ as
nÑ8,

lim
nÑ8

ppλnqψ “ ppλqψ . (5.48)

That is, s´ limnÑ´8 ppλnq “ ppλq. Another consequence of strong σ-additivity is that:

s´ lim
λÑ´8

ppλq “ 0 , s´ lim
λÑ8

ppλq “ 1 . (5.49)

As above, strong convergence of an orthogonal projection towards an orthogonal projection is
equivalent to weak convergence.

Definition 5.25 (Measure and distribution associated to a projection-valued measure). For
any fixed ψ P H, we define the finite measure µψ : BpRq Ñ r0;8q via µψpΩq “ xψ, P pΩqψy
for all Ω P BpRq. The corresponding distribution function dψ : R Ñ r0;8q is given by
dψpλq “ µψpp´8, λsq.

Remark 5.26. Notice that µψpΩq ď }ψ}2. Therefore, dψpλq ď }ψ}2. Also, dψpλq “
}P pp´8;λsqψ}2 “ xψ, ppλqψy.

More generally, starting from the projection valued measure we can also introduce, for
every ψ,ϕ P H, the complex measures µψ,ϕpΩq “ xψ, P pΩqϕy. They are related to the
positive measures µψ via the polarization identity:

µψ,ϕpΩq “
1

4
rµψ`ϕpΩq ´ µψ´ϕpΩq ` iµψ´iϕpΩq ´ iµψ`iϕpΩqs . (5.50)

Also, they satisfy |µψ,ϕpΩq| ď }P pΩqψ}}P pΩqϕ} ď }ψ}}ϕ}.

Remark 5.27. Every distribution function is associated with a unique measure on the Borel
σ-algebra BpRq. One can also show that every resolution of the identity p : R Ñ LpHq with
the properties listed above is associated with a unique projection valued measure. This follows
from the fact that the resolution of the identity allows us to define distribution functions dψ,
which in turn can be used to reconstruct the measure µψ. Then, it is easy to check that for
all Ω P BpRq there is a unique orthogonal projection P pΩq such that µψpΩq “ xψ, P pΩqψy.
This follows from the fact that a linear operator can be reconstructed from the corresponding
quadratic form, via the polarization identity.

5.4 Functional calculus

We shall now use the projection valued measure P : BpRq Ñ LpHq to define a functional
calculus, that is a map from a class of functions to operators. We start with the set of
measurable simple functions.

Definition 5.28 (Simple function.). We say that the function f is a simple measurable
function on R if

f “
n
ÿ

j“1

αjχΩj , n P N , αj P C , Ωj P BpRq , (5.51)

with ΩjXΩ` “ H for all j ‰ `. We denote by SpRq the space of simple measurable functions
on R (or simple functions, for short).

Definition 5.29 (Functional calculus for simple functions.). Let f P S, f “
ř

j αjχΩj . Let
P : BpRq Ñ LpHq be a PVM. We define the functional calculus Φ : S Ñ LpHq as:

Φpfq :“
n
ÿ

j“1

αjP pΩjq . (5.52)
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Remark 5.30. We shall also define:

ż

fpλqdppλq :“
n
ÿ

j“1

αjP pΩjq . (5.53)

Remark 5.31. Notice that for arbitrary ϕ,ψ P H we have:

xϕ,Φpfqψy “
n
ÿ

j“1

αjxϕ, P pΩjqψy “
n
ÿ

j“1

αjµϕ,ψpΩjq “:

ż

fpλqdµϕ,ψpλq . (5.54)

The right-hand side is the Lebesgue integral with respect to the complex measure µϕ,ψ (which
is just a linear combination of real measures, according to the polarization identity (5.50)).

Proposition 5.32. The functional calculus Φ : pS, } ¨ }8q Ñ LpHq is a bounded linear map,
with }Φ} ď 1.

Proof. Linearity immediately follows from the definition. Let us prove boundedness. For
ψ P H, we have:

›

›Φpfqψ
›

›

2
“

›

›

›

n
ÿ

j“1

αjP pΩjqψ
›

›

›

“

n
ÿ

j“1

|αj |
2}P pΩjqψ}

2

“

n
ÿ

j“1

|αj |
2µψpΩjq

“

ż

|fpλq|2dµψpλq . (5.55)

In particular,
}Φpfqψ} ď }f}8}ψ} , (5.56)

where we used that µψpΩjq ď }ψ}
2. Therefore:

}Φ} :“
}Φpfq}

}f}8
ď 1 . (5.57)

Recall the notion of Borel measurable function on R. We say that a function f : RÑ C
is called Borel measurable if for any Borel set Ω Ă BpCq one has f´1pΩq Ă BpRq. We denote
by Mb the space of bounded Borel functions.

Proposition 5.33. The functional calculus Φ : pS, } ¨ }8q Ñ LpHq extends uniquely to a
bounded linear map Φ : pMb, } ¨ }8q Ñ LpHq.

Proof. The proof is an application of Theorem 3.66. To begin, recall that any bounded
measurable function can be approximated in L8 norm by simple function. Therefore, S is
dense is Mb with respect to the } ¨ }8 norm. By Theorem 3.66, there is a unique extension
of Φ to a bounded linear map Φ : Mb Ñ LpHq, with norm }Φ} ď 1. This defines Φ for all
f PMb.

The Lebesgue integral of functions inMb is defined as the limit of the Lebesgue integral
of simple functions. We have, for any f PMb:

xψ,Φpfqϕy “

ż

fpλqdµϕ,ψpλq . (5.58)

We shall also generalize the definition (5.53) by setting:
ż

fpλqdppλq “ Φpfq . (5.59)
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Theorem 5.34. Let P : BpRq Ñ LpHq be a projection-valued measure. Then, Φ : Mb Ñ

LpHq is a C˚-algebra homomorphism with norm one. Moreover, for every sequence fn PMb

and f PMb such that fn Ñ f pointwise and with }fn}8 bounded, we have Φpfnq Ñ Φpfq
strongly.

Remark 5.35. The fact that Φ is a C˚-algebra homomorphism means that Φ is linear, that
Φp1q “ 1, that Φpfgq “ ΦpfqΦpgq for all f, g PMb and that Φpfq “ Φpfq˚.

Proof. For simple measurable functions, It is easy to check that Φ is linear, that it satisfies
Φpfgq “ ΦpfqΦpgq and that Φpfq “ Φpfq˚. For general bounded measurable f , these
properties follow by approximation.

If fn Ñ f pointwise and }f}8 ď K, then, by dominated convergence theorem:

xϕ,Φpfnqψy “

ż

fnpλqdµϕ,ψpλq Ñ

ż

fpλqdµϕ,ψpλq “ xϕ,Φpfqψy . (5.60)

This shows that Φpfnqψ Ñ Φpfqψ weakly, as n Ñ 8. Moreover, again by dominated
convergence theorem:

}Φpfnqψ}
2 “

ż

|fnpλq|
2dµψpλq Ñ

ż

|fpλq|2dµψpλq “ }Φpfqψ}
2 . (5.61)

This implies that Φpfnqψ Ñ Φpfqψ, which means that Φpfnq Ñ Φpfq strongly.

Remark 5.36. Since Φ :Mb Ñ LpHq is a C˚-homomorphism, we find that:

xΦpgqϕ,Φpfqψy “ xϕ,Φpgq˚Φpfqψy

“ xϕ,Φpgfqψy “

ż

pgfqpλqdµϕ,ψpλq “

ż

gpλqfpλqdµϕ,ψ , (5.62)

for all f, g PMb and for all ϕ,ψ P H. Hence, we have:

µΦpgqϕ,ΦpfqψpΩq “ xΦpgqϕ,ΦpχΩqΦpfqψy “

ż

χΩpλqgpλqfpλqdµϕ,ψpλq , (5.63)

which implies that
dµΦpgqϕ,Φpfqψ “ gfdµϕ,ψ . (5.64)

Example 5.37. Let H “ Cd. Let T P Cdˆd matrix. Let λ1 ă λ2 . . . ă λd be the eigen-
values of T , that we assume to be disjoint. Let P1, . . . , Pd be the corresponding (rank 1)
eigenprojectors. We already defined the projection valued measure associated to T as:

PT pΩq “
ÿ

j:λjPΩ

Pj . (5.65)

Let Mb be the space of bounded measurable functions on σpT q. The functional calculus
associated to this space of functions is the map ΦT :Mb Ñ LpCdq:

ΦT pfq “
d
ÿ

j“1

fpλjqPj . (5.66)

We have, for any ψ P Cd:
µψpp´8, λsq “

ÿ

j:λjďλ

}Pjψ}
2 (5.67)

or equivalently:

xψ,ΦT pfqψy “

ż

fpλqdµψpλq “
d
ÿ

j“1

fpλjq}Pjψ}
2 . (5.68)
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The above discussion allows to define a functional calculus for bounded functions. Next,
we shall introduce a functional calculus for unbounded functions; this is relevant for un-
bounded self-adjoint operators (like the Laplacian).

For f unbounded, we expect Φpfq to be an unbounded operator. Hence, we first have to
define its domain. Recall that. for every bounded measurable function f , we have:

}Φpfqψ}2 “

ż

|fpλq|2dµψpλq . (5.69)

Hence, we expect that even for unbounded f , the operator Φpfq can be applied on it, if
f P L2pR, dµψq.

Definition 5.38. Given f : RÑ C, we define the domain of the functional calculus associ-
ated to f as:

Df :“ tψ P H | f P L2pR, dµψqu . (5.70)

Proposition 5.39. Df is a linear subspace, dense in H.

Proof. For every Borel set Ω Ă R, we have µαψpΩq “ |α|
2µψpΩq and:

µψ`ϕpΩq ď 2µψpΩq ` 2µϕpΩq . (5.71)

This bound implies that f P L2pR, dµαψ`ϕq if f P L2pR, dµψqXL2pR, dµϕq and α P C. Hence
αψ ` ϕ P Df if ψ,ϕ P Df and α P C.

To prove that Df is dense in H we proceed as follows. Let Ωn “ tλ P R | |fpλq| ď nu.
Then, for any ψ P H, we define ψn “ P pΩnqψ. Since dµψn “ χΩndµψ, we have ψn P Df for
any n. Moreover, since χΩn Ñ 1 pointwise, it follows that ψn Ñ ψ strongly. This proves
that Df is dense.

Proposition 5.40. Let f be a Borel measurable function on R. Let ψ P Df . Let pfnq ĂMb,
such that fn Ñ f pointwise and such that }fn}L2pR,dµψq is bounded uniformly in n. Then,
the limit limnÑ8 Φpfnqψ “: Φpfqψ exists in H and does not depend on the sequence pfnq. It
defines a linear map Φpfq on Df , such that for all ψ,ϕ P Df :

}Φpfqψ}2 “

ż

|fpλq|2dµψpλq , xψ,Φpfqϕy “

ż

fpλqdµψ,ϕpλq . (5.72)

Remark 5.41. The first integral makes sense by definition of Df . The second integral also
makes sense, since by Cauchy-Schwarz L2pR, dµψq Ă L1pR, dµψq (recall that dµψ is a finite
measure, that is it has finite mass).

Proof. By dominated convergence, we have fn Ñ f in L2pR, dµψq. Therefore,

}Φpfnqψ ´ Φpfmqψ} “ }Φpfn ´ fmqψ}
2 “

ż

|fnpλq ´ fmpλq|
2dµψpλq (5.73)

which implies that Φpfnqψ is a Cauchy sequence in H. Therefore, the limit exists and we
set:

Φpfqψ :“ lim
nÑ8

Φpfnqψ . (5.74)

It is easy to see that the limit does not depend on the sequence. Therefore, it defines a linear
map Φpfq on Df , and moreover:

}Φpfqψ}2 “

ż

|fpλq|2dµψpλq (5.75)

for all ψ P Df . Since µψ is a finite measure, we have that L2pR, dµψq Ă L1pR, dµψq and
therefore:

xψ,Φpfqψy “

ż

fpλqdµψpλq , (5.76)

or more generally:

xψ,Φpfqϕy “

ż

fpλqdµψ,ϕpλq . (5.77)
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Remark 5.42. We shall set:

Φpfq “:

ż

fpλqdppλq . (5.78)

Theorem 5.43. For every Borel measurable function f : RÑ C, the operator Φpfq : Df Ñ

H is a normal operator (meaning that DpΦpfqq “ DpΦpfq˚q) and }Φpfqψ} “ }Φpfq˚ψ} for
all ψ P Df . Moreover, for f, g Borel measurable and α, β P C, we have Φpfq˚ “ Φpf̄q,

αΦpfq ` βΦpgq Ă Φpαf ` βgq , (5.79)

with DpαΦpfq ` βΦpgqq “ D|f |`|g| and:

ΦpfqΦpgq Ă Φpfgq (5.80)

where DpΦpfqΦpgqq “ Dg XDfg.

Proof. Fix a Borel measurable function f : RÑ C. For n P N, let Ωn “ tλ P R | |fpλq| ă nu
and let fn “ fχΩn . Then, fn P Mb and thus Φpfnq

˚ “ Φpfnq by Theorem 5.34. For any
ϕ,ψ P Df “ Df “ D|f |, we have:

xϕ,Φpfqψy “ lim
nÑ8

xϕ,Φpfnqψy “ lim
nÑ8

xΦpfnqϕ,ψy “ xΦpfqϕ,ψy . (5.81)

This implies that DpΦpfq˚q Ą DpΦpfqq “ DpΦpfqq “ Df , and that, for all ϕ P Df , one has
Φpfq˚ϕ “ Φpfqϕ. To conclude that Φpfq˚ “ Φpfq we still have to show that DpΦpfq˚q Ă Df .
To this end, let us fix ϕ P DpΦpfq˚q. Then, there exists rϕ P H such that xϕ,Φpfqψy “ xrϕ,ψy
for all ψ P DpΦpfqq. By definition of Φpfq we find, for every ξ P H:

ΦpfqΦpχΩnqξ “ lim
mÑ8

ΦpfmqΦpχΩnqξ “ lim
mÑ8

ΦpfχΩmχΩnqξ “ Φpfnqξ , (5.82)

since χΩmχΩn “ χΩn for all m ě n. Hence, we find:

xΦpfnqϕ, ξy “ xϕ,Φpfnqξy “ xϕ,ΦpfqΦpχΩnqξy “ xrϕ,ΦpχΩnqξy “ xΦpχΩnqrϕ, ξy (5.83)

for all ξ P H. This implies that Φpfnqϕ “ ΦpχΩnqrϕ and therefore that:

ż

|fnpλq|
2dµϕpλq “ }Φpfnqϕ}

2 “ }ΦpχΩnqrϕ}
2 Ñ }rϕ}2 , as nÑ8. (5.84)

Since f is the pointwise limit of fn, the monotone convergence theorem implies that f P
L2pR, dµψq, with:

ż

|fpλq|2dµϕpλq “ }rϕ}
2 . (5.85)

Hence ϕ P Df . We obtain Φpfq˚ “ Φpfq, for all Borel measurable functions f over R. This
also implies that:

}Φpfqψ}2 “

ż

|fpλq|2dµψpλq “ }Φpfqψ}
2 “ }Φpfq˚ψ}2 (5.86)

for all ψ P Df “ Df . Hence, Φpfq is a normal operator.
Next, we observe that for two Borel measurable functions f, g : RÑ C and for α, β P C,

we have DpαΦpfq ` βΦpgqq “ DpΦpfqq XDpΦpgqq “ Df XDg “ D|f |`|g|, because |f | ` |g| P
L2pR, dµψq if and only if f P L2pR, dµψq and g P L2pR, dµψq. Since |αf ` βg| ď Cp|f | ` |g|q,
it is easy to check that D|f |`|g| Ă Dαf`βg. It remains to show that αΦpfqψ ` βΦpgqψ “
Φpαf ` βgqψ for all ψ P D|f |`|g|. To this end, for n P N, set:

Ωn “ tλ P R | |fpλq| ` |gpλq| ď nu , fn “ fχΩn , gn “ gχΩn . (5.87)

For ψ P D|f |`|g|, we have Φpfnqψ Ñ Φpfqψ, Φpgnqψ Ñ Φpgqψ, αΦpfnqψ ` βΦpgnqψ “

Φpαfn ` βgnqψ “ Φppαf ` βgqχΩnqψ Ñ Φpαf ` βgqψ.
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Finally, we prove Eq. (5.80). To this end, assume first that g is bounded. Then:

DpΦpfqΦpgqq “ tψ P H | Φpgqψ P Dfu “ tψ P H | f P L2pR, dµΦpgqψqu

“ tψ P H | f P L2pR, |g|2dµψqu
“ tψ P H | fg P L2pR, dµψqu “ DpΦpfgqq ” Dfg . (5.88)

Thus, for all ψ P DpΦpfgqq, we have Φpgqψ P DpΦpfqq and (recalling that fn “ χΩnf , with
Ωn “ tλ P R | |fpλq| ď nu):

ΦpfqΦpgqψ “ lim
nÑ8

ΦpfnqΦpgqψ “ lim
nÑ8

Φpfngqψ “ Φpfgqψ . (5.89)

This shows that, if g is bounded, Φpfgq “ ΦpfqΦpgq. If now g is not necessarily bounded,
we define Ωn “ tλ P R | |gpλq| ď nu, gn “ gχΩn . Suppose that ψ P Dg X Dfg. Then, we
have Φpgnqψ Ñ Φpgqψ. Moreover, ψ P Dfgn “ DpΦpfgnqq “ DpΦpfqΦpgnqq implies (from
the case considered above) that ΦpfqΦpgnqψ “ Φpfgnqψ Ñ Φpfgqψ. Since Φpfq is closed

(which follows from Φpfq “ Φpfq˚˚ “ Φp ¯̄fq “ Φpfq), this shows that Φpgqψ P Df and that
ΦpfqΦpgqψ “ Φpfgqψ.

5.5 Construction of projection valued measures

The discussion of the previous section allowed us to define the functional calculus, given
a family of projection valued measures. In particular, given P : BpRq Ñ LpHq, we can
associate a self-adjoint operator T “

ş

λdppλq with domain:

DpT q “ tψ P H |
ż

λ2dµψpλq ă 8u . (5.90)

The question we shall consider is this section is: given a self-adjoint operator T , is it possible
to find a projection valued measure P such that T can be expressed as T “

ş

λdppλq? If yes,
this provides a spectral representation for the operator T . We shall first answer this question
for the resolvent of T , RzpT q, and later for T .

Definition 5.44. Let µp¨q : BpRq Ñ R be a Borel measure. For all z P Czsuppµ, we define
the Borel transform F of µ as:

F pzq “

ż

1

λ´ z
dµpλq . (5.91)

Remark 5.45. The support of the measure is defined as:

suppµ “ tλ P R | µpOq ą 0 for all open neighbourhoods O of λu . (5.92)

Remark 5.46. Since

ImF pzq “ Imz

ż

1

|λ´ z|2
dµpλq , (5.93)

we conclude that z ÞÑ F pzq is a holomorphic function mapping the upper half complex plane
tz P C | Imz ą 0u into itself. Such functions are called Herglotz or Nevanlinna functions.

Theorem 5.47. Every Herglotz function F has the form:

F pzq “ bz ` a`

ż

R

” 1

λ´ z
´

λ

1` λ2

ı

dµpλq , (5.94)

with b ě 0, a P R and µ a Borel measure on R with:
ż

1

1` λ2
dµpλq ă 8 . (5.95)

Conversely, for every b ě 0, a P R and for every Borel measure µ satisfying Eq. (5.95), the
function (5.94) is holomorphic on Czsuppµ. It is such that F pzq “ F pzq and:

ImF pzq “ Imz
”

b`

ż

1

|λ´ z|2
dµpλq

ı

(5.96)
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for all z P Czsuppµ. Moreover, if F is a Herglotz function, the triple pa, b, µq satisfying
(5.94) is uniquely determined by

a “ ReF piq , b “ ImF piq ´

ż

1

λ2 ` 1
dµpλq (5.97)

and by the Stieltjes inversion formula:

1

2

“

µppλ1, λ2qq ` µprλ1, λ2sq
‰

“ lim
εÑ0`

1

π

ż λ2

λ1

ImF pλ` iεqdλ . (5.98)

Remark 5.48. That is, this theorem allows us to construct a measure starting from a
Herglotz function. Later, we shall take as Herglotz function the quadratic form associated to
RzpT q, and use this theorem to construct the projection valued measure.

Proof. Let fpzq “ ipi´zq{pi`zq. It is easy to see that f is holomorphic in D “ tz P C | |z| ă
1u and that it takes values in C` “ tz P C | Imz ą 0u. More precisely, f maps the lower
disk D´ “ tz P D | Imz ă 0u into C`zD and it maps the upper disk D` “ tz P D | Imz ą 0u
into itself. Also, the map is invertible, and f´1 : C` Ñ D is simply f´1pzq “ fpzq. Let:

Cpzq :“ ´iF pfpzqq (5.99)

One easily sees that if the map F is Herglotz then C is a Caratheodory function, that is an
holomorphic function on D with ReCpzq ě 0 for all z P D. Also, we can invert Eq. (5.99)
and obtain:

F pzq “ iCpfpzqq , (5.100)

which shows that if C is a Caratheodory function then F is a Herglotz function. Thus, F is
Herglotz if and only if C is Caratheodory.

We claim now that every Caratheodory function C : DÑ C has the form:

Cpzq “ ic`

ż π

´π

eiϕ ` z

eiϕ ´ z
dνpϕq (5.101)

for c “ ImCp0q P R and for a finite measure ν, with:

ż π

´π

dνpϕq “ ReCp0q . (5.102)

To prove this claim, let C : DÑ C be a Caratheodory function and fix 0 ă r ă 1. Fix z P D
with |z| ă r. By Cauchy theorem, we have the identity:

Cpzq “
1

4πi

ż

|ξ|“r

”ξ ` z

ξ ´ z
`
r2{ξ ` z

r2{ξ ´ z

ı

Cpξq
dξ

ξ

“
1

2πi

ż

|ξ|“r

Re
´ξ ` z

ξ ´ z

¯

Cpξq
dξ

ξ

“
1

2π

ż π

´π

Re
´reiϕ ` z

reiϕ ´ z

¯

Cpreiϕqdϕ . (5.103)

We take the real part:

ReCpzq “

ż π

´π

P|z|{rpargpzq ´ ϕqdνrpϕq , (5.104)

where we set:

Prpϕq “ Re
1` reiϕ

1´ reiϕ
, dνrpϕq “ ReCpreiϕq

dϕ

2π
. (5.105)

Notice that dνr is a Borel measure, thanks to ReC ě 0. Setting z “ 0, we obtain:

ż π

´π

dνrpϕq “ ReCp0q ă 8 , (5.106)
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uniformly in r ă 1. This implies that there exists a sequence rn Ñ 1 and finite Borel measure
ν on r´π;πs such that, as nÑ8:

ż

r´π;πs

fpϕqdνrnpϕq Ñ

ż

r´π;πs

fpϕqdνpϕq (5.107)

for all f P Cpr´π;πsq. In fact, uniform boundedness implies the existence of a subsequence
of measures converging vaguely, that is after testing with compactly supported continuous
functions; this can be proven approximating compactly supported continuous functions with
simple functions, and from the convergence of νrnprλ1;λ2sq on subsequences, for any interval
rλ1;λ2s.

For |z| ă 1, we also have P|z|{rpargz ´ ϕq Ñ P|z|pargz ´ ϕq as r Ñ 1, uniformly in ϕ. We
conclude that:

ReCpzq “ lim
nÑ8

ż π

´π

P|z|{rnpargpzq ´ ϕqdνrnpϕq

“ lim
nÑ8

ż π

´π

P|z|pargpzq ´ ϕqdνrnpϕq

“

ż π

´π

P|z|pargpzq ´ ϕqdνpϕq

“

ż π

´π

Re
”eiϕ ` z

eiϕ ´ z

ı

dνpϕq . (5.108)

The claim (5.101) now follows because every holomorphic function is determined by its real
part, up to an imaginary constant. In fact, let fpzq be a holomorphic function, such that
Ref “ 0. Then, the Cauchy-Riemann equation implies that Imf “ constant. Therefore,
fpzq “ ic. This proves Eq. (5.101).

Let now F be an arbitrary Herglotz function and C the corresponding Caratheodory
function, defined as in (5.99). Then we can write F pzq “ iCpipi ´ zq{pi ` zqq, or F pzq “

i rCppi´ zq{pi` zqq for the function rCpzq “ Cpizq, which is also a Caratheodory function and
therefore admits a representation as in (5.101). Hence:

F pzq “ i rCppi´ zq{pi` zqq

“ ´c` i

ż

r´π;πs

eiϕ ` i´z
i`z

eiϕ ´ i´z
i`z

dνpϕq

“ ´c` i

ż

r´π;πs

ipeiϕ ` 1q ` zpeiϕ ´ 1q

ipeiϕ ´ 1q ` zpeiϕ ` 1q
dνpϕq

“ ´c` i

ż

r´π;πs

i` z e
iϕ
´1

eiϕ`1

i pe
iϕ´1q
eiϕ`1 ` z

dνpϕq

“ ´c` νpt´π, πuqz `

ż 8

´8

1` λz

λ´ z
drµpλq , (5.109)

where we changed variables, setting λ “ fpϕq with the function f : p´π;πq Ñ R defined
through fpϕq “ ip1 ´ eiϕq{p1 ` eiϕq, we introduced the Borel measure rµ over R such that
rµpAq “ νpf´1pAqq, and we took into account the weight of ν at ˘π. Setting a “ ´c,
b “ νpt˘πuq and dµpλq “ p1` λ2qdrµpλq, we obtain the desired representation of F .
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Suppose now that a Herglotz function F has the form (5.94). Then, we find

lim
εÑ0`

1

π

ż λ2

λ1

ImF pλ` iεqdλ

“ lim
εÑ0

1

π

ż λ2

λ1

ż

ε

px´ λq2 ` ε2
dµpxqdλ (5.110)

“ lim
ε

ż

1

π

ż λ2

λ1

ε

px´ λq2 ` ε2
dλdµpxq

“ lim
εÑ0

ż

1

π
rarctgppλ2 ´ xq{εq ´ arctgppλ1 ´ xq{εqsdµpxq

“

ż

1

2
rχrλ1,λ2spxq ` χpλ1,λ2qpxqsdµpxq

“
1

2
pµprλ1;λ2sq ` µppλ1;λ2qqq (5.111)

where we used the dominated convergence theorem to take the limit εÑ 0, since

1

π
rarctgppλ2 ´ xq{εq ´ arctgppλ1 ´ xq{εqs Ñ

1

2
rχrλ1,λ2spxq ` χpλ1,λ2qpxqs (5.112)

pointwise, and
1

π
rarctgppλ2 ´ xq{εq ´ arctgppλ1 ´ xq{εqs ď

C

1` x2
(5.113)

for an appropriate constant C depending on λ1, λ2. The formula for a, b follows evaluating
(5.94) at z “ i.

The next proposition allows to establish a link with the resolvent of selfadjoint operators.

Proposition 5.49. Let pT,DpT qq be a selfadjoint operator. Let FTψ pzq be the quadratic form
associated to RzpT q:

FTψ pzq “ xψ,RzpT qψy . (5.114)

Then, FTψ pzq is a Herglotz function, and it can be written as:

FTψ pzq “

ż

R

1

λ´ z
dµpλq , (5.115)

for a unique finite Borel measure µ.

Proof. By the analyticity of z ÞÑ RzpT q, recall Theorem 5.7, we see that FTψ pzq is analytic

in ρpT q, and in particular in C`. Also, FTψ pzq maps C` into itself, since:

ImFTψ pzq “
1

2i
rxψ,RzpT qψy ´ xψ,RzpT qψys

“
1

2i
xψ, pRzpT q ´RzpT q

˚qψy

“
1

2i
xψ, pRzpT q ´RzpT qqψy

“
z ´ z

2i
xψ,RzpT qRzpT qψy (5.116)

where in the last step we used Eq. (5.8). Therefore, ImFTψ pzq “ Imz}RzpT qψ}
2 ě 0 for

z P C`. Hence, FTψ pzq is a Herglotz function, which means that it can be rewritten as in Eq.
(5.94), for some pa, b, µq. We clam that a “ b “ 0, and that µ is a finite Borel measure. In
fact, by Eq. (5.15) one has }RzpT q} ď 1{|Imz|, which implies that

|yFTψ piyq| ď }ψ}
2 , @y P R . (5.117)
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This implies that FTψ pzq has the form:

FTψ pzq “

ż

R

1

λ´ z
dµpλq . (5.118)

The fact that the measure is finite, µpRq ă 8, follows from

yImF piyq “

ż

y2

λ2 ` y2
dµpλq ď }ψ}2 , (5.119)

and from dominated convergence.

Remark 5.50. Moreover, theorem 5.47 tells us that we can reconstruct the Borel measure
associated to FTψ by the inverse Stieltjes transform. In particular, the distribution function

dTψpλq “ µpp´8;λsq is:

dTψpλq “ lim
δÑ0`

lim
εÑ0`

1

π

ż λ`δ

´8

ImFTψ pt` iεqdt . (5.120)

Since this is a distribution function, it can be used to reconstruct the corresponding Borel
measure µTψ : BpRq Ñ r0;8q (write the measure of any Borel set via the complement, count-
able union or intersection of sets p´8, λs, λ P R).

We are now left with constructing the projection valued measure. For every Ω P BpRq,
we define the quadratic form:

qTΩpψq “ µTψpΩq “

ż

χΩpλqdµ
T
ψpλq . (5.121)

Through the polarization identity, we also find a sesquilinear form sTΩpϕ,ψq such that qTΩpψq “
sTΩpψ,ψq. Clearly,

sTΩpψ,ϕq “ µTψ,ϕpΩq , (5.122)

with µTψ,ϕ defined from µTψ via the polarization identity. Since 0 ď qT pψq ď }ψ}
2, we have,

by the Cauchy-Schwarz inequality for sesquilinear forms:

|sTΩpψ,ϕq| ď qTΩpψq
1
2 qTΩpϕq

1
2 ď }ψ}}ϕ} . (5.123)

By Riesz’ representation theorem, we can write the map ϕ ÞÑ sTΩpψ,ϕq as sTΩpψ,ϕq “ xη, ϕy,
for a unique η P H. By the antilinearity of the sesquilinear form, it is not difficult to see that
η “ QT pΩq˚ψ, for a bounded linear operator QT pΩq with }QT pΩq} ď 1. We then have:

sTΩpψ,ϕq “ µTψ,ϕpΩq “ xψ,Q
T pΩqϕy , qTΩpψq “ µTψpΩq “ xψ,Q

T pΩqψy . (5.124)

Lemma 5.51. The map QT : BpRq Ñ LpHq is a projection valued measure.

Proof. That is, we have to prove that:

(i) QT pΩq2 “ QT pΩq “ QT pΩq˚.

(i) QT pRq “ 1H.

(iii) Strong σ-additivity.

We prove first that QT pΩ1qQ
T pΩ2q “ QT pΩ1 X Ω2q for all Ω1,Ω2 P BpRq. This implies, in

particular, that for Ω1 “ Ω2:
QT pΩq2 “ QT pΩq . (5.125)

To this end, we observe that, for all z, z̃ P CzR, by definition of dµTRz̃pT qϕ,ψpλq:

ż

1

λ´ z̃
dµTRz̄pT qϕ,ψpλq “ xRz̄pT qϕ,RrzpT qψy “ xϕ,RzpT qRrzpT qψy

“
1

z ´ z̃
rxϕ,RzpT qψy ´ xϕ,RrzpT qψys , (5.126)
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where we used the resolvent identity:

RzpT q ´RrzpT q “ pz ´ rzqRzpT qRrzpT q . (5.127)

We conclude that:
ż

1

λ´ rz
dµTR

rzpT qϕ,ψ
pλq “

1

z ´ rz

ż

” 1

λ´ z
´

1

λ´ rz

ı

dµTψ,ϕpλq

“

ż

1

λ´ rz

1

λ´ z
dµTψ,ϕpλq . (5.128)

Since this identity holds for all rz P CzR, we must have:

dµTRz̄pT qϕ,ψpλq “
1

λ´ z
dµTψ,ϕpλq . (5.129)

Therefore,
ż

1

λ´ z
dµTϕ,QpΩqψ “

ż

dµTRz̄pT qϕ,QpΩqψpλq

“ xϕ,RzpT qQ
T pΩqψy

“

ż

χΩpλqdµRz̄pT qϕ,ψpλq

“

ż

1

λ´ z
χΩpλqdµϕ,ψpλq , (5.130)

which means that:
dµϕ,QT pΩqψpλq “ χΩpλqdµϕ,ψ . (5.131)

Hence:

xψ,QT pΩ1qQ
T pΩ2qϕy “

ż

dµϕ,ψpλqχΩ1
pλqχΩ2

pλq

“

ż

χΩ1XΩ2pλqdµϕ,ψpλq

“ xϕ,QT pΩ1 X Ω2qψy , (5.132)

which means that QT pΩ1 X Ω2q “ QT pΩ1qQ
T pΩ2q. Also, we claim that QT pΩq˚ “ QT pΩq.

This easily follows from QT pΩq ě 0. Therefore, QT is an orthogonal projection.
Let us now prove that QT pRq “ 1H. Suppose it is false, QT pRqψ ‰ ψ. Then, we write:

ψ “ QT pRqψ ` ϕ (5.133)

with ϕ P KerQT pRq. Then we have, for any ξ P H:

0 “ dµξ,QT pRqϕ “ χRpλqdµξ,ϕpλq (5.134)

which implies xξ,RzpT qϕy “ 0 for all ξ P H and for all z P CzR. Since CzR Ă ρpT q, RzpT q
is invertible: for any η P H there exists ξ such that Rz̄pT qξ “ η. Therefore, ϕ “ 0, thus
implying a contradiction: QT pRqψ “ ψ.

Finally, we have to prove the strong σ-additivity. For orthogonal projection, the strong
σ-additivity is equivalent to the weak σ-additivity, since }Qψ} “ xψ,Qψy (hence }Qnψ} Ñ
}Qψ} is implied by weak convergence). Let pΩnq Ă BpRq, such that ΩnXΩm “ H for n ‰ m.
Let Ω “ YnΩn. Therefore, for all ψ P H, for N Ñ8:

N
ÿ

n“1

xψ,QT pΩnqψy “
N
ÿ

n“1

µψpΩnq Ñ µψpΩq “ xψ,Q
T pΩqψy , (5.135)

where the convergence follows from the strong σ-additivity of the measure µψ. By polariza-
tion,

N
ÿ

n“1

xψ,QT pΩnqϕy Ñ xψ,QT pΩqϕy (5.136)

for all ψ,ϕ, which implies strong σ-additivity.
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In conclusion, starting from a self-adjoint operator T p, DpT qq we constructed a PVM
P : BpRq Ñ LpHq such that, for all z P CzR:

RzpT q “

ż

dppλq
1

λ´ z
. (5.137)

This easily implies the spectral theorem for unbounded self-adjoint operators.

Theorem 5.52. For any self-adjoint operator pT,DpT qq there exists a unique PVM PT such
that:

DpT q “ tψ P H |
ż

λ2dµψpλq ă 8u , (5.138)

and:

T “

ż

λdppλq . (5.139)

Proof. Given the PVM constructed before, we know that A “
ş

λdppλq defines an unbounded
self-adjoint operator, with domain DpAq “ Dλ. We claim that A “ T . By construction:

RzpT q “ pT ´ zq
´1 “

ż

dppλq
1

λ´ z
, for z P CzR, (5.140)

with RzpT q : H Ñ DpT q. We claim that DpT q Ă Dλ. This follows from the fact that for
any ϕ P DpT q there exists ψ P H such that: Φpλ´ zqϕ “ Φpλ´ zqΦp1{pλ´ zqqψ “ ψ. Also,
Φpλ´ zq Ą T ´ z, since, for any ψ P Dλ,

Φpλ´ zqΦp1{pλ´ zqqψ “ Φp1{pλ´ zqqΦpλ´ zqψ “ ψ . (5.141)

This shows that Φpλ´ zq “ T ´ z on DpT q, hence Φpλq Ą T . Using that both operators are
self-adjoint, we get Φpλq “ T . To prove uniqueness, notice that the measure µψ is uniquely
determined by RzpT q via the Stieltjes inversion formula. Uniqueness of PT follows from the
fact that it is uniquely determined by µψ.

Finally, as one could expect, the projection valued measure associated with T is supported
on the spectrum of T .

Theorem 5.53. Let T : DpT q Ñ H be a self-adjoint operator, with projection-valued measure
PT : BpRq Ñ LpHq. Then:

σpT q “ tλ P R | PT ppλ´ ε, λ` εqq ‰ 0 , @ε ą 0u . (5.142)

Also,
PT pσpT qq “ 1H , PT pRzσpT qq “ PT pRX ρpT qq “ 0 . (5.143)

Remark 5.54. The condition PT pΩq ‰ 0 has to be understood as there exists ψ P H such
that PT pΩqψ ‰ 0.

Proof. Let λ0 P R, Ωn “ tλ0 ´ 1{n, λ0 ` 1{nu. Suppose that PT pΩnq ‰ 0 for all n P N.
Then, for all n P N we can find ψn P RanPT pΩnq with }ψn} “ 1. We have:

}pT ´ λ0qψn}
2 “ }pT ´ λ0qP

T pΩnqψn}
2

“

ż

|λ´ λ0|
2χΩnpλqdµψnpλq ď

1

n2
. (5.144)

Therefore, from the Weyl criterium, λ0 P σpT q. This proves that tλ P R | PT ppλ´ε, λ`εqq ‰
0 , @ε ą 0u Ă σpT q. On the other hand, suppose that there exists ε ą 0 such that
PT ppλ0 ´ ε, λ0 ` εqq “ 0. Define:

fεpλq “
1

λ´ λ0
χRztλ0´ε,λ0`εupλq . (5.145)
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By the properties of the functional calculus,

pT ´ λ0qΦ
T pfεq “ ΦT ppλ´ λ0qfεq

“ PT pRzpλ0 ´ ε, λ0 ` εqq

“ 1H ´ P
T ppλ0 ´ ε, λ0 ` εqq

“ 1H . (5.146)

Analogously, ΦT pfεqpT ´ λ0qψ “ ψ for all ψ P DpT q. Therefore pT ´ λ0q is invertible, and
λ0 P ρpT q. This proves Eq. (5.142).

Let us now prove that PT pR X ρpT qq “ 0. For all λ P R X ρpT q, let Iλ Q λ be an open
neighbourhood of λ and PT pIλq “ 0 (otherwise λ P σpT q, as we just proved). Let us cover
RXρpT q with intervals Iλ, and let tJnunPN be a countable subcovering. Let Ωn “ JnzY

n´1
i“1 Ji.

so that tΩnu is a disjoint covering. By σ-additivity of the projection valued measure,

PT pRX ρpT qq “ lim
NÑ8

N
ÿ

n“0

PT pΩnq “ 0 . (5.147)

Remark 5.55. Therefore, ΦT pfq “ P pσpT qqΦT pfq “ ΦT pχσpT qfq. That is, changing f on

RzσpT q does not change ΦT pfq.

5.6 Unitary equivalence of self-adjoint operators with multiplica-
tion operators

In this section we shall show that self-adjoint operators are unitarily equivalent to multipli-
cation operators. We say that two operators T on H and rT on rH are unitarily equivalent if
there exists a unitary operator U : HÑ rH such that UT “ rTU , with UDpT q “ Dp rT q.

Let ψ P H. Let P be a projection valued measure, generating a functional calculus Φ,
and a Borel measure µψ “ xψ, P pΩqψy. Let

Hψ “ tΦpgqψ | g P L2pR, dµψqu Ă H . (5.148)

It is not difficult to see that Hψ is closed. Therefore, by Theorem 3.61, we can split the
original Hilbert space asH “ Hψ‘HKψ . In what follows, we shall denote by Pψ the projection
onto Hψ.

Lemma 5.56. The subspace Hψ reduces Φpfq:

PψΦpfq Ă ΦpfqPψ . (5.149)

Remark 5.57. That is, if ϕ P Df then Pψϕ P Df , i.e. PψDf Ă Df . Also, for all ϕ P Df ,
PψΦpfq “ ΦpfqPψϕ. We shall also say that Hψ is invariant under Φpfq.

Proof. (Sketch). Suppose f is bounded. Any ϕ P H can be written as ϕ “ Pψϕ` ϕ
K, with

Pψϕ “ Φpgqψ for some g P L2pR, dµψq. We claim that ΦpfqϕK P HKψ . In fact:

xΦpfqϕK,Φphqψy “ xϕK,Φpf̄hqψy “ 0 , (5.150)

because f̄h P L2pR, dµψq since f is bounded. It follows that:

PψΦpfqϕ “ PψΦpfqΦpgqψ “ PψΦpfgqψ

“ Φpfgqψ “ ΦpfqΦpgqψ “ ΦpfqPψϕ . (5.151)

This proves the claim for bounded f . The case of unbounded f follows by an approximation
argument, we omit the details.
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Therefore, we can decompose Φpfq “ Φpfq|Hψ
‘Φpfq|HKψ ; this means that if ϕ “ ϕ1`ϕ2

with ϕ1 P Hψ and ϕ2 P HKψ , then Φpfqϕ “ Φpfqϕ1 ` Φpfqϕ2 with Φpfqϕ1 P Hψ and

Φpfqϕ2 P HKψ .
The domain of Φpfq|Hψ

is defined as:

PψDf “ Df XHψ “ tΦpgqψ | g, fg P L2pR, dµψqu . (5.152)

On PψDf the action of Φpfq is then given by:

ΦpfqΦpgqψ “ Φpfgqψ (5.153)

This implies that the operator Φpfq can be interpreted, when considering its action of Hψ,
as a multiplication operator by f . To be more precise, we can define the map:

Uψ : Hψ Ñ L2pR, dµψq , (5.154)

by setting UψΦpfqψ “ f . Since }Φpfqψ} “ }f}2, the map Uψ is unitary. Furthermore, it
follows that:

UψDpΦpfq|Hψ
q “ UψPψDf “ UψpDf XHψq “ tg P L2pR, dµψq | fg P L2pR, dµψqu (5.155)

and:
UψΦpfq|Hψ

“ fUψ , (5.156)

where f also denotes the multiplication operator, pfgqpλq “ fpλqgpλq, with domain Dpfq “
UψDpΦpfq|Hψ

q.
We say that the vector ψ is cyclic if Hψ “ H. In this case the picture is complete: the

operator Φpfq is unitarily equivalent to the multiplication operator f , acting on its domain
Dpfq “ UψDf . In general however Hψ ‰ H, and Eq. (5.156) only shows that the restriction
of Φpfq on the spaceHψ (more precisely, on the dense domainHψXDf ) is unitarily equivalent
to multiplication with f .

What can we say about the restriction of Φpfq on the orthogonal complement HKψ? Also

on HKψ we can choose a vector ψ1; the corresponding space Hψ1 will again be invariant with
respect to the action of Φpfq. We can iterate the procedure; tψjujPJ is called a family of
spectral vectors, if Hψi K Hψj for all i ‰ j. We say that a family of spectral vectors if a
spectral basis of H if H “

À

jPJ Hψj . Such family always exists.

Lemma 5.58. Let H be a separable Hilbert space, and P and projection valued measure.
Then there exists a, at most countable, spectral basis tψjujPJ with H “

À

jPJ Hψj . We can

define a unitary map U “
À

jPJ Uψj : HÑ
À

jPJ L
2pR, dµψj q, where Uψj is defined as in Eq.

(5.154), through the identity UψjΦpfqψj “ f . Then, for any Borel measurable f : RÑ C:

UDf “ Dpfq “
à

jPJ

tg P L2pR, dµψj q | fg P L2pR, dµψj qu , (5.157)

and UΦpfq “ fU , where f acts as a multiplication on each component of
À

jPJ L
2pR, dµψj q.

This last lemma shows, in particular, that any selfadjoint operator is unitarily equivalent
to the multiplication operator λ̂: pλ̂gqpλq “ λgpλq.

Remark 5.59. Notice that the spectral basis is not unique, and its cardinality is not well
defined: there might exists different spectral bases with different cardinality. However, since
we are only considering separable Hilbert spaces, the cardinality of every spectral basis is at
most countable. The minimal cardinality of a spectral basis for a given self-adjoint operator
T , or more generally for a given projection valued measure P , is called the spectral multiplicity
of T (or of P ). We shall say that the spectrum of T is simple if the spectral multiplicity of
T is one (this means that there exists a cyclic vector).
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5.7 Decomposition of the spectrum

Let us start by reminding some well-known facts about Borel measures. For any Borel
measure µ there exists a decomposition µ “ µac`µs, where µac is absolutely continuous with
respect to the Lebesgue measure (meaning that µacpΩq “ 0 for all Ω P BpRq with Lebesgue
measure |Ω| “ 0) while µs is singular with respect to the Lebesgue measure (meaning that
there exists a set Ω with |Ω| “ 0 and µspRzΩq “ 0).

The singular measure µs can be further decomposed as µs “ µpp ` µsc, where µpp is
pure point (meaning that the distribution function dpppλq is a step function on R) and µsc

is singular continuous (meaning that the distribution function is continuous on R).
The measures µac, µsc, µpp are mutually singular: there exist disjoint setsMac,Mpp,Msc Ă

R such that µac is supported on Mac, µpp is supported on Mpp and µsc is supported on Msc.
Observe that the choice of the sets Mac,Msc,Mpp is not unique: one can always add sets
with zero µ measure. We will choose Mpp as the set of all jump points of the distribution
function µpλq and Msc with Lebesgue measure equal to zero.

At first, suppose that the spectrum of T is simple, and that ψ is a cyclic vector. Let P ”
PT be the projection-valued measure associated to T , and let µ ” µTψ be the corresponding
spectral measure. We then introduce the orthogonal projections:

Pac “ ΦpχMac
q , Psc “ ΦpχMsc

q , Ppp “ ΦpχMpp
q , (5.158)

such that Pac ` Psc ` Ppp “ 1H. By the orthogonality of the projections, we write:

H “ Hac ‘Hsc ‘Hpp , (5.159)

with H7 “ P7H. Recall that the Hilbert space H ” Hψ is unitarily equivalent to L2pR, dµq,
UψHψ “ L2pR, dµψq. Writing UψHψ “ UψpPac ` Psc ` PppqHψ and using that UψP7U

˚
ψ “

χM7 , we get the following orthogonal splitting:

L2pR, dµq “ L2pR, dµacq ‘ L
2pR, dµscq ‘ L

2pR, dµppq . (5.160)

This means that every function g P L2pR, dµq can be written as g “ gac ` gsc ` gpp, with
g7 “ g|M7 . Being the sets M7 disjoint, the functions appearing in the splitting are orthogonal.
Notice that, by construction, if ϕ PM7, then µϕ ” µϕ,7, with 7 “ ac, sc, pp. In fact, being ψ
cyclic, ϕ “ Φpg7qψ for some g7 P L

2pR, dµ7q, and dµψpλq “ |g7pλq|
2dµψpλq, with g7 supported

in M7.
Also,

T “ pTPacq ‘ pTPscq ‘ pTPppq . (5.161)

We define the absolutely continuous, singular continuous and pure point spectrum of T as:

σacpT q :“ σpTPacq , σscpT q :“ σpTPscq , σpppT q :“ σpTPppq . (5.162)

Being the subspacesH7 invariant under T , we have P7TP7 “ TP7. Hence, TP7 are selfadjoint,
and σ7pT q are closed subsets of R.

Remark 5.60. One has σppT q Ă σpppT q, with σppT q the set of eigenvalues of T . This also

implies σppT q Ă σpppT q. It is possible to prove that σpppT q “ σppT q. See next example.

Example 5.61. Let H “ `2pNq, let Tδn “
1
nδn with δn the sequence equal to 1 at the

n-th place and zero otherwise. That is T is a diagonal matrix with elements 1{n. Then,
σppT q “ t1{n | n P Nu. We claim that

σpT q “ σpppT q “ σppT q Y t0u “ σppT q . (5.163)

We claim that t0u belongs to σpT q. To see this, notice that T is injective, but not surjective:
not every vector in `2pNq can be written as Tϕ for some ϕ P `2pNq. Finally, notice that all
points z P C which are not in t 1

n | n P NuYt0u are in ρpT q. This simply follows by computing
the resolvent:

pT ´ zq´1δn “
n

1´ zn
δn , (5.164)

and observing that pT ´ zq´1 is bounded for all z P t 1
n | n P Nu Y t0u. Therefore, σpT q “

σppT q Y t0u. At the same time, we know that σpT q “ σpppT q Y σacpT q Y σscpT q. Being
σppT q Ă σpppT q with σppT q open and σpppT q closed, it follows that σppT q Y t0u “ σpppT q.
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Example 5.62. An example of purely absolutely continuous spectrum is obtained taking µ
to be the Lebesgue measure. An example with purely singular continuous spectrum is given
by taking µ to be the Cantor measure.

To conclude, we are left with discussing the case in which the spectrum of T is not
simple. In this case there is no cyclic vector, and we need to introduce a spectral basis. After
introducing such basis, the operator T is unitarily equivalent to a multiplication operator,
after conjugating with the unitary map: UH Ñ ‘jL

2pR, dµψj q. In general, however, it is
difficult to exclude that the splitting (5.159) depend on the choice of the spectral basis. For
this reason, we introduce the following definition of spectral subspaces of H:

Hac :“ tψ P H | µψ is absolutely continuousu

Hsc :“ tψ P H | µψ is singular continuousu

Hpp :“ tψ P H | µψ is pure pointu . (5.165)

Lemma 5.63. We have:
H “ Hac ‘Hsc ‘Hpp . (5.166)

As for the simple case, the absolutely continuous, singular continuous and pure point
spectrum are defined as:

σ7pT q “ σpT |H7q “ σpTP7q , (5.167)

where P7 is the projector over H7.
To conclude, we discuss a simple consequence of the fact that σpppT q “ σppT q.

Proposition 5.64. Let pT,DpT qq be a selfadjoint operator. Suppose that ψ P Hpp. Let
pϕjqjPN be the eigenvectors of T , Tϕj “ λjϕj. Then, there exists pαjq Ă C such that

lim
NÑ8

›

›

›
ψ ´

N
ÿ

j“1

αjϕj

›

›

›
“ 0 . (5.168)

Proof. The proof immediately follows from the fact that Mpp “ Mp, with Mp “ tλ P R |
λ is an eigenvalue of T u. Therefore, Hp “ φpχMp

qH ” PpH is dense in Hpp.

Remark 5.65. Recall that λj ‰ λk implies that xϕj , ϕky “ 0. This follows from, for ε ą 0:

xϕj , ϕky “
1

λk ` iε
xϕj , pH ` iε1Hqϕky

“
1

λk ` iε
xpH ´ iε1Hqϕj , ϕky

“
λj ´ iε

λk ` iε
xϕj , ϕky (5.169)

which implies that xϕj , ϕky “ 0 (since λj , λk P R, the ratio in the r.h.s. is ‰ 1).

To conclude, let us discuss a simple example of self-adjoint operator with purely absolutely
continuous spectrum.

Example 5.66. The Laplacian p´∆, H2pRdqq is a selfadjoint operator, with:

σp´∆q “ σacp´∆q “ r0,8q . (5.170)

The selfadjointness of the Laplacian has been proved in Section 4.2, using that it is unitarily
equivalent to multiplication by |k|2 (real-valued measurable function), recall Lemma 4.47.
Also, σp´∆q “ r0,8q, since σp´∆q “ σpFp´∆qF´1q “ σpAk2q, and σpAk2q “ r0,8q, since
k ÞÑ pk2 ´ zq´1 is a bounded function for all z R Rzr0,8q.

Let us now prove that σp´∆q “ σacp´∆q. To do this, it is enough to show that the
spectral measure µψ is absolutely continuous with respect to the Lebesgue measure, for all
ψ P H2pRdq. Observe that, for all ψ P L2pRdq, z P ρp´∆q:

xψ,Rzp´∆qψy “ xψ̂, RzpAk2qψ̂y “

ż

Rd

|ψ̂pkq|2

k2 ´ z
dk “

ż

R

1

r2 ´ z
dµ̃ψprq (5.171)
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where

drµψprq “ χr0,8qprqr
d´1

´

ż

Sd´1

|ψ̂prωq|2dω
¯

dr . (5.172)

After a simple change of variables, we have:

xψ,Rzp´∆qψy “

ż

R

1

λ´ z
dµψpλq , (5.173)

with µψpλq given by:

dµψpλq “
1

2
χr0,8qpλqλ

d
2´1

´

ż

Sd´1

|ψ̂p
?
λωq|2dω

¯

dλ . (5.174)

This measure is absolutely continuous, since it is of the form dµψpλq “ fpλqdλ, with f P
L1pRd, dλq given by:

fψpλq “
1

2
χr0,8qpλqλ

d
2´1

´

ż

Sd´1

|ψ̂p
?
λωq|2dωn´1

¯

. (5.175)

Absolute continuity of the measure follows from the fact that the integral of an Lp function
over a set with zero Lebesgue measure is zero.

6 Quantum dynamics

In this section we shall apply the spectral theorem to study solutions of the Schrödinger
equation:

iBtψptq “ Hψptq , (6.1)

where H is a selfadjoint operator, the Hamiltonian, defined on a domain DpHq Ă H.

6.1 Existence and uniqueness of the solution of the Schrödinger
equation

In the next theorem we shall prove that the solution to this equation is given by ψptq “
Uptqψp0q, with Uptq “ expp´iHtq, define via functional calculus:

e´iHt “

ż

e´iλtdppλq , (6.2)

with P the projection-valued measure associated to pH,DpHqq.

Theorem 6.1. Let pH,DpHqq be a selfadjoint operator and let Uptq “ e´iHt. Then:

(i) Uptq is a strongly continuous one-parameter unitary group.

(ii) The limit:

lim
tÑ0

1

t
rUptq ´ 1sψ (6.3)

exists if and only if ψ P DpHq. In this case:

lim
tÑ0

1

t
rUptq ´ 1sψ “ ´iHψ . (6.4)

(iii) We have UptqDpHq “ DpHq and, on DpHq, rUptq, Hs “ 0 for all t P R.

Remark 6.2. That is, H is the generator of Uptq, recall Definition 3.77.

Proof. Let us prove piq. The spectral representation of Uptq, Eq. (6.2), together with the
rules of functional calculus, implies that Uptq´1 “ Uptq˚, and that Upt` sq “ UptqUpsq for
all t, s P R. To prove that Uptq is strongly continuous, fix ψ P H and consider:

lim
tÑt0

}e´iHtψ ´ e´iHt0ψ}2 “ lim
tÑt0

ż

|e´iλt ´ e´iλ0t|2dµψpλq “ 0 (6.5)
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by dominated convergence. This proves piq. Let us now consider piiq. Suppose that ψ P
DpHq. Then, we have:

lim
tÑ0

›

›

›

1

t
pe´iHt ´ 1qψ ` iHψ

›

›

›

2

“ lim
tÑ0

ż

ˇ

ˇ

ˇ

1

t
pe´iλt ´ 1q ` iλt

ˇ

ˇ

ˇ

2

dµψpλq “ 0 , (6.6)

again by dominated convergence. Here we used the bound |e´iλt ´ 1| ď |tλ| and the fact
that, since ψ P DpHq:

ż

λ2dµψpλq ă 8 . (6.7)

One the other hand, define the operator rH : Dp rHq Ñ H by:

Dp rHq “ tψ : lim
tÑ0

i

t
rUptqψ ´ ψs existsu (6.8)

and by:

rHψ “ lim
tÑ0

i

t
rUptqψ ´ ψs (6.9)

for all ψ P Dp rHq. The operator rH is the generator of the one-parameter group Uptq. It

follows from Eq. (6.6) that H Ă rH. Moreover, for all ϕ,ψ P Dp rHq we have:

xϕ, rHψy “ lim
tÑ0
xϕ,

i

t
rUptqψ ´ ψsy “ lim

tÑ0
x
p´iq

t
rUp´tqϕ´ ϕs, ψy “ x rHϕ,ψy . (6.10)

We conclude that rH is a symmetric extension of H. However, self-adjoint operators are
maximal: they do not have symmetric extensions2, which means that rH “ H. This proves
piiq. The proof of piiiq follows from Proposition 3.79 piiq.

Therefore, it follows from Eq. (6.4) that, for ψ0 P DpHq, the vector ψptq P Uptqψ0 with
Uptq “ e´iHt is a solution of the Schrödinger equation with initial datum ψp0q “ ψ0. In fact:

iBtUptqψ0 “ lim
hÑ0

i

h
rUpt` hq ´ Uptqsψ0 “ lim

hÑ0

i

h
rUphq ´ 1sUptqψ0 “ HUptqψ0 (6.11)

because Uptqψ0 P DpHq if ψ0 P DpHq. It turns out that Uptqψ0 is the unique solution of the
Schrödinger equation.

Lemma 6.3. Let ψ0 P DpHq and let ψptq be a solution of the Schrödinger equation with
initial datum ψp0q “ ψ0. Then ψptq “ Uptqψ0.

Proof. Let ψptq be a solution of the Schrödinger equation. In particular, ψptq is differentiable
and ψptq P DpHq for all t P R (or for all t in the time-interval on which ψptq is a solution).
Let ϕptq “ Up´tqψptq. Then:

iBtϕptq “ lim
εÑ0

i

ε
rUp´t´ εqψpt` εq ´ Up´tqψptqs

“ lim
εÑ0

”

iUp´t´ εq
ψpt` εq ´ ψptq

ε
` i

Up´εq ´ 1

ε
Up´tqψptq

ı

. (6.12)

Since ψ is differentiable and U is strongly continuous, we have, as εÑ 0:

iUp´t´ εq
ψpt` εq ´ ψptq

ε
Ñ iUp´tqψ1ptq “ Up´tqHψptq “ HUp´tqψptq . (6.13)

On the other hand, ψptq P DpHq implies that Up´tqψptq P DpHq and therefore that:

i
Up´εq ´ 1

ε
Up´tqψptq Ñ ´HUp´tqψptq . (6.14)

We conclude that ϕ1ptq “ 0 for all t and therefore that ϕptq “ ϕp0q “ ψp0q “ ψ0. Hence,
ψptq “ Uptqψ0.

Remark 6.4. Since DpUptqq “ H, the dynamics can be extended to all initial data ψ0 P H.
However, notice that Uptqψ0 is a solution of the Schrödinger equation if and only if ψ0 P

DpHq.

2Suppose that H Ă rH. Then, by Proposition 4.31 rH˚
Ă H. Also, being rH symmetric, by Proposition 4.28

rH Ă rH˚. That is, rH Ă H, hence rH “ H.
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6.2 Stone’s theorem

In the previous section we proved that any self-adjoint operator generates a unitary evolution.
Conversely, Stone’s theorem shows that any strongly continuous one-parameter unitary group
Uptq is generated by a selfadjoint operator such that Uptq “ e´iHt.

Theorem 6.5. Let Uptq be a weakly continuous one-parameter unitary group. Let H :
DpHq Ñ H be the generator of Uptq, defined by:

DpHq “ tψ P H | lim
tÑ0

1

t
rUptqψ ´ ψs existu (6.15)

and by:

Hψ “ lim
tÑ0

i

t
rUptqψ ´ ψs for all ψ P DpHq. (6.16)

Then, H is selfadjoint and Uptq “ e´iHt.

Proof. First of all, we notice that the weak continuity of Uptq also implies strong continuity,
since, for any ψ P H and for tÑ t0:

}Uptqψ ´ Upt0qψ}
2 “ 2}ψ}2 ´ 2Re xψ,Upt0 ´ tqψy Ñ 0 (6.17)

if Upt0´ tq Ñ 1 weakly. Next, we claim that DpHq is dense in H. For any ψ P H and τ ą 0,
we set:

ψτ :“

ż τ

0

Uptqψdt . (6.18)

This implies that τ´1ψτ Ñ ψ as τ Ñ 0. In fact, given ε ą 0, by the strong continuity of Uptq
we can find t0 ą 0 such that }Uptqψ ´ ψ} ď ε for all 0 ă t ă t0. Then, for all 0 ă τ ă t0 we
have:

}τ´1ψτ ´ ψ} ď
1

τ

ż τ

0

}Uptqψ ´ ψ}dt ď ε . (6.19)

Since ε ą 0 is arbitrary, this shows that τ´1ψτ Ñ ψ. Moreover, we claim that ψτ P DpHq.
In fact, for any τ ą 0, we have:

1

t
pUptqψτ ´ ψτ q “

1

t

”

ż t`τ

t

Upsqψds´

ż τ

0

Upsqψds
ı

“
1

t

”

ż τ`t

τ

Upsqψds´

ż t

0

Upsqψds
ı

“ pUpτq ´ 1q
1

t

ż t

0

UpsqψdsÑ rUpτq ´ 1sψ , as tÑ 0. (6.20)

This implies that ψτ P DpHq. Hence, for arbitrary ψ P H, we found a sequence τ´1ψτ P
DpHq with τ´1ψτ Ñ ψ. This proves that DpHq is dense. Next, we show that H is essentially
self-adjoint. From Corollary 4.45, it is enough to check that Ker pH˚ ˘ iq “ t0u. To this
end, suppose that H˚ϕ “ ¯iϕ. Then, proceeding as in the proof of Theorem 6.1 piiiq, for
any ψ P DpHq, we have Uptqψ P DpHq for all t P R and therefore:

d

dt
xϕ,Uptqψy “ xϕ,´iHUptqψy “ ´ixH˚ϕ,Uptqψy “ ˘xϕ,Uptqψy . (6.21)

Hence,
xϕ,Uptqψy “ e˘txϕ,ψy . (6.22)

Since the left-hand side is bounded, uniformly in t P R, we must have xϕ,ψy “ 0. Since
ψ P DpHq is arbitrary and DpHq is dense, we conclude that ϕ “ 0. Therefore, H is essentially
selfadjoint, and its closure H is selfadjoint. We can therefore define the one-parameter group

V ptq “ e´iHt. We claim now that V ptq “ Uptq. This would also imply, by Theorem 6.1, that
H “ H (because it would imply that DpHq “ DpHq) and therefore it would conclude the
proof of the theorem.
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To show that indeed V ptq “ Uptq, we pick ψ P DpHq and we set ψptq “ Uptqψ ´ V ptqψ.
Then, we compute:

lim
sÑ0

ψpt` sq ´ ψptq

s
“ lim

sÑ0

pUpsq ´ 1q

s
Uptqψ ´ lim

sÑ0

V psq ´ 1

s
V ptqψ

“ iHUptqψ ´ iHV ptqψ “ iHψptq , (6.23)

where we used that Uptqψ P DpHq if ψ P DpHq, V ptqψ P DpHq if ψ P DpHq Ă DpHq, and
that HUptqψ “ HUptqψ for ψ P DpHq (because H is an extension of H). We obtain:

d

dt
}ψptq}2 “

d

dt
xψptq, ψptqy “ 2Re xψptq, iHψptqy “ 0 (6.24)

since xψptq, Hψptqy P R (which follows from the fact that H is selfadjoint). With ψp0q “ 0,
it follows that ψptq “ 0 for all t and therefore that Uptqψ “ V ptqψ for all ψ P DpHq. Since
DpHq is dense in H and Uptq, V ptq are unitary (in particular, bounded), this also implies
that Uptq “ V ptq on H.

6.3 The RAGE theorem

There is an interesting relation between the spectrum of a selfadjoint operator H and the
properties of the quantum dynamics Uptq “ e´iHt. This relation is summarized in a theorem
due to Ruelle-Amrein-Georgescu-Enss. The goal here is to understand, based on the spectral
properties of H, whether a quantum system whose evolution is generated by H remains
confined in a bounded region for all times or whether instead it moves to infinity as tÑ8.

A first simple observation is as follows. Let H be a selfadjoint operator, and Hac, Hsc,
Hpp the corresponding spectral subspaces, so that H “ Hac ‘Hsc ‘Hpp.

If ψ P Hac, then the spectral measure µψ is absolutely continuous with respect to the
Lebesgue measure. This also implies that µϕ,ψ is absolutely continuous with respect to
Lebesgue, for all ϕ P H, since

|µϕ,ψpΩq| “ |xϕ, P pΩqψy| ď }xϕ, P pΩqy}
1{2|xψ, P pΩqψy|1{2 “ µϕpΩq

1{2µψpΩq
1{2 . (6.25)

Therefore, setting Uptq “ e´iHt we find:

xϕ,Uptqψy “

ż

e´iλtdµϕ,ψpλq Ñ 0 as tÑ8, (6.26)

by the Riemann-Lebesgue lemma. This is because any Borel measure µ which is absolutely
continuous with respect to Lebesgue can be written as dµpλq “ fpλqdλ, with f P L1pR, dλq
and dλ the volume measure. In fact, by Theorem 3.4:

xϕ,Uptqψy “

ż

e´iλtfϕ,ψpλqdλ ” f̂ϕ,ψptq Ñ 0 as tÑ8. (6.27)

This means that, if ψ P Hac, the time evolved state Uptqψ becomes orthogonal to any fixed
ϕ P H, as t Ñ 8. This of course cannot be true for all ψ P H. In particular, if ψ is an
eigenvector of H, that is if Hψ “ Eψ, one has:

|xϕ,Uptqψy| “ |xϕ,ψy| , for all t P R. (6.28)

A more exhaustive understanding of the asymptotic behavior of xϕ,Uptqψy in the limit of
large t is provided by the following theorem.

Theorem 6.6. [Wiener] Let µ a finite complex Borel measure on R and:

µ̂ptq :“

ż

R
e´itλdµpλq . (6.29)

Then,

lim
TÑ8

1

T

ż T

0

|µ̂ptq|2dt “
ÿ

λPR
|µptλuq|2 , (6.30)

where the sum on the r.h.s. is finite (because µ is a finite measure).
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Remark 6.7. Recall that any Borel measure has can be written as µ “ µac`µsc`µpp. Also,
since µac, µsc have continuous distribution, µptλuq “ µppptλuq. Therefore,

ř

λPR |µptλuq|
2 “

ř

λPR |µppptλuq|
2. The sum is over the support of Mpp of the pure point measure µpp, which

is a countable set. This follows from the fact that Mpp “
Ť

nPNMn with Mn “ tλ P R |

µptλuq ą 1{nu ” tλ P R | µppptλuq ą 1{nu. Each set Mn is countable and finite: otherwise,
µpMnq “ 8, which is impossible since µ is finite. Therefore, Mpp is the countable union of
finite sets, and hence it is countable.

Proof. We apply Fubini’s theorem to write:

1

T

ż T

0

|pµptq|2dt “
1

T

ż T

0

ż

R

ż

R
e´ipx´yqtdµpxqdµpyqdt

“

ż

R

ż

R

” 1

T

ż T

0

e´ipx´yqtdt
ı

dµpxqdµpyq . (6.31)

Since
ˇ

ˇ

ˇ

1

T

ż T

0

e´ipx´yqdt
ˇ

ˇ

ˇ
ď 1 (6.32)

and, as T Ñ8:
1

T

ż T

0

e´ipx´yqtdtÑ

"

0 if x ‰ y
1 if x “ y.

(6.33)

Therefore, by dominated convergence:

1

T

ż T

0

|pµptq|2dtÑ

ż

R

ż

R
χt0upx´ yqdµpxqdµpyq “

ż

R
µptyuqdµpyq “

ÿ

yPR
|µptyuq|2 . (6.34)

Let us now apply this theorem to study the quantity |xϕ,Uptqψy|, describing the proba-
bility of finding the evolved state in the state ϕ at time t. If ψ P Hac ‘Hsc and ϕ P H is
arbitrary, the measure µϕ,ψ has not atoms, i.e. it is such that µϕ,ψptλuq “ 0, for all λ P R.
Therefore, by Theorem 6.6:

lim
TÑ8

1

T

ż T

0

|xϕ, e´iHtψy|2dt “ 0 . (6.35)

Hence the probability of finding the evolved state in ϕ tends to zero, but only in an averaged
sense.

Notice that |xϕ,Uptqψy|2 “ }PϕUptqψ}
2, with Pϕ the orthogonal projection onto ϕ. We

can extend Eq. (6.35) to a more general class of operators, called compact operators. Com-
pact operators are the natural generalization of finite-rank operators, that is operators that
can be written as finite linear combination of orthogonal projectors. In the following, we
shall denote by B1p0q the unit ball in H, that is:

B1p0q “ tψ P H | }ψ} ď 1u . (6.36)

Definition 6.8. An operator K P LpHq is called compact if KB1p0q Ă H is pre-compact in
H, that is if KB1p0q is compact.

Remark 6.9. (i) Equivalently, an operator K P LpHq is compact if and only if for any
bounded sequence ψn P H, Kψn has a convergent subsequence.

(ii) The space of all compact operator KpHq is a closed linear subspace of LpHq. Also, K˚

is compact if K is compact, and KA, AK are compact if K P KpHq and A P LpHq.
Furthermore, compact operators can be approximated in norm by sequences of finite
rank operators.

Definition 6.10. An operator K : DpKq Ñ H is called relatively compact with respect to
the self-adjoint operator H if there exists z P ρpHq such that KRzpHq “ Kpz ´ Hq´1 is
compact.
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Remark 6.11. (i) Using the first resolvent identity, RzpHq´Rz0pHq “ pz´z0qRzpHqRz0pHq,
one can check that if KRzpHq is compact for one z P ρpHq, then it is compact for all
z P ρpHq.

(ii) If K is relatively compact with respect to H, then DpHq Ă DpKq, because every ψ P
DpHq can be written as ψ “ RApzqϕ for a ϕ P H.

The results (6.27), (6.35) can now be extended as follows.

Theorem 6.12. Let H be a selfadjoint operator. Let K be relatively compact with respect
to H. Then, for all ψ P DpHq:

lim
TÑ8

1

T

ż T

0

}Ke´iHtPcpHqψ}
2dt “ 0 , (6.37)

where PcpHq “ PacpHq ` PscpHq is the orthogonal projection onto Hac ‘Hsc. Also, for all
ψ P DpHq:

lim
tÑ8

}Ke´itHPacpHqψ}
2 “ 0 . (6.38)

If we also assume that K is bounded, then Eqs. (6.37), (6.38) hold true for any ψ P H.

Proof. To prove Eqs. (6.37), (6.38), we can assume that ψ P Hc and, respectively, that
ψ P Hac, and drop the orthogonal projections. If K is a rank-one projector, the claims follow
from Eqs. (6.27), (6.35). If K is a finite-rank operator, Kψ “

řn
j“1 αjxψj , ψyϕj for two

orthonormal families tϕ1, . . . , ϕnu, tψ1, . . . , ψnu then:

}Ke´iHtψ}2 “
n
ÿ

j“1

|xψj , e
´iHtψy|2 , (6.39)

and the problem reduces to the rank-1 case. If K is compact, we can find a sequence of
finite-rank operators Kn with }K ´Kn} ď 1{n. Then:

}Ke´iHtψ}2 ď 2}Kne
´iHtψ}2 ` 2n´2}ψ}2 , (6.40)

and the problem reduces to the finite-rank case (by choosing first n large enough, and then
T or t large enough). Finally, it K is relatively compact with respect to H and ψ P DpHq,
we write ψ “ pH ´ zq´1ξ for a ξ P H (notice that, if ψ P Hc or ψ P Hac, then also ξ P Hc or,
respectively, ξ P Hac). Thus, it is enough to apply the result for compact operators to the
operator KpH ´ zq´1, because the operator pH ´ zq´1 commutes with e´iHt.

Example 6.13. A simple application of these results is obtained by taking H “ ´∆ and K
the multiplication operator χBRp0qpxq. It turns out that the operator K is relatively compact
with respect to H. More generally, one can prove that all operators of the form fpi∇qgpx̂q,
or gpx̂qfp´i∇q, for f, g P C8pRnq and gp´i∇q “ F´1gpkqF are compact. In our case,
gpxq “ χBRp0qpxq and fpkq “ pk2 ` zq´1, with z P CzR.

Since H has purely absolutely continuous spectrum, we conclude that:

}χBRp0qe
it∆ψ} Ñ 0 as tÑ8, (6.41)

for every ψ P H and for every R ą 0. In other words, if the evolution is generated by the
Laplace operator, the probability that the system is found in a ball of radius R around the
origin decays to zero as t Ñ 8, for all R ą 0 and for all initial data ψ P H: the system
moves to infinity.

As we will see later, more realistic Hamilton operators have the form H “ ´∆ ` V ,
for a potential V . Depending on the form of V , the spectrum of H may contain absolutely
continuous, singular continuous and pure point parts. Taking again K “ χBRp0qpxq (which is
still relatively compact with respect to H, at least for reasonable choices of V ), we conclude
that

}χBRp0qpxqe
´iHtψ} Ñ 0 as tÑ8, (6.42)

if ψ P Hac, that:
1

T

ż T

0

}χBRp0qpxqe
´iHtψ}2dtÑ 0 as tÑ8, (6.43)
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if ψ P Hac ‘Hsc, and that:

}χBRp0qpxqe
´iHtψ} “ }χBRp0qψ} Ñ }ψ} (6.44)

as RÑ8, if ψ is an eigenvector of H. In other words, if the initial data ψ is an eigenvector
(hence, it belongs to Hpp), its evolution remains localized within a ball of radius R, if R is
large enough.

If ψ is contained in the spectral subspace Has of H, the its evolution moves to infinity,
while if it is contained in the spectral subspace Hc, with possibly a component in Hsc, the
probability for finding the state within a ball of radius R still goes to zero, but only in an
average sense.

It turns out that the behavior of }Ke´iHtψ} can be used to dynamically characterize the
spectral subspaces Hc and Hpp associated with H.

Theorem 6.14 (RAGE theorem). Let H be a selfadjoint operator and suppose that Kn

is a sequence of relatively compact operators with respect to H, converging strongly to the
identity. Then:

Hc “

!

ψ P H | lim
nÑ8

lim
TÑ8

1

T

ż T

0

}Kne
´iHtψ} “ 0

)

Hpp “

!

ψ P H | lim
nÑ8

sup
tě0

}p1´Knqe
´iHtψ} “ 0

)

. (6.45)

Proof. Pick first ψ P Hc. By Cauchy-Schwarz and by Theorem 6.12, we find:

1

T

ż T

0

}Kne
´iHtψ}dt ď

” 1

T

ż T

0

}Kne
´iHtψ}2dt

ı1{2

Ñ 0 (6.46)

as T Ñ8. Hence:

Hc Ă

!

ψ P H |
!

ψ P H | lim
nÑ8

lim
TÑ8

1

T

ż T

0

}Kne
´iHtψ} “ 0

)

. (6.47)

On the other hand, suppose that ψ R Hc. We want to show that:

1

T

ż T

0

}Kne
´iHtψ}2dt (6.48)

does not converge to zero, if we let first T Ñ 8 and then n Ñ 8. Since ψ R Hc, we have
ψ “ ψc ` ψpp, for a ψc P Hc and for ψpp P Hpp, with ψpp ‰ 0. Since }Kne

´iHtψ} ě
}Kne

´iHtψpp} ´ }Kne
´iHtψc} and since we know that:

lim
TÑ8

1

T

ż T

0

}Kne
´iHtψc}dt “ 0 , (6.49)

it is enough to show that
1

T

ż T

0

}Kne
´iHtψpp}dt (6.50)

does not converge to zero, it T Ñ8 and then nÑ8. To prove this, we shall show that:

sup
tě0

}Kne
´iHtψpp ´ e

´iHtψpp} Ñ 0 (6.51)

as nÑ8. If this is true, we obtain that:

1

T

ż T

0

}Kne
´iHtψpp}dt ě }ψpp} ´ sup

tě0
}Kne

´iHtψpp ´ e
´iHtψpp} Ñ }ψpp} ą 0 (6.52)

as n Ñ 8, which implies the claim. To show (6.51), we use that ψpp can be approximated
by a sequence ψN , having the form:

ψN “
N
ÿ

j“1

αjϕj (6.53)
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where pϕjqjPN are orthonormal eigenfunctions of H, associated with eigenvalues λj , recall
Proposition 5.64. This implies that:

e´iHtψN “
N
ÿ

j“1

αje
´iλjtϕj . (6.54)

Hence, for every fixed N , as nÑ8:

sup
tPR
}Kne

´iHtψN ´ e
´iHtψN } ď

N
ÿ

j“1

|αj |}Knϕj ´ ϕj} Ñ 0 , (6.55)

because Kn Ñ 1H strongly. Since, on the other hand, }e´iHtψpp´e
´iHtψN } “ }ψpp´ψN } Ñ

0 and also:

}Kne
´iHtψpp ´Kne

´iHtψN } ď }Kn}}ψpp ´ ψN } ď C}ψpp ´ ψN } Ñ 0 (6.56)

as N Ñ8, uniformly in t and in n, we obtain Eq. (6.51). (We used that strong convergence
of Kn to 1H implies that pKnq is a bounded sequence, whose proof is left as an exercise).
This proves the first identity in Eq. (6.45). Let us now prove the second identity. The
inclusion:

Hpp Ă

!

ψ P H | lim
nÑ8

sup
tě0

}p1H ´Knqe
´iHtψ} “ 0

)

(6.57)

follows from Eq. (6.51). Conversely, it ψ R Hpp, then ψ “ ψc`ψpp for ψc P Hc, with ψc ‰ 0.
Applying again Eq. (6.51), it is enough to show that

sup
tě0

}p1H ´Knqe
´iHtψc} does not converge to zero as nÑ8. (6.58)

To this end, let us proceed by contradiction and assume that suptě0 }p1H´Knqe
´iHtψc} Ñ 0

as nÑ8. Then, we would conclude:

0 “ lim
nÑ8

lim
TÑ8

1

T

ż T

0

}p1H ´Knqe
´iHtψc}dt

ě }ψc} ´ lim
nÑ8

lim
TÑ8

1

T

ż T

0

}Kne
´iHtψc}dt “ }ψc} ą 0 (6.59)

which is a contradiction.

7 General Schrödinger operators

7.1 Kato-Rellich theorem

Often in quantum mechanics one has to deal with perturbations H of simple reference oper-
ators H0. As an example, one might consider Hamiltonians of the form H “ H0 ` V , with
H0 “ ´∆ and V ” V px̂q a multiplication operator, describing an external potential.

Perturbation theory aims at establishing properties of H, starting from the properties
of H0, assumed to be well-known. Of course, to reach this goal, we will also need some
information about H ´H0. For example, it is easy to check that if H ´H0 is bounded and
seldadjoint, then H is again selfadjoint (provided H0 is selfadjoint). More generally, in this
section we will show that relatively bounded perturbations of self-adjoint operators remain
self adjoint (if the relative bound is less than one).

Definition 7.1. Let A : DpAq Ñ H, B : DpBq Ñ H be two densely defined linear operators.
We say that B is relatively bounded with respect to A (or A-bounded) if DpAq Ă DpBq and
if there are constants a, b ą 0 such that:

}Bψ} ď a}Aψ} ` b}ψ} (7.1)

for all ψ P DpAq. If B is relatively bounded with respect to A, then the infimum over all
a ą 0 such that Eq. (7.1) holds true is called the relative bound of B with respect to A (or the
A-bound of B). If the A-bound of B is zero, then we say that B is infinitesimally A-bounded.
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The next theorem is the main result of this section.

Theorem 7.2 (Kato-Rellich). Let A be self-adjoint and B a symmetric operator, bounded
with respect to A and with A-bound less than one. Then, A`B defined on DpA`Bq “ DpAq is
selfadjoint. The statement remains true if we replace everywhere selfadjoint with essentially
selfadjoint. In this case, we have DpAq Ă DpBq and A`B “ A`B.

Proof. We shall only consider the case in which A is selfadjoint. We shall prove that Ran pA`
B ˘ iλ0q “ H for a suitable λ0 ą 0. This implies that pA`Bq{λ0 is selfadjoint, hence that
A`B is selfadjoint.

Let ϕ P DpAq. We have, for every λ ą 0:

}pA` iλqϕ}2 “ }Aϕ}2 ` λ2}ϕ}2 . (7.2)

Being A selfadjoint, pA˘ iλq´1 is bounded. Setting ϕ “ pA` iλq´1ψ, we have, for all ψ P H:

}ψ}2 ě }ApA` iλq´1ψ}2 and }ψ}2 ě λ2}pA` iλq´1ψ}2 . (7.3)

Therefore, }ApA ` iλq´1} ď 1 and }pA ` iλq´1} ď λ´1. From the relative boundedness, it
follows that, for ϕ “ pA` iλq´1ψ:

}BpA` iλq´1ψ} ď a}ApA` iλq´1ψ} ` b}pA` iλq´1ψ} ď
´

a`
b

λ

¯

}ψ} . (7.4)

Choosing λ0 ą b{p1´aq ą 0 (recall that a ă 1 by assumption), it follows that }BpA`iλq´1} ă

1. Therefore, by the Neumann series

1H `BpA` iλ0q
´1 “ 1H ´ p´BpA` iλ0q

´1q (7.5)

is continuously invertible, and hence Ran p1H ` BpA ` iλ0q
´1q “ H. Using that, for all

ϕ P DpAq:
p1H `BpA` iλ0q

´1qpA` iλ0qϕ “ pA`B ` iλ0qϕ (7.6)

and that Ran pA ` iλ0q “ H (recall that A is selfadjoint), we find Ran pA ` B ` iλ0q “ H.
The same argument applies for ´iλ0; this proves that A`B is selfadjoint.

Let us now discuss applications of the above theorem. We will be interested in operators
of the form H “ ´∆`V px̂q. We will use the Kato-Rellich theorem to establish under which
conditions on V the operator H is self-adjoint.

Theorem 7.3. (´∆-bounded potentials on R3.) Let V : R3 Ñ R, with V P L2pR3q `

L8pR3q, that is one can write V “ V1 ` V2 with V P L2 and V2 P L8. Then, V is
infinitesimally H0-bounded, with H0 “ ´∆ on DpH0q “ H2pR3q. In particular, the operator
H “ H0 ` V is selfadjoint on DpH0q.

Proof. Let DpV q “ tψ P L2 | V ψ P L2u. DpV q contains C8c pRdq, and it is therefore dense
in L2. Let V “ V1 ` V2 with V1 P L

2 and V2 P L
8. Then, by the Sobolev lemma 3.83, any

function ϕ P H2pR3q is continuous and bounded. Therefore:

}V ϕ}L2pR3q ď }ϕ}8}V1}L2pR3q ` }V2}L8pR3q}ϕ}L2pR3q , (7.7)

that is, H2pR3q Ă DpV q. The next lemma will allow us to complete the proof of infinitesimal
boundedness of V with respect to ´∆.

Lemma 7.4. For every a ą 0 there exists b ą 0 such that for all ϕ P H2pR3q:

}ϕ}8 ď a}∆ϕ}L2 ` b}ϕ}L2 . (7.8)

Remark 7.5. Eq. (7.8) together with Eq. (7.7) concludes the proof of infinitesimal bound-
edness of V with respect to ´∆.
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Proof. By Cauchy-Schwarz inequality:

}ϕ}8 ď }pϕ}L1 “ }p1` k2qp1` k2q´1
pϕ}L1

ď }p1` k2q´1}L2}p1` k2qpϕ}L2

ď Cp}k2
pϕ}L2 ` }pϕ}L2q . (7.9)

Setting pϕrpkq “ r3
pϕprkq, one has:

}pϕr}L1pR3q “ }pϕ}L1pR3q for all r ‰ 0. (7.10)

At the same time, we also have:

}pϕr}L2pR3q “ r
3
2 }pϕ}L2pR3q (7.11)

and:
}k2

pϕr}L2pR3q “ r´
1
2 }k2

pϕ}L2pR3q . (7.12)

All together, we have:

}ϕ}8 ď }pϕ}L1 “ }pϕr}L1 ď Cp}k2
pϕr}L2 ` }pϕr}L2q

“ Cr´
1
2 }k2

pϕ}L2 ` Cr
3
2 }pϕ}L2

“ Cr´
1
2 }∆ϕ}L2 ` Cr

3
2 }ϕ}L2 . (7.13)

Being r a free parameter, the claim follows.

Example 7.6 (The Coulomb potential). Let V pxq “ ´ e
|x| be the Coulomb potential (and ´e

the electric charge). We write:

V pxq “ ´
e

|x|
“ ´χ|x|ďR

e

|x|
´ χ|x|ąR

e

|x|

” V1 ` V2 , (7.14)

where V1 P L
2pR3q and V2 P L

8. Therefore, the previous results imply that H “ ´∆´ e
|x| is

selfadjoint on H2pRq. Analogously, it is possible to check that the N -body Hamiltonian:

H “

N
ÿ

j“1

´∆j ´
ÿ

jăk

ejk
|xj ´ xk|

(7.15)

is a selfadjoint operator on H2pR3N q.

If the operator A is bounded below, under the same assumptions of Kato-Rellich theorem
one can also prove that A`B is bounded below. We will not discuss the proof of this fact.
Instead, we shall focus on a special important case, the one of the hydrogenic atom:

H “ ´∆´
Z

|x|
, (7.16)

on DpHq “ H2pRdq. As we proved above, this operator is selfadjoint on H2pRdq. The
parameter Z ą 0 plays the role of nuclear charge (here we set e “ 1). We will prove that
this model is stable, in the sense that the Hamiltonian is bounded below by a constant. We
shall prove an optimal lower bound which matches the ground state energy of the model,

EGS “ inf
ψPH2pRdq

xψ,Hψy

xψ,ψy
. (7.17)

Notice that this is very much in contrast with what happens in classical mechanics. Clas-
sically, the Hamiltonian Hpp, qq “ p2 ´ Z{|q| is not bounded from below: one can lower
the energy by taking the electron closer and closer to the nucleus (that is, sending |q| to
zero, and choosing p “ 0). In quantum mechanics, we know from the uncertainty principle,
Eq. (5.36), that particles cannot be simultaneously localized both in space and in velocity:
this ultimately means that a particle that is very close to the nucleus should have a large
kinetic energy. The compensation between these two energies is ultimately responsible for
the stability of the hydrogenic atom, and more generally for the stability of matter. This
heuristic principle is captured by the following inequality.
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Lemma 7.7 (Coulomb uncertainty principle.). Let H P H1pR3q. Then:

ż

dx
1

|x|
|ψpxq|2 ď }∇ψ}L2pR3q}ψ}L2pR3q . (7.18)

Before discussing the proof, let us use this lemma to prove the stability of the hydrogenic
atom.

Proposition 7.8. Let ψ P H1pRdq, Eψ “ xψ,Hψy. Then, the following inequality holds
true:

Eψ ě ´
Z2

4
}ψ}22 . (7.19)

Equality is reached for ψ “ Ke´pZ{4q|x|.

In particular, this proposition proves that EGS “ ´
Z2

4 (recall that H2pRdq Ă H1pRdq,
which follows from the definition of Sobolev space, Definition 3.74, together with |k| ď
p1{2qp1` |k|2q). This inequality proves the stability of the hydrogenic atom.

Proof. (of Proposition 7.8.) Suppose that }ψ}2 “ 1. By Lemma 7.7, we have:

Eψ ě }∇ψ}22 ´ Z}∇ψ}2 ě ´
Z2

4
, (7.20)

as it follows from x2 ´ Zx “ px ´ Z{2q2 ´ Z2{4. Equality for ψ “ Ke´pZ{4q|x| is left as an
exercise.

To conclude, let us prove Lemma 7.7.

Proof. (of Lemma 7.7.) The starting point is the following identity:

2xψ,
1

|x|
ψy “

ÿ

j“1,2,3

xψ, rBxj ,
xj
|x|
sψy , (7.21)

where we used that:
”

Bxj ,
xj
|x|

ı

“
1

|x|
´

x2
j

|x|3
. (7.22)

Therefore, integrating by parts:

2xψ,
1

|x|
ψy “ ´

ÿ

j“1,2,3

´

xBxjψ,
xj
|x|
ψy ` x

xj
|x|
ψ, Bxjψy

¯

“ ´2Re
ÿ

j“1,2,3

xBxjψ,
xj
|x|
ψy

ď 2
ÿ

j

|xBxjψ,
xj
|x|
ψy| .

By Cauchy-Schwarz inequality:

2xψ,
1

|x|
ψy ď 2

ÿ

j

}Bxjψ}L2

›

›

›

xj
|x|
ψ
›

›

›

L2

ď 2
´

ÿ

j

}Bxjψ}
2
L2

¯1{2´ÿ

j

›

›

›

xj
|x|
ψ
›

›

›

2

L2

¯1{2

ď 2}∇ψ}L2}ψ}L2 . (7.23)

This concludes the proof.
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7.2 Relatively compact perturbations and Weyl’s theorem

Kato-Rellich theorem allowed us to prove that selfadjointness survives perturbations, if they
are small enough. It is also natural to ask whether perturbations preserve other properties of
self-adjoint operators. For example, how does the spectrum of an operators looks like after
perturbation?

Let T be a selfadjoint operator, and let λ be an eigenvalue of T . Let ϕ be the eigenvector
of T with eigenvalue λ, and consider the perturbation T ` εPϕ, where Pϕ is the projector
onto ϕ. Then, ϕ is still an eigenvector of T`εPϕ, with new eigenvalue λ`ε. This shows that
the eigenvalues of a selfadjoint operator are, in general, not invariant under perturbations.
The question we would like to address here is whether there exists subsets of the spectrum
that are invariant under a class of perturbations.

Given a selfadjoint operator T with projection-valued measure PT , let us define the
discrete spectrum:

σdpT q “ tλ P R | rankPT ppλ´ ε;λ` εqq ă 8 for some ε ą 0u (7.24)

and the essential spectrum:

σesspT q “ tλ P R | rankPT ppλ´ ε;λ` εqq “ 8 for all ε ą 0u . (7.25)

Obviously, σpT q “ σdpT q Y σesspT q, and σdpT q X σesspT q “ H. The essential spectrum con-
tains the absolutely continuous spectrum, the singular continuous spectrum, accumulation
points of eigenvalues and isolated eigenvalues of infinite multiplicity. Instead, the discrete
spectrum σdpT q contains isolated eigenvalues of finite multiplicity. From what we discussed
above, we know that the discrete spectrum is not invariant under finite rank perturbations.
Instead, as we shall show, the essential spectrum is invariant under finite rank and, more
generally, compact perturbations.

Lemma 7.9 (Weyl criterion for the essential spectrum). Let T be a self-adjoint operator.
Then, λ P σesspT q if and only if there exists a sequence ψn P DpT q such that }ψn} “ 1 for
all n P N, ψn converges weakly to 0 as nÑ 8, }pT ´ λqψn} Ñ 0. Moreover, if λ P σesspT q,
the sequence ψn can be chosen to be orthonormal. Such a sequence is called a singular Weyl
sequence at λ.

Remark 7.10. With respect to the Weyl criterion we discussed with Theorem 5.15, here
ψn Ñ 0 weakly.

Proof. Let ψn be a Weyl sequence at λ. Then, by Theorem 5.15, λ P σpT q. It is therefore
enough to show that λ R σdpT q. We proceed by contradiction. Suppose that λ P σdpT q.
Then, there is ε ą 0 such that the spectral projection Pε :“ PT ppλ ´ ε, λ ` εqq is of finite
rank. Let ϕn :“ Pεψn. Since, by assumption, ψn Ñ 0 weakly and Pε is finite rank, we have
ϕn “ Pεψn Ñ 0 strongly.3 On the other hand, by the spectral theorem:

}ψn ´ ϕn}
2 “ xψn, PT ppλ´ ε;λ` εq

cqψny

“

ż

χppλ´ ε;λ` εqcqpxqdµψnpxq

ď
1

ε2

ż

px´ λq2dµψnpxq “
1

ε2
}pT ´ λqψn}

2 Ñ 0 . (7.28)

3Since Pε is finite rank, it can be written as Pε “
řM
`“1 α`Pφ` , where tφ`u is an orthonormal family, Pφ` is

the projector over φ` and M “ rank of Pε. Therefore,

Pεψn “
M
ÿ

`“1

α`φ`xφ`, ψny , (7.26)

and the norm }Pεψn} is:

}Pεψn}
2
“

M
ÿ

`“1

|α`|
2
|xφ`, ψny|

2 . (7.27)

By weak convergence, xφ`, ψny Ñ 0. Hence, }Pεψn} Ñ 0.
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Since }ψn} “ 1 by assumption, and }ψn} ´ }ψn ´ ϕn} ď }ϕn} ď }ψn} ` }ψn ´ ϕn}, we
conclude that }ϕn} Ñ 1. This gives rise to a contradition: Pε cannot be of finite rank, hence
λ R σdpT q.

Conversely, suppose that λ P σesspT q. We claim that there exists a singular Weyl sequence
at λ. There are two possibilities: either λ is isolated, or it is not. Suppose that λ is isolated.
Then, λ has to be an eigenvalue of infinite multiplicity. We can choose an orthonormal
sequence ψn in the eigenspace of T associated to λ. It is clear that ψn Ñ 0 weakly. Thus,
tψnu is a singular Weyl sequence.

Suppose that λ is not isolated. In this case, consider the sequence of orthogonal projec-
tions:

Pn “ PT prλ´ 1{n;λ´ 1{pn` 1qq Y pλ` 1{pn` 1q;λ` 1{nsq . (7.29)

Since λ is not isolated, there must be an infinite subsequence nj , such that rankPnj ą 0 for
all j. Hence, we construct a singular Weyl sequence by choosing a normalized ψj P ranPnj ,
for all j P N.

We are now ready to prove stability of the essential spectrum with respect to compact
perturbations.

Corollary 7.11. Let T be a selfadjoint operator and K selfadjoint and compact. Then,
σesspT `Kq “ σesspT q.

Remark 7.12. In particular, if T is a compact selfadjoint operator, this theorem recovers
the well-known result σesspT q “ t0u.

Proof. Let λ P σesspT q and let ψn be a singular Weyl sequence at λ. Then, we have:

}pT `K ´ λqψn} ď }pT ´ λqψn} ` }Kψn} Ñ 0 (7.30)

because ψn Ñ 0 weakly, which implies that Kψn Ñ 0 strongly. Therefore, ψn is also a
singular Weyl sequence at λ for the operator T`K, and therefore λ P σesspT`Kq. Reversing
the roles of T and T `K, we can also show that λ P σesspT `Kq implies λ P σesspT q.

Since, as observed at the beginning of the section, any point in the discrete spectrum can
be moved away by a finite rank perturbation, we obtain the following characterization of the
essential spectrum, whose proof will be omitted.

Theorem 7.13. Let T be a selfadjoint operator. Then,

σesspT q “
č

K compact
self-adjoint

σpT `Kq . (7.31)

Before discussing applications, let us mention that the essential spectrum is not only
preserved by compact operators, but even by relatively compact operators. Recall that for
a selfadjoint operator T , we say that K is relatively compact with respect to T if KRT pzq is
compact for a z P ρpT q.

Theorem 7.14 (Weyl.). Let A, B be selfadjoint operators such that RApzq ´ RBpzq is
compact, for a z P ρpAq X ρpBq. Then, σesspAq “ σesspBq.

Proof. Fix z P ρpAq X ρpBq. Let λ P σesspAq and ψn be a singular Weyl sequence for A at λ.
Then:

”

RApzq ´
1

λ´ z

ı

ψn “ ´
RApzq

λ´ z
pA´ λqψn . (7.32)

Since RApzq is bounded, we obtain that ψn is also a singular Weyl sequence for RApzq at
the point pλ ´ zq´1. We claim that this proves that pλ ´ zq´1 P σesspRApzqq. Notice that
this does not directly follow from Lemma 7.9, since the operator RApzq is not selfadjoint.
Nevertheless, the proof of Lemma 7.9 directly applies to this case as well, since the spectral
projector of A is, by construction, equal to the spectral projection of RApzq. Also, the proof
of Corollary 7.11, together with the assumption that RApzq´RBpzq is compact, implies that
pλ´ zq´1 P σesspRBpzqq.
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We are left with showing that λ P σesspBq. Setting ϕn “ RBpzqψn, we find that:

}pB ´ λqϕn} “ |z ´ λ|
›

›

›

´

RBpzq ´
1

λ´ z

¯

ψn

›

›

›
Ñ 0 as nÑ8. (7.33)

Moreover, since

lim
nÑ8

}ϕn} “ lim
nÑ8

}pλ´ zq´1ψn ` pRBpzq ´ pλ´ zq
´1qψn} “ |λ´ z|

´1 ‰ 0 (7.34)

it follows that rϕn “ ϕn{}ϕn} is a singular Weyl sequence for B at λ and that λ P σesspBq.
Reverting the roles of A and B, we conclude that σesspAq “ σesspBq.

The invariance of the essential spectrum with respect to relatively bounded perturbations
is now a simple corollary of the last theorem.

Corollary 7.15. Let T be a selfadjoint operator and let K be selfadjoint and relatively
compact with respect to T . Then, σesspT q “ σesspT `Kq.

Proof. To begin, notice that T `K is a selfadjoint operator. In fact:

KRT piλq “ pKRT piqqpT ´ iqRT piλq (7.35)

from which we get }KRT piλq} Ñ 0 as λ Ñ 8, since K is relatively compact with respect
to T . This implies that K is relatively bounded with respect to T , with relative bound 0:
hence, T `K is selfadjoint, and RT`Kpzq is bounded for all z P CzR.

To prove the corollary, it is enough to observe that

RT`Kpzq ´RT pzq “ RT`KpzqKRT pzq (7.36)

is the product of a bounded operator RT`Kpzq and a compact operator KRT pzq, and it is
therefore compact. The claim then follows from Theorem 7.14.

7.3 Two examples of Schrödinger operators

In this section we shall discuss applications of Kato-Rellich and Weyl’s theorems. We shall
consider operators of the form H “ ´∆` V pxq, for suitable, explicit choices of the external
potential V pxq. As we shall see, the spectrum of H will depend dramatically on the behavior
of the function V .

Operators of this form are called Schrödinger operators. They play an important role
in quantum mechanics. The nature of the spectrum of H will allow us to understand the
dynamics generated by H, via the Schrödinger equation.

7.3.1 The harmonic oscillator

Consider the operator Hharm “ ´∆ ` ω2x2, depending on a fixed parameter ω P R. For
simplicity, suppose first that the system is one-dimensional: x P R and ∆ “ d2{dx2. Observe
that the perturbation V pxq “ ω2x2 is not relatively bounded with respect to ´∆. Never-
theless, using the positivity of V pxq, we can construct a selfadjoint extension of Hharm by
means of the Friedrichs extension.

The spectrum. Next, remark that pHharm ` 1q´1 is compact. Therefore, the spectrum of
pHharm`1q´1 is discrete, and can only accumulate at zero (recall that the essential spectrum
is given by t0u). This implies that the spectrum of Hharm consists of isolated eigenvalues,
diverging at infinity.

To determine the eigenvalues of Hharm, we define the operators:

A˘ “
1
?

2

”?
ωx¯

1
?
ω

d

dx

ı

. (7.37)

Note that A` “ A˚´. A simple computation shows that rA´, A`s “ 1 and that H “

ωp2N ` 1q where N “ A`A´. Next, we observe that:

rN , A˘s “ ˘A˘ . (7.38)
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Hence, if Nψ “ nψ for ψ ‰ 0, then NA˘ψ “ pn ˘ 1qA˘ψ. Moreover, we have }A`ψ}
2 “

xψ,A´A`ψy “ pn ` 1q}ψ}2 and }A´ψ}
2 “ xψ,A`A´ψy “ n}ψ}2. This implies that n ě

0, and therefore that σpN q Ă N, because if n R N was an eigenvalue, then applying A´
sufficiently many times we would find a negative eigenvalue of N .

if Nψ0 “ 0, we must have A´ψ0 “ 0: if A´ψ0 ‰ 0, it would be an eigenvector of N with
eigenvalue ´1. The condition A´ψ0 “ 0 implies that:

?
ωxψ0pxq “

1
?
ω
ψ10pxq (7.39)

which has a unique normalized solution (up to an irrelevant phase):

ψ0pxq “ pω{πq
1{4e´ωx

2
{2 . (7.40)

Starting from ψ0, we can construct eigenvectors ψn associated with the eigenvalue n P N of
N for all n P N, setting:

ψnpxq “
1
?
n
An`ψ0pxq . (7.41)

We find that:

ψnpxq “
1

?
2nn!

pω{πq1{4Hnp
?
ωxqe´ωx

2
{2 , (7.42)

where Hn is the Hermite polynomial of degree n, given by:

Hnpxq “ ex
2
{2
”

x´
d

dx

ın

e´x
2
{2 “ p´1qnex

2 dn

dxn
e´x

2

. (7.43)

It turns out that the eigenvectors tψnu form a basis of the Hilbert space L2pRq. This might be
checked from the properties of the Hermite polynomials, or from the spectral theorem: since
Hharm is selfadjoint and has discrete spectrum, the set of eigenvectors must form a complete
basis of the Hilbert space. Summarizing, the Hamiltonian of the harmonic oscillator has the
spectrum:

σpHharmq “ σpppHharmq “ tωp2n` 1q : n P Nu . (7.44)

Each eigenvalue λn “ ωp2n`1q is simple, and it is associated with the normalized eigenvector
ψn. Notice that the difference λn`1 ´ λn is independent of n. In other words, the energy is
quantized: each quantum carries the energy 2ω. Applying the operator A`, we generate an
additional energy quantum, applying the operator A´ we annihilate a quantum of energy.
The operator A` is therefore called a creation operator, while A´ is called an annihilation
operator.

Properties of eigenvectors. In terms of the creation operator A`, the eigenvectors can be
written as ψn “ p

?
n!q´1An`ψ0. A simple computation shows that the expectation values of

the position and of the momentum operator on the state ψn vanish. In fact:

xψn, x̂ψny “
1
?

2ω
xψn, pA` `A´qψny

“
1

n!
?

2ω
xAn`ψ0, pA` `A´qA

n
`ψ0y

“
2

n!
?

2ω
Re xAn`ψ0, A

n`1
` ψ0y “ 0 (7.45)

and similarly, with the momentum operator p̂ “ id{dx:

xψn, p̂ψny “ i
a

ω{2xψn, pA´ ´A`qψny

“ i

?
ω

n!
?

2
xAn`ψ0, pA´ ´A`qA

n
`ψ0y (7.46)

“

?
2ω

n!
Im xAn`ψ0, A

n`1
` ψ0y “ 0 . (7.47)
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To have an idea of the distribution of position and momentum in the state ψn, we have to
consider the variance of these quantities. We find:

∆xψn “ xψn, x̂
2ψny

“
1

2ωn!
xAn`ψ0, pA` `A´q

2An`ψ0y

“
1

2ωn!
xAn`ψ0, pA`A´ `A´A`qA

n
`ψ0y

“
1

2ωn!
xAn`ψ0, p2A´A` ´ 1qAn`ψ0y

“
1

ωn!
}An`1
` ψ0}

2 ´
1

2ωn!
}An`ψ0}

2 “
1

ω
pn` 1{2q . (7.48)

Similarly,

∆pψn “ xψn, p̂
2ψny

“ ´
ω

2n!
xAn`ψ0, pA´ ´A`q

2An`ψ0y

“
ω

2n!
xAn`ψ0, pA`A´ `A´A`qA

n
`ψ0y “ ωpn` 1{2q . (7.49)

We conclude that:
∆xψn∆pψn “ pn` 1{2q2 . (7.50)

Observe that for n “ 0, corresponding to the state ψ0 with smallest energy (the vacuum state,
with no energy quanta), the product of the variance is minimal, according to Heisenberg
uncertainty principle. For larger n, on the other hand, the uncertainty in the state ψn grows.

7.3.2 Finite well potential

The harmonic oscillator is a special example, is the sense that the Hamiltonian operator H
has a purely discrete spectrum. Here we shall consider a simple one-dimensional system,
where the spectrum of the Hamilton operator has a discrete and continuous component. We
consider a Schrödinger operator H “ ´∆` V , with V : RÑ R by setting:

V pxq “

"

´b if |x| ă a
0 if |x| ě a

(7.51)

for some a, b ą 0. It is easy to check that V pxq is relatively compact with respect the Laplace
operator ´∆ “ ´d2{dx2. Therefore, it follows from Weyl’s theorem that the Hamilton
operator H is such that:

σesspHq “ σessp´∆q “ r0;8q . (7.52)

We can ask whether H has additional eigenvalues. To answer this question, we shall solve the
eigenvalue problem (also known as the time-independent Schrödinger equation) Hψ “ Eψ,
i.e.:

”

´
d2

dx2
` V pxq

ı

ψpxq “ Eψpxq . (7.53)

We find:
´ ψ2pxq “ Eψpxq (7.54)

for |x| ě a and:
´ ψ2pxq “ pE ` bqψpxq (7.55)

for |x| ă a. It follows that, if E ě 0, ψpxq “ Aei
?
Ex ` rAe´i

?
Ex if x ą a and, similarly,

ψpxq “ Bei
?
Ex ` rBe´i

?
Ex if x ă ´a. But then, ψ R L2pRq. Hence, H has no positive

eigenvalues.

Negative eigenvalues. Let us assume now E ă 0. In this case, explucing exponentially
increasing solutions, we obtain that:

ψpxq “

#

Ae´
?
|E|px´aq if x ě a

Be
?
|E|px`aq if x ď ´a

(7.56)
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for some constants A,B. For |x| ă a, on the other hand, we find:

ψpxq “ C cospωxq ` rC sinpωxq (7.57)

where we set ω “
a

b´ |E| (the case E ă ´b can be easily excluded, since H ě ´b cannot
have eigenvalues below ´b). Next, we have to make sure that ψ and ψ1 are continuous at
x “ ˘a (otherwise ψ is not a solution of Hψ “ Eψ on R). We obtain the conditions:

B “ C cospωaq ´ rC sinpωaq
a

|E|B “ ωC sinpωaq ` ωC cospωaq (7.58)

at x “ ´a and

A “ C cospωaq ` rC sinpωaq

´
a

|E|A “ ´ωC sinpωaq ` ω rC cospωaq (7.59)

at x “ a. Thus:

C cospωaq ´ rC sinpωaq “
ω

a

|E|
C sinpωaq `

ω
a

|E|
rC cospωaq

C cospωaq ` rC sinpωaq “
ω

a

|E|
C sinpωaq ´

ω
a

|E|
rC cospωaq (7.60)

or equivalently

C ´ rC tanpωaq “
ω

a

|E|
C tanpωaq `

ω
a

|E|
rC

C ` rC tanpωaq “
ω

a

|E|
C tanpωaq ´

ω
a

|E|
rC (7.61)

To solve these equations, we must either have rC “ 0 and
a

|E| “ ω tanpωaq or C “ 0 and
a

|E| tanpωaq “ ´ω. Noticing that
a

|E| “
?
b´ ω2 we can find solutions ω P r0;

?
bq of the

equation
a

|E| “ ω tanpωaq intersecting the graphs
?
b´ ω2 and of ω tanpωaq. Depending

on the value of b, we find finitely many solutions ω1, . . . , ωn. It is interesting to notice that,
no matter how small b ą 0 is, we can always find a solutions ω1 ą 0. Similarly, we can find
solutions of

a

|E| tanpωaq “ ´ω, by looking at the intersections of the graphs of tanpωaq

and of ´ω{
?
b´ ω2. Also in this case, depending on the value of b, we obtain finitely many

solutions rω1, . . . , rωn2 (in this case, for b small enough, there is no solutions). For each value
of ω P tω1, . . . , ωn1

, rω1, . . . , rωn2
u, we can find the corresponding eigenvalue E1, . . . , En1`n2

and a corresponding eigenvector ψ1, . . . , ψn1`n2
. Let us stress, once again, that the number

of eigenvalues depend on the parameter a, b and that, no matter how small a, b ą 0 are, there
is always at least one negative eigenvalue.

Generalized eigenvectors for positive energies. We can ask whether we can find solutions of
the equation Hψ “ Eψ for E ą 0, that are associated with the continuous spectrum of H. As
noticed above, for E ą 0, that are associated with the continuous spectrum of H. As noticed
above, for E ą 0 solutions of Hψ “ Eψ are not in L2pRq, they cannot be normalized. Still,
we can look for so-called generalized eigenfunctions, oscillating at infinity, playing the same
role as plane waves eikx play for the Laplace operator (notice that ´d2{dx2eikx “ k2eikx;
hence eikx is a solution of the eigenvalue equation ´∆f “ Ef , with E “ k2 ě 0).

For E ą 0, we find that solutions of Hψ “ Eψ must have the form

ψpxq “

$

&

%

e1e
ikx ` a1e

´ikx for x ă ´a
c1e

iωx ` c2e
´iωx for |x| ď a

e2e
´ikx ` a2e

ikx for x ą a
(7.62)

for appropriate coefficients e1, e2, a1, a2, c1, c2 and where k “
?
E and ω “

?
E ` b. The

coefficients e1 and e2 are known as the incoming coefficients since they are associated to
waves eikx for x ă ´a and e´ikx for x ą a that are moving towards the obstacle (described
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by the potential). The coefficients a1, a2 are known as outgoing coefficients, since they are
associated to waves moving away from the obstacles, towards infinity.

The continuity of ψ,ψ1 at x “ ˘a gives four conditions relating the six coefficients
e1, e2, a1, a2, c1, c2. It follows that, for every E ą 0, we can find two linearly independent
solutions of the equation Hψ “ Eψ. We can, for example, use the continuity relations
to express c1, c2, a1, a2 as linear combinations of e1, e2 (of course, the coefficients of these
combinations will depend on E and on the parameters a, b in the Hamilton operator). The
2 ˆ 2 matrix S “ SpEq giving the outgoing coefficients as a functions of the incoming
coefficients, i.e. such that pa1, a2q “ Spe1, e2q, is known as the scattering matrix of the
system. It can be shown to be a unitary matrix, describing the scattering of waves at the
obstacle.

We can build two linearly independent solutions by fixing once e1 “ 1 and e2 “ 0 (this
solution describes a wave incoming from the left), and then e1 “ 0 and e2 “ 1 (describing
a solution incoming from the right). Alternatively, we can classify solutions according to
their parity. In other words, we can find a solutions ψE,` taking e1 “ e2 “ 1 (this solutions
has positive parity, i.e. ψE,`pxq “ ψE,`p´xq) and another solution ψE,´ taking e1 “ 1
and e2 “ ´1 (this solution has negative parity, ψE,´p´xq “ ´ψE,´pxq). Comparing with
the case H “ ´∆, the solution of Hψ “ Eψ incoming from the left is just eikx while the
solution incoming from the right is e´ikx. The solution with positive parity is cospkxq and
the solution with negative parity is just sinpkxq. For the Laplace operator, the scattering
matrix is just S “ 1.

Completeness relation. One can prove that the states ψE,˘ (or also the two states with
energy E ą 0 associated with e1 “ 1, e2 “ 0 and with e1 “ 0, e2 “ 1) build, together with
the finitely many-eigenfunctions of H associated with negative energies, a complete set of
functions, meaning that

n
ÿ

j“1

|ψjyxψj | `

ż 8

0

dk r|ψEpkq,`yxψEpkq,`| ` |ψEpkq,´yxψEpkq,´|s “ 1L2pRq (7.63)

with Epkq “ k2. Futhermore, they satisfy the orthogonality relations:
ż

dxψEpkq,˘pxqψEpk1q,˘pxq “ δpk´k1q while

ż

dxψEpkq,˘pxqψEpk1q,¯pxq “ 0 (7.64)

(of course, also the eigenfunctions ψ1, . . . , ψn are orthonormal). Although the generalized
eigenfunctions ψE,˘ (or also the two states with energy E ą 0 associated with e1 “ 0, e2 “ 0
and with e1 “ 0, e2 “ 1) are not in L2pRq, they can nevertheless be used to construct
singular Weyl sequences for H at every energy E0 ą 0. To this end, it is enough to consider
linear combinations of the form

ż 8

0

dk αpkqψEpkq,˘pxq (7.65)

for a sequence of α P L2pRq with }α} “ 1 and concentrating closer and closer to the fixed
value k0 “

?
E0. Hence, the existence of generalized eigenfunctions for all E ą 0 is related

to the fact that σesspHq “ r0;8q (and the fact that we can find two linearly independent
solutions ψE,˘, for all E ą 0, is related with the multiplicity of the essential spectrum).

Time-evolution of arbitrary initial data. Because of the completeness and of the orthogonality
relations, we can also use the true eigenfunctions and the generalized eigenfunctions ψE,˘ to
compute the time-evolution of arbitrary initial data (similarly as we used Fourier transform
to describe the free evolution generated by the Laplace operator). A given ψ P L2pRq can
be written, according to Eq. (7.63), as

ψpxq “
n
ÿ

j“1

xψj , ψyψjpxq `
ÿ

α“˘

ż 8

0

dk xψEpkq,α, ψyψEpkq,αpxq (7.66)

with

xψEpkq,α, ψy “

ż

dxψEpkqpxqψpxq . (7.67)
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Hence,

e´iHtψpxq “
n
ÿ

j“1

e´iEjtxψj , ψyψjpxq `
ÿ

α“˘

ż 8

0

dk eik
2txψEpkq,α, ψyψEpkq,αpxq (7.68)

in close analogy with the evolution generated by the Laplace operator, computed by means
of Fourier transform.

7.4 General Schrödinger operators: existence of stationary states

So far, we considered two simple examples of Hamilton operators, whose eigenvalues and
eigenvectors (and generalized eigenvectors) could be computed explicitly. For a general
choice of the potential V pxq, we know, if V pxq is relatively compact with respect to ´∆,
that σesspHq “ r0;8q, but it is impossible to determine explicitly the eigenvalues of H “

´∆ ` V pxq. Still, it is often possible to show the existence of negative eigenvalues through
the method of calculus of variations. This is the goal of the present section.

7.4.1 Energy functional

We consider a quantum system in d dimensions, described on L2pRdq by the Hamilton
operator H “ ´∆ ` V pxq, assuming for now only that V P LslocpRdq, for a 1 ď s ď 8

(stronger conditions will come later). We consider the quadratic form associated with H,
defining the energy functional

εpψq “ xψ,Hψy “

ż

dx |∇ψpxq|2 `
ż

dxV pxq|ψpxq|2 . (7.69)

We are going to establish conditions that guarantee that the functional ε attains a minimum
on the unit sphere tψ P L2pRdq | }ψ}2 “ 1u. We will show then that the minimizer ψ0 of ε
on the unit sphere is an eigenvector of H with eigenvalue E0 “ εpψ0q. E0 is going to be the
ground state of H, i.e. the smallest eigenvalue of H. Later, we will show how to construct
excited eigenvalues (if they exists) by similar minimization problems.

Boundedness from below. The first question we have to consider, to show the existence of a
minimizer for Eq. (7.69), is whether ε is bounded below. Consider, for example, for d “ 3,
the potential V pxq “ ´|x|´5{2. Then, V P LslocpR3q, for all s ă 6{5. For every ψ P C80 pRdq
with }ψ}2 “ 1 and for λ ą 0 we set:

ψλpxq “ λ´3{2ψpx{λq . (7.70)

Then, }ψλ}2 “ 1 for all λ ą 0 and

εpψλq “

ż

|∇ψλpxq|2dx´
ż

|x|´5{2|ψλpxq|
2

“ λ´2

ż

|∇ψpxq|2dx´ λ´5{2

ż

dx |x|´5{2|ψpxq|2 . (7.71)

For λ Ñ 0 we notice that the second term dominates and that the energy takes arbitrarily
large negative values. In this case, εpψq is not bounded below and the minimum cannot be
attained. The following theorem provides sufficient conditions to make sure that the energy
is bounded below. We use the notation

T pψq “

ż

dx |∇ψpxq|2 (7.72)

for the kinetic energy of the particle.

Theorem 7.16. Assume that V P L8pRdq`Ld{2pRdq, if d ě 3, that V P L8pRdq`L1`εpRdq,
if d “ 2, for an arbitrary ε ą 0, and that V P L8pRdq `L1pRdq, if d “ 1. Then, there exists
constants C,D ą 0 with

εpψq ě CT pψq ´D}ψ}2 . (7.73)

In particular,
E0 :“ inftεpψq | }ψ}2 “ 1u ą ´8 . (7.74)
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Remark 7.17. Here V P Lp1 ` Lp2 means that there are V1 P L
p1 and V2 P L

p2 such that
V “ V1 ` V2.

Proof. We consider only the case d ě 3 (the other cases can be handled analogously). By
assumption, we have V1 P L

8, V2 P L
d{2 with V “ V1 ` V2. We claim that, for arbitrary

δ ą 0, there exists W1 P L
8, W2 P L

d{2 with V “ W1 `W2 and }W2}d{2 ď δ. In fact, since

|V2pxq|
d{2χp|V2pxq| ě µq ď |V2pxq|

d{2 for all x P Rd and since |V2pxq|
d{2χp|V2pxq| ě µq Ñ 0

for almost all x P Rd, as µÑ8, it follows from dominated convergence that

ż

|V2pxq|
d{2χp|V2pxq| ě µq Ñ 0 (7.75)

as µÑ8. Hence, there exists µ0 ą 0 large enough with

ż

|V2pxq|
d{2χp|V2pxq| ě µq ď δd{2 . (7.76)

Then, W2pxq “ V2pxqχp|V2pxq| ě µ0q and W1pxq “ V1pxq ` V2pxqχp|V2pxq| ď µ0q have the
desired properties. Thus

εpψq “

ż

|∇ψ|2dx`
ż

V |ψ|2

“ }∇ψ}22 `
ż

W1pxq|ψpxq|
2 `

ż

W2pxq|ψpxq|
2

ě }∇ψ}22 ´ }W1}8}ψ}
2
2 ´ }W2}d{2}ψ}

2
2d{pd´2q

ě p1´ Cδq}∇ψ}22 ´ }W1}8}ψ}
2
2 (7.77)

where in the last bound we used the Sobolev inequality. The theorem follows by choosing δ
small enough.

For example, for d “ 3, the last theorem can be applied to the hydrogen atom, where
V pxq “ ´1{|x| “ ´χp|x| ď 1q{|x|´χp|x| ě 1q{|x| P LppR3q`L8pR3q, for all p ă 3. Theorem
7.16 implies that the spectrum of the hydrogen atom is bounded below, something we already
knew from Proposition 7.8. We stress again that the stability of the hydrogen atom and of
other quantum systems with attractive potentials (that is, the fact that the spectrum is
bounded below) was a crucial success of quantum mechanics. In the classical counterpart
of such systems, the energy can take arbitrarily negative values. In quantum mechanics,
stability follows thanks to the fact that the negative potential energy is compensated by the
positive kinetic energy, so that the total energy is always bounded below. In order to localize
the electron close to the singularity of the potential, we pay a price in terms of kinetic energy
(this is a formulation of Heisenberg’s uncertainty principle).

7.4.2 Weak continuity of the potential energy

Next, we look for conditions that guarantee the existence of a minimum of the energy (bound-
edness from below is a necessary but not sufficient condition). We will make use of the
following result.

Theorem 7.18. Let V : Rd Ñ R with V P L8pRdq ` Ld{2pRdq, if d ě 3, V P L8pRdq `
L1`εpRdq, if d “ 2, and V P L8pRdq ` L1pRdq, if d “ 1. We assume moreover that
V P L8pRdzBRp0qq for sufficiently large R ą 0, with }V }L8pRdzBRp0qq Ñ 0 as R Ñ 8. The
potential energy

P pψq “

ż

dxV pxq|ψpxq|2 (7.78)

is then weakly continuous in H1pRdq. In other words, if ψj Ñ ψ weakly in H1pRdq, then
P pψjq Ñ P pψq as j Ñ8.
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Proof. We consider the case n ě 3, the other cases can be handled analogously. Let ψj be a
sequence in H1pRdq with ψj Ñ ψ weakly in H1pRdq. Then, the sequence ψj is bounded in
H1pRdq, i.e. }ψj}H1 ď C for all j P N. Since

ż

|x|ěR

V pxq|ψjpxq|
2 ď }V }L8pBcRp0qq}ψj}

2
2 ď C}V }L8pBcRp0qq Ñ 0 (7.79)

uniformly in j, it is enough to show that:

ż

χBRp0qpxqV pxq|ψjpxq|
2 Ñ

ż

χBRp0qpxqV pxq|ψpxq|
2 (7.80)

as j Ñ 8, for an arbitrary, but fixed R ą 0. We write now V pxq “ V1pxq ` V2pxq, with
V1 P L

d{2pRdq and V2 P L
8pRdq. For δ ą 0 we set

V1,δpxq “

"

V1pxq if |V1pxq| ď 1{δ
0 otherwise

(7.81)

and Vδ “ V1,δ ` V2. Then, |V1,δpxq| ď |V1pxq| for all δ ą 0, and V1,δpxq Ñ V1pxq almost
everywhere. Dominated convergence implies that:

ż

dx |V pxq ´ Vδpxq|
d{2 “

ż

|V1pxq ´ V1,δpxq|
d{2dxÑ 0 as δ Ñ 0. (7.82)

Therefore,

ˇ

ˇ

ˇ

ż

χBRp0qpxqpVδpxq ´ V pxqq|ψjpxq|
2
ˇ

ˇ

ˇ
ď

ż

|Vδpxq ´ V pxq||ψjpxq|
2dx

ď }ψj}
2
2d{pd´2q

ż

|Vδpxq ´ V pxq|
d{2dx

ď }ψj}
2
H1

ż

|Vδpxq ´ V pxq|
d{2dxÑ 0 (7.83)

where in the last step we used Sobolev inequality. This means that it is enough to show that:

ż

χBRp0qVδ|ψj |
2 Ñ

ż

χBRp0qVδ|ψ|
2 (7.84)

as j Ñ 8, for all fixed δ,R ą 0. To this end, notice ψj Ñ ψ weakly in H1pRdq implies that
ψj Ñ ψ strongly in LqpBRp0qq for all 1 ď q ă 2n{pn ´ 2q; see Theorem A.5. In particular,
|ψj |

2 Ñ |ψ|2 strongly in Lq{2pBRp0qq. Hence,

ˇ

ˇ

ˇ

ż

χBRp0qVδp|ψj |
2 ´ |ψ|2q

ˇ

ˇ

ˇ
ď }Vδ}8}|ψj |

2 ´ |ψ|2}L1pBRp0qq Ñ 0 (7.85)

as j Ñ8.

7.4.3 Existence of minimizers

We are now ready to show the existence of a minimum of the energy functional.

Theorem 7.19. Let V : Rd Ñ R with V P L8pRdq ` Ld{2pRdq, if d ě 3, V P L8pRdq `
L1`εpRdq, if d “ 2, and V P L8pRdq ` L1pRdq, if d “ 1. Moreover, let V P L8pRdzBRp0qq
for R large enough, with }V }L8pBcRp0qq Ñ 0 as RÑ8. We assume that:

E0 “ inftεpψq | ψ P H1pRdq, }ψ}2 “ 1u ă 0 . (7.86)

Then, there exists ψ0 P H
1pRdq, with }ψ0}2 “ 1 and εpψ0q “ E0. Moreover, the function ψ0

satisfies the Schrödinger equation in the sense of distributions:

p´∆` V qψ0 “ E0ψ0 . (7.87)
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Proof. Let ψj a sequence in H1pRdq with }ψj}2 “ 1 and εpψjq Ñ E0 as j Ñ 8. Theorem
7.16 implies that

εpψjq ě
1

2
}∇ψj}22 ´ C , (7.88)

which implies that }∇ψj} is bounded. Hence, }ψj}H1 ď C for all j. By the Banach-
Alaoglu theorem, this implies that there exists a subsequence ψnj and ψ0 P H

1pRdq such that
ψnj Ñ ψ0 weakly in H1pRdq (in other words, ψnj Ñ ψ0 weakly in L2pRnq and ∇ψnj Ñ ∇ψ0

weakly in L2pRdq). Since in the weak limit the norm can only get smaller, we obtain:

}ψ0}2 ď 1 , }∇ψ0}2 ď lim inf
jÑ8

}∇ψnj }2 . (7.89)

From Theorem 7.18 we have that P pψ0q “ limjÑ8 P pψnj q. This implies that

E0}ψ0}
2
2 ď εpψ0q “ }∇ψ0}

2
2 ` P pψ0q ď lim inf

jÑ8
p}∇ψnj }22 ` P pψnj qq “ lim inf

jÑ8
εpψnj q “ E0 .

(7.90)
Since E0 ă 0, we find }ψ0}2 ě 1. This means that }ψ0}2 “ 1 and εpψ0q “ E0. To show
that ψ0 satisfies the Schrödinger equation, we consider the variation of ψ0. For δ P R and
f P C80 pRdq, let ψδ “ ψ0` δf and Rpδq “ εpψδq{}ψδ}

2
2. Then Rpδq has a minimum in δ “ 0.

Hence, since R is differentiable in δ “ 0,

0 “
dRpδq

dδ
|δ“0“

dεpψδq

dδ
|δ“0 ´E0

d}ψδ}
2
2

dδ
|δ“0 . (7.91)

A simple computation shows that

dεpψδq

dδ
|δ“0“ 2Re

ż

dx p∇f ¨∇ψ0 ` V fψ0q (7.92)

and that
d}ψδ}

2
2

dδ
|δ“0“ 2Re

ż

dx fψ0 . (7.93)

Thus,

Re

ż

rp´∆` V ´ E0qf sψ0 “ 0 (7.94)

for all f P C80 pRdq. If we replace f by if we conclude that

ż

rp´∆` V ´ E0qf sψ0 “ 0 , (7.95)

for all f P C80 pRnq. This shows that ψ0 solves the Schrödinger equation in the sense of
distributions.

Remark 7.20. Since inf σpHq “ infψPDpHq,}ψ}2“1 εpψq, and since DpHq is dense in H1

(DpHq is dense in H2, the domain of the Laplacian, which is dense in H1), we conclude
that E0 “ inf σpHq.

7.4.4 Excited states

Theorem 7.19 gives a variational characterization of the smallest eigenvalue of H. It is also
possible to give a variational characterization of higher eigenvalues and eigenfunctions. Let
us assume that

E0 “ inftεpψq | ψ P H1pRdq, }ψ}2 “ 1u ă 0 . (7.96)

Then Theorem 7.19 implies that the energy functional εpϕq has a minimizer ψ0 on the unit
sphere of L2pRdq which is an eigenvector of H with eigenvalue E0. We can then define:

E1 “ inftεpψq | ψ P H1pRdq, }ψ}2 “ 1 and xψ,ψ0y “ 0u (7.97)

that is we look for the infimum of the energy functional among all normalized vectors,
orthogonal to the eigenvector ψ0. If this minimum is attained, we denote the minimizing
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vector by ψ1. We can proceed recursively. Given that we already constructed the normalized
vectors ψ0, ψ1, . . . , ψk´1, we define:

Ek “ inftεpψq | ψ P H1pRdq, }ψ}2 “ 1 and xψ,ψjy “ 0, for all j “ 0, 1, . . . , k ´ 1u . (7.98)

In the next theorem, we show that if Ek ă 0 then Ek is an eigenvalue of H and the minimizer
ψk is the corresponding eigenvector.

Theorem 7.21. Let V be as in Theorem 7.19. Assume Ek ă 0. Then, the infimum in Eq.
(7.98) is attained and the minimizer ψk is such that Hψk “ Ekψk.

Proof. The proof of the existence of a minimizer follows the same ideas as the proof of
Theorem 7.19. From a minimizing sequence ψjk, we extract a weak limit ψk. As in the proof
of Theorem 7.19, one can show that εpψkq “ Ek and that }ψk} “ 1. The only additional
observation here is that xψk, ψ`y “ 0, for all ` “ 0, 1, . . . , k ´ 1. This follows from ψjk Ñ ψk
weakly, since xψjk, ψ`y “ 0 for all ` “ 0, . . . , k ´ 1 and for all j.

To show that ψk solves the eigenvalue equation Hψk “ Ekψk, we first show, proceeding
as in the proof of Theorem 7.19, that xf, pH´Ekqψky “ 0 for all f P C80 pRdq with xf, ψ`y “ 0
for all ` “ 0, 1, . . . , k ´ 1. This implies that:

pH ´ Ekqψk “
k´1
ÿ

`“1

α`ψ` , (7.99)

for appropriate coefficients α` P C. Multiplying the equation with ψi and using the orthog-
onality xψi, ψky “ 0 for i “ 0, . . . , k ´ 1 we conclude that αi “ 0 for all i “ 0, . . . , k ´ 1 and
therefore that

Hψk “ Ekψk . (7.100)

It follows from the recursion sketched above to define E0, E1, . . . only stops when it reaches
Em “ 0. Also, it is not difficult to see that the eigenvalues have finite multiplicity. Let us
sketch the proof. Suppose that Ek has infinite multiplicity, and let pψk,jq be a orthonormal
basis for the spectral subspace of Ek. Then, being orthonormal, the sequence ψk,j converges
to zero weakly in L2. Weak convergence to zero in H1 can be proven via an approximation
argument, using that every element in the dual of H1 can be approximated with a Schwartz
function, and that }ψk,j}2 “ 1. By the continuity of the potential energy, we then have:

P pψk,jq Ñ 0 as j Ñ8, (7.101)

which implies that Ek “ limjÑ8 εpψk,jq “ limjÑ8 T pψk,jq ě 0, which contradicts Ek ă 0.
Therefore, Ek is in the discrete spectrum of H. Furthermore, it is not difficult to check that
there cannot be any additional eigenvalues in p´8; 0q. In fact, if E ă 0 and if ψ P L2pRdq are
such that Hψ “ Eψ and }ψ} “ 1, and if j ą 0 is such that E0 ď E1 ď ¨ ¨ ¨ ď Ej ă E ă Ej`1,
then xψ,ψ`y “ 0 for all ` “ 0, 1, . . . , j and:

xψ,Hψy “ εpψq “ mintεpϕq | }ϕ} “ 1 and xϕ,ψ`y “ 0 for all ` “ 0, 1, . . . , ju (7.102)

which by definitions implies that E “ Ej`1

Let us now comment on the essential spectrum of H. If V is a relatively compact
perturbation of the Laplacian, we know from Weyl’s theorem that σesspHq “ σessp´∆q “
r0;8q. The next theorem gives more general conditions under which this is true, that allow
in particular to include the Coulomb potential.

Theorem 7.22. Suppose that V is a Kato class potential, that is V can be written as V1`V2

with V1 P L
8pRdq and V2 P L

ppRdq, with }V1}8 ă ε. Here, p “ 2 for d ď 3 and p ą d{2 for
d ě 4. Then, V is relatively compact with respect to ´∆.

Thus, under the slightly more restrictive condition that the potential is Kato class,
σesspHq “ r0;8q.

To conclude the section, let us state, without proof, some important properties of eigen-
vectors of Schrödinger operators, that hold true in great generality.
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1) Uniqueness of the ground state. Under the same assumption of Theorem 7.19,
the normalized minimizer ψ0 of the energy functional ε. (which by Theorem 7.19 is
an eigenvector of H with eigenvalues E0 “ mintεpψq | }ψ} “ 1u) can be chosen (by
appropriate choice of the overall phase) to be a strictly positive function. Moreover,
up to a constant phase, ψ0 is the unique normalized minimizer. This implies that the
ground state energy E0 of H, that is the smallest eigenvalue of H, is nondegenerate.

2) Elliptic regularity. Let B1 Ă Rd be an open ball and let ψ and V be functions on B
with p´∆`V qψ “ 0 in the sense of distributions. Then, for any ball B Ă Rd concentric
with B1 and with strictly smaller radius, we have:

(i) If d “ 1, ψ is continuously differentiable on B.

(ii) If d “ 2, ψ P LqpBq for all q ă 8.

(iii) If d “ 3, ψ P LqpBq for all q ă d{pd´ 2q.

(iv) If d ě 2 and V P LppB1q for a d{2 ă p ď d, then ψ is Hölder continuous with
exponent α in B, for all α ă 2´ d{p.

(v) If d ě 1 and V P LppB1q for a p ą d, ψ is continuously differentiable and the
derivative is Hölder continuous with exponent α in B, for all α ă 1´ d{p.

(vi) If d ě 1 and V P Ck,αpB1q (this is the subspace of CkpB1q of functions whose k-th
derivative is Hölder continuous with exponent α) for some k ě 0 and 0 ă α ă 1,
then ψ P Ck`2,αpBq.

In other words, there is a gain in regularity of two derivatives between the potential and
eigenvectors of Schrödinger operators (which by definition are only in L2). Note that this
regularity results hold locally. For example, this result implies that the eigenvectors of the
hydrogen atom, with V pxq “ ´Z{|x|, are C8 in any ball away from the original. In a ball
containing the origin, on the other hand, V P Lp for all p ă 3; hence, the result above
implies that eigenvectors of the hydrogen atom are Hölder continuous with exponent α, for
any α ă 1.

7.4.5 Min-max principles

Theorem 7.22 gives a variational characterization of all negative eigenvalues of H. However,
it is usually difficult to use in practice, since it defines Ek by using all the eigenvectors ψj
associated with the eigenvalues Ej ă Ek. To compute the eigenvalues of H, the following
min-max principles are much more practical.

We denote as above by E0 ď E1 ď E2 ď ¨ ¨ ¨ ď EN ď ¨ ¨ ¨ ă 0 the eigenvalues of the
Schrödinger operator H “ ´∆ ` V . If H has a finite number J of eigenvalues, we set
EN “ 0 for all N ě J .

Theorem 7.23 (Min-max principles.). Let V as in Theorem 7.21.

Version 1. Choose φ0, . . . , φN P H
1pRdq such that V |φi|

2 P L1pRdq for all i and such that
xφi, φjy “ δij. We define the pN ` 1q ˆ pN ` 1q self-adjoint matrix h “ phijq0ďi,jďN by
setting hij “ xφi, Hφjy. Then, the eigenvalue problem hv “ λv has pN ` 1q eigenvalues
λ0 ď λ1 ď ¨ ¨ ¨ ď λN such that λi ě Ei for all i “ 0, 1, . . . , N .

Version 2. If N ă J ,

EN “ max
φ0,...,φN´1

mintεpφN q | }φN } “ 1 and xφN , φjy “ 0, for all j “ 0, . . . , N ´ 1u (7.103)

where the maximum is taken over all orthonormal families φ0, . . . , φN´1.

Version 3. If N ă J ,

EN “ min
φ0,...,φN

maxtεpφq | }φ} “ 1 and φ P spanpφ0, . . . , φN qu (7.104)

where the minimum is taken over all orthonormal families φ0, . . . , φN .

If N ě J , Version 2 and Version 3 hold true with max-min and min-max replaced by
max-inf and inf-max.
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Remark 7.24. As it will be clear from the proof, the max and the min in the above expres-
sions are attained.

Proof. Let us assume N ă J , which is the most interesting case. We begin with Version
1. Let v0, . . . , vN be the orthonormal eigenvectors of the matrix h. We use these eigenvec-
tors to define functions ξipxq “

řN
j“0 vipjqφjpxq for i “ 0, 1, . . . , N . These functions are

orthonormal, since

xξi, ξky “
ÿ

j,`

vipjqvkp`qxφj , φ`y “
ÿ

j

vipjqvkpjq “ δik (7.105)

and moreover

xξi, Hξjy “
N
ÿ

`,m“0

vip`qvjpmqxφ`, Hφmy “ xvi, hvjy “ δijλi . (7.106)

We clearly have:
E0 ď εpξ0q “ xξ0, Hξ0y “ λ0 . (7.107)

Let us now assume that Ei ď λi for all i ď k ´ 1. We prove that Ek ď λk. To this end,
we observe that dim spanpξ0, . . . , ξkq “ k ` 1 and therefore that it must contain a function

ξ “
řk
j“0 cjξj with }ξ} “ 1 and such that xξ, ψiy “ 0 for all i “ 0, 1, . . . , k ´ 1. By Theorem

7.22, we find:

Ek ď εpξq “
k
ÿ

i,j“1

cicjxξi, Hξjy “
k
ÿ

j“0

|cj |
2λj ď λk . (7.108)

This completes the proof of Version 1. To show Version 2, we set:

γN “ max
φ0,...,φN´1

mintεpφN q | xφN , φjy “ 0, for all j “ 0, . . . , N ´ 1u . (7.109)

Clearly, by Theorem 7.22, we have:

γN ě mintεpφN q | }φN } “ 1 and xφN , ψjy “ 0, for j “ 0, 1, . . . , N ´ 1u “ EN . (7.110)

On the other hand, for an arbitrary choice of orthonormal φ0, . . . , φN´1 we can find a linear

combination f “
řN
j“0 cjψj such that f is normalized and orthogonal to all φj (because

dim spanpψ0, . . . , ψN q “ N ` 1). Then, we have:

εpfq “ xf,Hfy “
N
ÿ

j“0

|cj |
2Ej ď EN . (7.111)

Hence, γN ď EN . To prove Version 3, we define:

rγN “ min
φ0,...,φN

maxtεpφq | }φ} “ 1 and φ P spanpφ0, . . . , φN qu (7.112)

Choosing φ0, . . . , φN to be ψ0, . . . , ψN and noticing that for φ “
řN
j“0 cjψj with

řN
j“0 |cj |

2 “

1 we have

εpφq “ xφ,Hφy “
N
ÿ

j“0

|cj |
2Ej ď EN (7.113)

we conclude that:

rγN ď maxtεpφq | }φ} “ 1 and φ P spanpψ0, . . . , ψN qu “ EN . (7.114)

On the other hand, for arbitrary φ0, . . . , φN , we can find f P spanpφ0, . . . , φN q with }f} “ 1
such that xf, ψjy “ 0 for all j “ 0, 1, . . . , N ´ 1. This implies, from Theorem 7.21, that:

EN “ inftεpφq | }φ} “ 1 and xφ, ψjy “ 0 for all j “ 0, 1, . . . , N ´ 1u ď εpfq . (7.115)

Therefore, rγN ě EN .
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7.4.6 Generalized min-max principle

Let us mention a simple extension of the min-max principle, which is very useful to get
bounds on sums of eigenvalues. From Version 1 of Theorem 7.23, we find in particular that:

N
ÿ

j“0

Ej ď
N
ÿ

j“0

λj “ Trh “
N
ÿ

j“0

hjj “
N
ÿ

j“0

εpφjq . (7.116)

for any orthonormal family φ0, . . . , φN . We can generalize this statement to the case where
the functions φj are not orthonormal. Let φ0, . . . , φL be the pL ` 1q functions in H1pRdq
such that θij “ xφi, φjy defines a pL ` 1q ˆ pL ` 1q matrix θ with 0 ď θ ď 1. Suppose that

Tr θ “
řL
j“0 θjj “ N ` 1` δ, for a δ P p0; 1q. Then, we have:

L
ÿ

j“0

εpφjq ě
N
ÿ

j“0

Ej ` δEN`1 . (7.117)

To prove Eq. (7.117), consider first the case in which the functions are orthogonal (but not
necessarily normalized). Then, Tj “ θjj “ }φj}

2 ď 1 (from the assumption θ ď 1). Let us
reorder the indices 0, . . . , L such that

0 ă TL ď TL´1 ď ¨ ¨ ¨ ď T0 ď 1 . (7.118)

Let ψj “ φj{
a

Tj (then ψj in an orthonormal family). Then, by a telescopic rearrangement
of sums:

L
ÿ

j“0

εpφjq “

L
ÿ

j“0

Tjεpψjq (7.119)

“ TL

L
ÿ

j“0

εpψjq ` pTL´1 ´ TLq
L´1
ÿ

j“0

εpψjq `

¨ ¨ ¨ ` pT1 ´ T2q

1
ÿ

j“0

εpψjq ` pT0 ´ T1qεpψ0q

ě TL

L
ÿ

j“0

Ej ` pTL´1 ´ TLq
L´1
ÿ

j“0

Ej ` . . .` pT0 ´ T1qE0

“

L
ÿ

j“0

TjEj

ě min
!

L
ÿ

j“0

TjEj | 0 ď Tj ď 1 ,
L
ÿ

j“0

Tj “ N ` 1` δ
)

“

N
ÿ

j“0

Ej ` δEN`1 .

Now, let us consider the general case. Define µα and gα to be the eigenvalues and the
corresponding eigenvectors of the matrix θ. We denote by G the pL ` 1q ˆ pL ` 1q matrix

with the eigenvectors gα as columns. We set Φα “
řL
j“0 gαpjqφj . Then, we have:

xΦα,Φβy “
ÿ

i,j

gαpiqgβpjqxφi, φjy

“
ÿ

i,j

gαpiqgβpjqθij

“ pG˚θGqα,β “ δα,βµα . (7.120)

Since
řL
α“0 Trθ “ N ` 1` δ, we apply the result for the case of orthogonal (but not normal-

ized) functions established above. We find that:

N
ÿ

j“0

Ej ` δEN`1 ď

L
ÿ

α“0

εpΦαq “
L
ÿ

α,i,j

gαpiqgαpjqxφi, hφjy “
L
ÿ

j“0

hjj “
L
ÿ

j“0

εpφjq , (7.121)

which proves Eq. (7.117).
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8 Semiclassical approximations

8.1 Dirichlet Laplacian

In the last section we gave a variational characterization for the eigenvalues of Schrödinger
operators of the formH “ ´∆`V . The question we want to address in this section is whether
it is possible to obtain information on the eigenvalues Ej by looking at the corresponding
classical system, at least in some particular regime. To simplify the analysis, we will focus
here on a special class of potentials V , For an open bounded subset Ω Ă Rd, we will consider
the potential:

VΩpxq “

"

0 if x P Ω
`8 if x R Ω

(8.1)

This (mathematically not very precise) choice means that we look at the Laplace operator
on Ω, imposing Dirichlet boundary conditions at the boundary of Ω. In other words, for
a bounded open subset Ω Ă Rd, we will consider the operator HΩ “ ´∆, defined on the
Hilbert space H2

0 pΩq, the closure of C80 pΩq with respect to the H2-norm. The eigenvalues
have a variational characterization, similarly as the Schrödinger operators discussed in the
previous section. Defining:

E0 “ inf
!

ż

Ω

|∇ϕpxq|2dx | ϕ P H2
0 pΩq, }ϕ}2 “ 1

)

(8.2)

we can show (as in the proof of Theorem 7.19, using also the fact that ψj Ñ ψ weakly in
H1pΩq for a bounded set Ω implies also that ψj Ñ ψ strongly in L2pΩq) that E0 is attained
by a minimizer ψ0 with }ψ0} “ 1, which is then a solution of HΩψ0 “ E0ψ0. Recursively,
after constructing the eigenvectors ψ0, . . . , ψk´1, we find that:

Ek “ inf
!

ż

Ω

|∇ϕpxq|2dx | ϕ P H2
0 pΩq, }ϕ}2 “ 1, xϕ,ψ`y “ 0, ` “ 0, 1, . . . , k ´ 1

)

(8.3)

is attained by a normalized minimizer ψk such that HΩψk “ Ekψk. In this case, the recursion
never stops, HΩ has infinitely many eigenvalues (tending to infinity) and eigenvectors. Simi-
larly as discussed in the previous section, alls eigenvalues and eigenvectors of HΩ are obtained
by this recursion. Finally, it is not difficult to see that the spectrum of HΩ is purely dis-
crete: σesspHΩq “ H. To prove this, recall Weyl’s characterization of the essential spectrum,
Lemma 7.9. A number E P R belongs to the essential spectrum of HΩ if and only if there
exists a singular Weyl sequence pψnq at E, that is a sequence such that ψn Ñ 0 weakly in L2,
}ψn}2 “ 1 and }pH´Eqψn}2 Ñ 0. This last condition, together with }ψn}2 “ 1, implies that
}ψn}H1 ď C uniformly in n. Therefore, we can extract a weakly convergent subsequence in
H1, ψnj Ñ ψ. Suppose that ψ ‰ 0. Then, }ψ}22 “ limjÑ8xψ,ψnj y “ limnÑ8xψ,ψny “ 0,
which gives a contradiction. Therefore, ψ “ 0.

By Theorem A.5, weak convergence in H1 implies strong convergence in L2 on bounded
sets. Therefore, }ψnj }2 Ñ 0 as n Ñ 8, which contradicts }ψnj }2 “ 1. Thus, pψnq is not a
singular Weyl sequence. This shows that the spectrum is purely discrete, i.e. it is given by
eigenvalues of finite multiplicity.

8.2 Lower bound on the sum of Dirichlet eigenvalues

Our goal in this section is to extract information about the eigenvalues Ej . It turns out that
it is quite difficult to approximate the single eigenvalues Ej . Instead, it is easier to obtain
information about sums of eigenvalues. Besides the mathematical interest for the question
of approximation sums of eigenvalues, this is also a relevant question in physics, since, as
we shall see later, this allows to estimate the energy of a system of many non-interacting
fermions. The first result we want to discuss is a lower bound for the sum of the first N
eigenvalues of HΩ, a result due to Li-Yau and Berezin.

Theorem 8.1. Let Ω Ă Rd be open and bounded, φ0, . . . , φN´1 P H
1
0 pΩq an orthonormal

family in L2pΩq. Then:

N´1
ÿ

j“1

}∇φj}22 ě p2πq2
d

d` 2

´ d

|Sd´1|

¯2{d

N1`2{d|Ω|´2{d , (8.4)
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where |Sd´1| is the area of the pd´ 1q-dimensional unit sphere. In particular:

N´1
ÿ

j“0

Ej ě p2πq
2 d

d` 2

´ d

|Sn´1|

¯2{d

N1`2{d|Ω|2{d . (8.5)

Proof. Since H1
0 pΩq is the closure of C80 pΩq with respect to the H1 norm, it is enough to

show the statement for orthonormal families φ0, . . . , φN´1 P C
8
0 pΩq, compactly supported

away form the boundary of Ω. We extend φ0, . . . , φN´1 to functions in C80 pRdq, by setting
them equal to zero outside of their support. Now, we can express the H1 norm of φj by
means of its Fourier transform. We find:

}∇φj}22 “
ż

k2|pφjpkq|
2dk . (8.6)

Hence,
N´1
ÿ

j“0

}∇φj}22 “
ż

k2ρpkqdk , (8.7)

where we set

ρpkq “
N´1
ÿ

j“0

|pφjpkq|
2 . (8.8)

Notice that:
ż

ρpkqdk “ N . (8.9)

Moreover, with the definition ekpxq “ e´ikxχΩpxq{p2πq
d{2, we find:

pφjpkq “ xφj , eky . (8.10)

Extending φ0, . . . , φN´1 to an orthonormal basis tφju
8
j“0 of L2pRdq, we find:

φ̂jpkq “ xφj , eky . (8.11)

We conclude that, by the bathtub principle, see Appendix B:

N´1
ÿ

j“0

}∇φj}22 “

ż

k2ρpkqdk

ě inf
!

ż

k2ρpkq | ρ P L1pRdq,
ż

ρpkqdk “ N and 0 ď ρpkq ď |Ω|{p2πqd
)

“
|Ω|

p2πqd

ż

k2χp|k| ďMqdk , (8.12)

where M ą 0 is chosen so that
ż

χp|k| ďMq
|Ω|

p2πqd
dk “ N (8.13)

which implies that

M “ p2πq
´ d

|Sd´1|

¯1{d

N1{d|Ω|´1{d . (8.14)

Therefore, Eq. (8.12) yields:

N´1
ÿ

j“0

}∇φj}22 ě
|Ω|

p2πqd

ż

k2χ
´

|k| ď p2πq
´ d

|Sd´1|

¯1{d

N1{d|Ω|´1{d
¯

“ p2πq2
d

d` 2

´ d

|Sd´1|

¯2{d

N1`2{d|Ω|´2{d . (8.15)
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As an example, let us consider the sum SpNq “
řN´1
j“0 Ej of the eigenvalues of the

operator HΩ, for the simple case in which Ω “ r0;Lsd of a cube with side length L. In this
case, eigenvectors of HΩ are products of eigenvectors of the one-dimensional Laplace operator
on the interval r0;Ls, with Dirichlet boundary conditions. Hence, we look for solutions of:

´ ψ2pxq “ Eψpxq , with ψp0q “ ψpLq “ 0. (8.16)

The condition ψp0q “ 0 implies that ψpxq “ A sinpkxq with k “
?
E. The condition ψpLq “ 0

implies that k “ mπ{L, for an m P N. This gives the eigenvalues

Em “
pmπq2

L2
, (8.17)

and the eigenvector ψmpxq “ A sinpmπ{Lq (for an appropriate normalization constant A),

for m P N. The energy of the product wave function ψpm1,...,mdqpx1, . . . , xdq “
śd
j“1 ψmj pxjq

is then given by:

Epmq “
π2

L2

d
ÿ

j“1

m2
j , (8.18)

for any m “ pm1, . . . ,mdq P Nd. Let us now fix κ ą 0 such that the set

Kκ “ tx “ px1, . . . , xdq P Rd | }x} ď κ and xj ě 0 for all j “ 1, . . . , du (8.19)

has volume N . In other words, we require that:

1

2d
|Sd´1|

κd

d
“ N , (8.20)

or equivalently, we fix:

κ “ 2N1{d
´ d

|Sd´1|

¯1{d

. (8.21)

Then, the set Kκ certainly contains less than N points pm1, . . . ,mdq P Nd, because every such
point can be associated uniquely with a square with unit volume (the square tpx1, . . . , xnq |
mj´1 ď xj ď mju) contained in Kκ (the case with exactly N points can be excluded because
one cannot cover a ball with finitely many nonoverlapping unit cubes). Hence (remember
that we use the notation EN´1 for the N -th eigenvalue of HΩ)

EN´1 ě
π2

L2
κ2 “ p2πq2

´ d

|Sd´1|

¯2{d

N2{d|Ω|´2{d (8.22)

and

SpNq “

N´1
ÿ

j“0

Ej ě p2πq
2
´ d

|Sd´1|

¯2{d

|Ω|´2{d
N
ÿ

j“1

j2{d

ě p2πq2
d

d` 2

´ d

|Sd´1|

¯2{d

|Ω|´2{dN1`2{d , (8.23)

in agreement with the result of Theorem 8.1. A famous conjecture in mathematics, due to
George Polya, states that the bound (8.22) for the N -th eigenvalue of HΩ holds not only if
Ω is a cube but for arbitrary open bounded Ω Ă Rd. From the lower bound in Theorem 8.1
we obtain the bound:

EN´1 ě
1

N

N´1
ÿ

j“0

Ej ě p2πq
2 d

d` 2

´ d

|Sd´1|

¯2{d

|Ω|´2{dN2{d , (8.24)

which however misses Polya’s conjecture because of the factor d{pd ` 2q ă 1. Although
Polya’s conjecture is known to hold true for special classes of domains Ω, it remains open in
its full generality.
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8.3 Asymptotic behavior of eigenvalues

For the cube Ω “ r0;Lsd, the right hand side of Eq. (8.23) is not only a lower bound for the
sum SpNq. Instead, it really capture the leading behavior of SpNq, in the limit of large N .
With κ as defined in Eq. (8.21), we have:

SpNq »
ÿ

mPNd:|m|ďκ

π2

L2
|m|2 (8.25)

where |m|2 “
řd
j“1m

2
j , for m P Nd. Defining k “ m{N1{d and λ “ κ{N1{d “ 2pd{|Sd´1|q

1{d,
we find

SpNq »
π2

L2
N1`2{d

ÿ

kPNd{N1{d:|k|ďλ

1

N
k2 . (8.26)

The sum on the right-hand side is a Riemann sum; as N Ñ8, it approaches

SpNq »
π2

L2
N1`2{d

ż

|k|ďλ

k2dk “ p2πq2
d

d` 2

´ d

|Sd´1|

¯2{d

|Ω|´2{dN1`2{d (8.27)

up to errors of lower order in N . It turns out that the same asymptotics behavior of the sum
SpNq holds for a more general class of domains. This important result is known as Weyl’s
law. In order to state Weyl’s law, we need to introduce first the notion of boundary area.
Let Ω Ă Rd be a bounded set, BΩ its boundary. We define the boundary area ApΩq of BΩ by

ApΩq “ lim sup
rÑ0`

1

2r
r|tx P Ωc | distpx,Ωq ă ru| ` |tx P Ω | distpx,Ωcq ă ru|s . (8.28)

Theorem 8.2. Let Ω Ă Rd open, bounded and with finite boundary area ApΩq. Then:

SpNq “
N´1
ÿ

j“0

Ej “ p2πq
2 d

d` 2

´ d

|Sd´1|

¯2{d

|Ω|´2{dN1`2{d ` opN1`2{dq (8.29)

in the limit N Ñ8.

In fact, the error opN1`2{dq in Eq. (8.29) can be estimated more precisely by:

0 ď opN1`2{dq ď CNpApΩq{|Ω|q2{3pd{|Sd´1|q
4{3dpN{|Ω|q4{3d (8.30)

for a universal constant C ą 0.
The result can be interpreted as a semiclassical estimate. The postulate of semiclassical

analysis is that every quantum state occupies p2πqd in the classical phase space. We are
interested in the total energy of the N states with the smallest possible energies. The
classical counterpart of the Laplace operator with Dirichlet boundary boundary conditions
is the classical Hamiltonian Hpp, xq “ p2χpx P Ωq. To minimize the total energy, we fill the
phase space with x P Ω and |p| ď κ, where κ ą 0 is chosen, so that

κd

d
|Sd´1||Ω| “ p2πq

dN , (8.31)

i.e. so that there is enough space for N quantum states (according to the postulate that
every quantum state occupy the volume p2πqd in phase space). We find

κ “ p2πq
´ d

|Sd´1|

¯1{d

N1{d|Ω|1{d . (8.32)

Hence, semiclassical analysis suggests that the total energy of the N states with smallest
energy is given by:

1

p2πqd

ż

Ωˆt|p|ďκu

p2dpdx “ p2πq2
d

d` 2

´ d

|Sd´1|

¯2{dN1`2{d

|Ω|2{d
(8.33)
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which is exactly the statement of Theorem 8.2.
The goal of the rest of this section consists in proving Theorem 8.2. Since a lower bound

for SpNq has already been established in Theorem 8.1 (in fact, the lower bound holds for all
N , not only in the limit N Ñ8), we need only to prove an upper bound for SpNq, coinciding
to leading order with the right-hand side of Eq. (8.29). To find such an upper bound, we
will use coherent states; this is not surprising, since we pointed out above that Weyl’s law is
a semiclassical estimate, and coherent states are as close as possible to classical states.

8.4 Upper bound on the sum of Dirichlet eigenvalues

8.4.1 Coherent states

In the present setting, coherent states are wave functions of the form

Fk,ypxq “ eik¨xGpx´ yq , (8.34)

where G is centered Gaussian function, y, k P Rd. Since |Fk,ypxq| “ Gpx´ yq and | pFk,yppq| “
pGpp ´ kq, the coherent state Fk,y is localized around y in position space and it is localized
around k in momentum space. In the sequel, we will not need to assume that G is a Gaussian.
We will only assume that G P L2pRdq with Gp´xq “ Gpxq and }G}2 “ 1 (so that }Fk,y}2 “ 1
for all k, y P Rd).

For an arbitrary ψ P L2pRdq, we define the coherent state transform

rψpk, yq “ xFk,y, ψy “

ż

Fk,ypxqψpxqdx “

ż

Rd
e´ik¨xGpx´ yqψpxqdx . (8.35)

Since by Cauchy-Schwarz
ż

|Gpx´ yq||ψpxq|dx ď }G}}ψ} (8.36)

the transform rψpk, yq is the Fourier transform of an L1-function; hence rψpk, yq is bounded.
We denote by πk,y the orthogonal projection onto Fk,y, so that

pπk,yψqpxq “ Fk,ypxqxFk,y, ψy “ Fk,ypxq rψpk, yq . (8.37)

The integral kernel of πk,y is given by πk,ypx; zq “ Fk,ypxqFk,ypzq.

Lemma 8.3. Let G P L2pRdq with Gp´xq “ Gpxq and }G}2 “ 1. Let ψ P L2pRdq. Then

1

p2πqd

ż

| rψpk, yq|2dk “ p|ψ|2 ˚ |G|2qpyq

1

p2πqd

ż

| rψpk, yq|2dy “ p| pψ|2 ˚ | pG|2qpkq

1

p2πqd

ż

| rψpk, yq|2dydk “ }ψ}22 “ }
pψ}22 . (8.38)

Moreover,

rψpk, yq “ e´iky
ż

pψpqqeiqy pGpq ´ kqdq . (8.39)

Proof. Set Hpx, yq “ |ψpxq|2|Gpx´ yq|2. By Fubini:
ż

”

ż

Hpx, yqdx
ı

dy “

ż

”

ż

Hpx, yqdy
ı

dx “ }ψ}22 ă 8 . (8.40)

Hence, the function y Ñ
ş

Hpx, yqdx “ p|ψ|2 ˚ |G|2qpyq is in L1pRdq and thus it is finite for

a.e. y P Rd. This means that the function x Ñ ψpxqGpx´ yq is in L2pRdq for a.e. y P Rd.
By Cauchy-Schwarz, this function is also in L1pRdq, for all y P Rd, rψpk, yq{p2πqd{2 is the
Fourier transform of this function. Hence, by Plancherel,

1

p2πqd

ż

| rψpk, yq|2dk “

ż

|ψpxq|2|Gpx´ yq|2dx “ p|G|2 ˚ |ψ|2qpyq (8.41)
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and thus, by Fubini,

1

p2πqd

ż

dy
”

ż

dk | rψpk, yq|2
ı

“

ż

p|ψ|2 ˚ |G|2qpyqdy “

ż

dx

ż

dy |ψpxq|2|Gpx´ yq|2 “ }ψ}22 .

(8.42)
The second formula can be proven similarly, Finally, we show (8.39). By Plancherel,

rψpk, yq “ xFk,y, ψy “ x pFk,y, pψy . (8.43)

Since pFk,ypqq “ e´iy¨k pGpq ´ kq, this proves (8.39).

Remark 8.4. The relation:

}ψ}2 “
1

p2πqd

ż

| rψpk, yq|2dkdy “
1

p2πqd

ż

xψ,Fk,yyxFk,y, ψydkdy , (8.44)

expresses the completeness of the coherent states Fy,k, i.e.

1

p2πqd

ż

|Fk,yyxFk,y| dkdy “ 1L2pRdq . (8.45)

8.4.2 Proof of Theorem 8.2

We are now ready to prove the main result of this section, Theorem 8.2.

Proof. (of Theorem 8.2.) For R ą 0, we consider the domain rΩpRq “ tx P Ω | distpx,Ωcq ą

Ru. By definition of the boundary area ApΩq, we have |rΩpRq| ě |Ω| ´ 4RApΩq, for R ą 0
small enough.

Let now Mpk, yq be a function on phase space, with 0 ď Mpk, yq ď 1 for all k, y, with

suppMpk, ¨q Ă rΩpRq for all k P Rd, and with

1

p2πqd

ż

dkdyMpk, yq “ N ` ε (8.46)

for an arbitrary ε ą 0. We construct the operator K on L2pRdq by defining its integral kernel

Kpx, zq “
1

p2πqd

ż

Mpk, yqπk,ypx, zqdkdy “
1

p2πqd

ż

Mpk, yqFk,ypxqFk,ypzqdkdy . (8.47)

Here Fk,y are the coherent states defined by

Fk,ypxq “ eik¨xGRpx´ yq , (8.48)

where GRpxq “ R´d{2Gpx{Rq and G P L2pRdq is a non-negative smooth function with
Gpxq “ Gp´xq, }G}2 “ 1 and with suppG Ă B1p0q. This guarantees that GR is non-
negative, smooth, GRp´xq “ GRpxq, }GR}2 “ 1 for all R ą 0 and that suppGR Ă BRp0q.

For any f P L2pRdq,

0 ď xf,Kfy ď
1

p2πqd

ż

Mpk, yqxf, πk,yfy dkdy “
1

p2πqd

ż

Mpk, yq|xf, Fk,yy|
2dkdy

ď
1

p2πqd

ż

| rfpk, yq|2 dkdy “ }f}22 (8.49)

where we used Lemma 8.3. Hence, 0 ď K ď 1. Furthermore, we find

ż

dxKpx, xq “ N ` ε . (8.50)

In particular, this implies that K has discrete spectrum. We denote by:

λ1 ě λ2 ě λ3 ě . . . (8.51)
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the eigenvalues of K, and by f1, f2, . . . the corresponding normalized eigenvectors. Note that
by the restriction on the support of M and of G, supp fj Ă Ω, for all j. Note moreover, that
ř

j λj “ N ` ε. Hence, we can find an integer L large enough with

L
ÿ

j“1

λj ą N . (8.52)

We set KL “
řL
j“1 λj |fjyxfj |. Then K ´KL ě 0. Now we apply the generalized min-max

principle, Eq. (7.117), with φj “ λ
1{2
j fj , j “ 1, . . . , L. We are allowed to do so, because

θij “ xφi, φjy “ λiδij and therefore 0 ď θ ď 1 and Tr θ “
řL
j“1 λj ą N . We conclude that:

N´1
ÿ

j“0

Ej ď

L
ÿ

j“1

εpφjq “
L
ÿ

j“1

λj

ż

|∇fjpxq|2 dx

ď

8
ÿ

j“1

λj

ż

|∇fjpxq|2 dx “
ż

∇x∇zKpx, zq |z“x dx

“
1

p2πqd

ż

dkdyMpk, yq

ż

dx |∇Fk,ypxq|2 . (8.53)

With:
∇Fk,ypxq “ ikeik¨xGRpx´ yq ` e

ik¨x∇GRpx´ yq , (8.54)

and noticing that
ż

dx rGRpx´ yq∇GRpx´ yq `GRpx´ yq∇GRpx´ yqs “
ż

dx∇|GRpx´ yq|2 “ 0 , (8.55)

we obtain:
N´1
ÿ

j“0

Ej ď
1

p2πqd

ż

k2Mpk, yq dkdy ` pN ` εq}∇GR}2

ď
1

p2πqd

ż

k2Mpk, yq dkdy ` CR´2pN ` εq , (8.56)

because, by definition of GR, }∇GR}22 “ R´2}∇G}22 “ CR´2 .
This bounds hold for all choices of M with 0 ďMpk, yq ď 1 for all k, y with suppMpk, ¨q Ă

rΩpRq for all k P R3, and with

1

p2πqd

ż

dkdyMpk, yq “ N ` ε (8.57)

for an arbitrary ε ą 0. To minimize the average of k2, we choose

Mpk, yq “ χpy P rΩpRqqχp|k| ď κq (8.58)

where we fix κ ą 0 such that

1

p2πqd

ż

dkdyMpk, yq “
1

p2πqd
|rΩpRq|

|Sd´1|

d
κd “ N ` ε . (8.59)

Hence, κ “ p2πqpN ` εq1{dpd{|Sd´1|q
1{d|rΩpRq|´1{d. With this choice of M , we compute

1

p2πqd

ż

k2Mpk, yq dkdy “
1

p2πqd
|rΩpRq||Sd´1|

κd`2

d` 2

“ p2πq2pN ` εq1`2{d|rΩpRq|´2{d d

d` 2

´

|Sd´1|

d

¯´2{d

. (8.60)

Since |rΩpRq| ě |Ω|´4RApΩq, we can choose R “ N´α, for a sufficiently small α ą 0. Letting
εÑ 0, we conclude that

N´1
ÿ

j“0

Ej ď p2πq
2N1`2{d|Ω|´2{d d

d` 2

´

|Sd´1|

d

¯´2{d

` opN1`2{dq (8.61)

which implies the theorem.
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8.5 General Schrödinger operators

To conclude, let us briefly discuss the extension of the previous result for Schrödinger opera-
tors of the form H “ ´∆`V on L2pRdq. Semiclassical analysis also give predictions for the
sum of negative eigenvalues of such Hamiltonians, for potentials V decaying at infinity, corre-
sponding to relatively compact perturbations of the Laplacian. By Weyl’s theorem, the essen-
tial spectrum of the Hamiltonian is not affected by the potential: σesspHq “ σp´∆q “ r0,8q.
However, the negative part of the potential V´pxq “ ´mintV pxq, 0u might generate negative
eigenvalues.

Arguing semiclassically, that is associating a volume p2πqd in phase space for every quan-
tum state, we can predict that the sum of all negative eigenvalues of H can be approximated
by:

ÿ

j

Ej »
1

p2πqd

ż

pp2 ´ V´pxqqχp|p
2 ´ V´pxq| ă 0qdxdp

“
1

p2πqd

ż

dx

ż

|p|ďV
1{2
´
pxq

p2dp´
1

p2πqd

ż

dxV´pxq

ż

|p|ďV
1{2
´
pxq

dp

“
1

p2πqd
|Sd´1|

” 1

d` 2
´

1

d

ı

ż

dxV´pxq
1`d{2

“ ´
1

p2πqd
2|Sd´1|

dpd` 2q

ż

dxV´pxq
1`d{2 . (8.62)

One can prove that this prediction is indeed correct in the semiclassical limit. In fact, in
analogy with the Dirichlet Laplacian, we expect the prediction of semiclassical analysis to
become more accurate after summming a large number of eigenvalues. Here, the number of
negative eigenvalues is fixed by the choice of the potential V . In order to increase the number
of negative eigenvalues, we perform the semiclassical limit: that is, instead of considering
the Hamiltonian H, we consider:

H~ “ ´~2∆` V , ~ ą 0 . (8.63)

The parameter ~ plays the role of Planck constant in Physics. We shall be interested in the
limit ~Ñ 0`; in this limit, the number of negative eigenvalues of H~ diverges. This is clear
after rewriting H~ “ ~2p´∆` ~´2V pxqq, since the negative part of ~´2V becomes deeper in
the semiclassical limit ~Ñ 0`. Semiclassical analysis allows to prove that, as ~Ñ 0`:

ÿ

j

Ej “ ´
1

p2πqd
2|Sd´1|

dpd` 2q
~´d

ż

dxV´pxq
1`d{2 ` op~´dq . (8.64)

Also, in analogy with the Li-Yau inequality, Theorem 8.1, one can prove that the semiclas-
sical prediction gives a lower bound to the sum of the negative eigenvalues, for the initial
Schrödinger operator H. This is encoded by the Lieb-Thirring inequality:

ÿ

j

Ej ě CLT

ż

dxV´pxq
1`d{2 , (8.65)

for a suitable constant CLT ă Csc, where Csc is the constant predicted by the semiclassical

approximation, Csc “ ´
1

p2πqd
2|Sd´1|

dpd`2q . Proving that the inequality Eq. (8.65) holds with CLT

replaced by Csc is a longstanding open problem in mathematical physics.

9 Many-body quantum mechanics

9.1 Bosons and fermions

In this Section we will consider quantum mechanical models for many particle systems. The
wave function for a system of N quantum particles in Rd is described by a wave function
ψN px1, . . . , xN q P L

2pRdN q, where xi corresponds to the location of the i-th particle. More
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generally, one might want to include the presence of extra degrees of freedom for each par-
ticle, labelled by σi “ 1, . . . ,M ; in that case, the wave function of the system is denote by
ψN pz1, . . . zM q P L

2pRdN ;CMN q. For instance, σi might denote the spin of the particle: in
that case, M “ 2. The scalar product in the presence of this extra degree of freedom is
defined as:

xψN , φN y “
ÿ

σ1,...,σN

ż

dx1 . . . dxN ψN pz1, . . . , zN qφN pz1, . . . , zN q

”

ż

dz1 . . . dzN ψN pz1, . . . , zN qφN pz1, . . . , zN q . (9.1)

We shall consider identical particles. These correspond to wave functions satisfying the
property:

|ψN p¨ ¨ ¨ zi ¨ ¨ ¨ zj ¨ ¨ ¨ q| “ |ψN p¨ ¨ ¨ zj ¨ ¨ ¨ zi ¨ ¨ ¨ q| . (9.2)

That is, the probability density for finding the particles in a given configuration does not
change is one exchanges two particles. It turns out that in Nature there exists only two type
of particles: bosons and fermions. Bosonic wave functions are symmetric with respect to
exchange of particles:

ψN p¨ ¨ ¨ zi ¨ ¨ ¨ zj ¨ ¨ ¨ q “ ψN p¨ ¨ ¨ zj ¨ ¨ ¨ zi ¨ ¨ ¨ q . (9.3)

We shall denote by L2
sympRdN ;CMN q the restriction of L2pRdN ;CMN q to functions such that

Eq. (9.3) holds true. Example of bosonic particles are photons, the elementary constituents
of light. Instead, fermions correspond to wave functions that are antisymmetric with respect
to exchange of particles:

ψN p¨ ¨ ¨ zi ¨ ¨ ¨ zj ¨ ¨ ¨ q “ ´ψN p¨ ¨ ¨ zj ¨ ¨ ¨ zi ¨ ¨ ¨ q . (9.4)

We shall denote by L2
antipRdN ;CMN q the restriction of L2pRdN ;CMN q to functions such that

Eq. (9.4) holds. Example of fermionic particles are electrons, neutrons and protons, which
form all elements in Nature. The antisymmetry of the wave function immediately implies
Pauli exclusion principle: a fermionic wave function is vanishing whenever xi “ xj , for any
i “ j. The probability density for finding two fermionic particles at the same location is
zero.

As a matter of fact, there is a deep connection between the possible values of the spin of
the particle and its bosonic or fermionic type: the spin-statistics theorem states that particles
with an even number of spin states are fermions, while particles with an odd number of spin
states are bosons. In the following, we shall neglect this fact, and keep the number of spin
states arbitrary for both bosons and fermions. Also, for simplicity we shall often set M “ 1.

A simple example of bosonic wave function ψN P L
2
sym is given by:

ψN pz1, . . . zN q “ fpz1q ¨ ¨ ¨ fpzN q , (9.5)

for some f P L2. Instead, the simplest example of fermionic wave function is provided by a
Slater determinant, defined as follows. Let fipziq, i “ 1, . . . , N be N orthonormal functions
in L2pRd;CM q. The N -particle wave function

ψN pz1, . . . , zN q “
1
?
N !

detpfipzjqq
N
i,j“1 (9.6)

is antisymmetric and normalized. It is called the Slater determinant associated to f1, . . . , fN .
By Leibnitz formula, Eq. (9.6) can be rewritten as:

ψN pz1, . . . , zN q “
1
?
N !

ÿ

πPSN

sgnpπqfπp1qpx1q ¨ ¨ ¨ fπpNqpxN q , (9.7)

where SN is the set of all permutations π of t1, . . . , Nu, with sign sgnpπq “ ˘1. Notice
that the Slater determinant vanishes if fi “ fj for some i ‰ j, which is another instance
of Pauli principle. If pfiq

8
i“1 form a basis of L2, it is not difficult to see that a basis for

L2
antipRdN ;CNM q is given by the set of all Slater determinants that can be constructed

choosing N functions among pfiq
8
i“1.
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9.2 Reduced density matrices

Given the wave function ψN of N identical particles, the k-particle reduced density matrix

γ
pkq
ψN

is an operator on L2pRdkq with integral kernel:

γ
pkq
ψN
py1, . . . , yk;x1, . . . , xkq (9.8)

:“

ˆ

N

k

˙
ż

dxk`1 . . . dxN ψN px1, . . . , xk, xk`1, . . . , xN qψN py1, . . . , yk, xk`1, . . . , xN q .

Equivalently, one writes:

γ
pkq
ψN
“

ˆ

N

k

˙

Trk`1,...,N |ψN yxψN | . (9.9)

Notice that TrL2pRdkqγ
pkq
ψN

“
`

N
k

˘

. Density matrices are interesting because they allow to
compute averages of k-particle observables. For instance, consider:

ON “
ÿ

i

Opiq , Oi “ 1
bpi´1q bO b 1

bpN´iq , (9.10)

with O acting on L2pRdq. Then:

xψN , ONψN y “
ÿ

i

xψN , OiψN y

“ NxψN , O1ψN y

“ TrL2pRdqOγ
p1q
ψN

. (9.11)

In general, the k-particle density matrix allows to compute the average of observables of the
type

ř

ti1,...,iku
Opi1,...,ikq. In particular, let us consider the many-body Hamiltonian,

HN “
ÿ

i

hi `
ÿ

iăj

Vij , (9.12)

with Vij “ V pxi ´ xjq. One has:

xψN , HNψN y “ Trhγ
p1q
ψN
`

ˆ

N

2

˙

xψN , V12ψN y

“ Trhγ
p1q
ψN
` TrV12γ

p2q
ψN

. (9.13)

Therefore, the many-body ground state energy is completely specified by γp1q and γp2q. It
is therefore important to know the mathematical properties of the density matrices. Being

partial traces of a nonnegative operator, γ
pkq
ψN
ě 0. The next lemma will provide an important

upper bound for the reduced one-particle density matrix of identical fermions.

Lemma 9.1. Let ψN P L
2
antipRdN q. Then:

0 ď γ
p1q
ψN
ď 1L2pRdq . (9.14)

Remark 9.2. Being a trace class operator, γ
pkq
ψN

can be approximated by finite rank operators.

That is, γ
pkq
ψN
“
ř8

j“1 λj |fjyxfj | with tfju a ONB of L2pRdq. The bounds in Eq. (9.14) imply
that 0 ď λj ď 1.

Proof. We shall use a Fock space formalism. We define the fermionic Fock space as:

F “ C‘
à

n

L2
antipRdnq . (9.15)

That is, an element of F has the form ψ “ pψp0q, ψp1q, . . . , ψpnq, . . .q with ψpnq P L2
antipRdnq.

The space F becomes a Hilbert space if endowed with the standard scalar product

xψ,ϕyF “
ÿ

ně0

xψpnq, ϕpnqyL2pRdnq . (9.16)
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Given f P L2pRdq, we define the creation and annihilation operators a˚pfq and apfq as:

papfqψqpnqpx1, . . . , xnq “
a

pn` 1q

ż

dx fpxqψpn`1qpx, x1, . . . , xnq (9.17)

pa˚pfqψqpnqpx1, . . . , xnq “
1
?
n

n
ÿ

j“1

p´1qjfpxjqψ
pn´1qpx1, . . . , xj´1, xj`1, . . . , xnq .

It is not difficult to see that a˚pfq “ apfq˚. Physically, the operator apfq destroys a fermion
with wave function f , while the operator a˚pfq creates a fermion with wave function f . Let
tA,Bu be the anticommutator of the operators A,B: tA,Bu “ AB ` BA. It is a simple
algebraic exercise to check that:

tapfq, a˚pgqu “ xf, gyL2pRdq1F , tapfq, apgqu “ ta˚pfq, a˚pgqu “ 0 . (9.18)

The above relations are called the canonical anticommutation relations (CAR). An important
consequence of the CAR is the boundedness of the fermionic operators:

xψ, a˚pfqapfqψy “ }f}22}ψ}
2
F ´ xψ, apfqa

˚pfqψy

ď }f}22}ψ}
2
F . (9.19)

We used that xψ, apfqa˚pfqψy “ }a˚pfqψ}2 ě 0. As a consequence,

}apfq} “ sup
ψPF

}apfqψ}

}ψ}
ď }f}2 . (9.20)

This bound easily implies the desired statement for the one-particle density matrix. Let
ψ P F be an N -particle vector in the Fock space: ψ “ p0, 0, . . . , 0, ψpNq, 0, . . . , 0, . . .q, with
ψpNq “ ψN a normalized fermionic wave function. A simple computation shows that:

xψ, a˚pfqapgqψy “ xpapfqψqpN´1q, papgqψqpN´1qy “ xg, γ
p1q
ψ fyL2pRdq . (9.21)

Therefore:
xf, γ

p1q
ψ fy “ xψ, a˚pfqapfqψy ď }f}22 , (9.22)

which implies that γ
p1q
ψ ď 1.

Remark 9.3. The above upper bound is not true for bosons: there, γ
p1q
ψ ď N1. This suggests

that bosonic one-particle density matrices might have large eigenvalues. One can check that
for factorized states the reduced one-particle density matrix has one eigenvalue equal to N .

To conclude, as an example let us compute the reduced one-particle density matrix of the
simplest fermionic wave functions for N fermions, namely Slater determinants. Consider:

ψN “
1
?
N !

ÿ

π

sgnpπqfπp1qpx1q ¨ ¨ ¨ fπpNqpxN q , (9.23)

with tfiu orthonormal. A simple computation shows:

γ
p1q
ψ “

N
ÿ

i“1

|fiyxfi| . (9.24)

That is, γ
p1q
ψ is a rank´N orthogonal projector: γ

p1q
ψ “ γ

p1q˚
ψ “ γ

p1q2
ψ , Trγ

p1q
ψ “ N . In this

case, the eigenvalues of the density matrix are either 0 or 1.

9.3 Atoms and molecules

In the following, we shall focus on a specific model in quantum mechanics, of great relevance
for physics and chemistry. The model describes a system ofN fermions (electrons) interacting
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with K fixed nuclei. For K “ 1, this model describes an atom with N electrons, for K ą 1
it describes a molecule. The Hamiltonian is:

HN,KpZ,Rq “
N
ÿ

i“1

´∆i ´

N
ÿ

i“1

K
ÿ

j“1

Zi
|xi ´Rj |

`

N
ÿ

iăj“1

1

|xi ´ xj |
`

K
ÿ

iăj“1

ZiZj
|Ri ´Rj |

, (9.25)

on L2pR3N ;CMN q. Let us discuss the various terms. The first term describes the kinetic
energy of the N particles; ∆i is the Laplacian acting on the i-th particle,

p∆iψN qpz1, . . . , zN q “ ∆xiψN pz1, . . . , zN q , i “ 1, . . . , N . (9.26)

The second term takes into account the interaction between the electrons, with positions xi,
and the nuclei, located at Rj . Units are chosen so that the charge of the electron is ´1, and
the charge of the nuclei is Zj P N. The sign of the Coulomb potential shows that the energy
decreases when the particles and the nuclei are close: the interaction is attractive. The third
term describes the electrostatic interaction among the electrons: the sign of the Coulomb
potential shows that the energy increases when two electrons are close: the interaction is
repulsive. Finally, the last term takes into account the Coulomb repulsion of the nuclei.
Notice that xi is a multiplication operator, while Rj is a fixed vector in R3: that is, the
nuclei are treated as fixed in space. This is motivated by the fact that that, physically, the
masses of the nuclei are much larger than the masses of the electrons (chosen to be equal
to 1{2 in our units). Later, we shall minimize over the positions of the nuclei, to find the
optimal energy of the system.

At zero temperature, the state of the system coincides with the ground state of the
Hamiltonian HN,KpZ,Rq. Since we are interested in describing a system of N electrons, and
since electrons are fermions, we shall consider the fermionic ground state energy:

EN,KpZ,Rq “ inf
ψNPL

2
antipR

3N ;CNM q
}ψN }2“1

xψN , HN,KpZ,RqψN y (9.27)

These are the typical questions we shall study in the following.

1. Is the system stable? That is, EN,KpZ,Rq ą ´8? If so, this is called stability of matter
of the first kind. Stability is a purely quantum mechanical phenomenon: it is false in classical
mechanics. We have seen that stability holds for N “ 1, K “ 1.

2. From experience, we know that the energy of a physical system scales linearly with the
number of constituents. If not, this would imply a huge release or absorption of energy as
two systems are merged together. Suppose for instance that EN,KpZ,Rq „ ´CpN ` Kq2.
Then,

E2N,2K “ ´4CpN `Kq2 ! 2EN,K . (9.28)

This means that it would be energetically much more convenient to merge together two sys-
tems composed by N particles and K nuclei, which is not what we observe. This gain is
incompatible with the observation that matter is extensive (doubling the number of parti-
cles of a physical system corresponds to a macroscopic variation of the volume the system
occupies). We say that stability of matter of the second kind occurs if:

EN,KpZ,Rq ě ´CpZ,RqpN `Kq . (9.29)

Of course, stability of matter of the second kind implies stability of matter of the first kind.
Does stability of matter of the second kind occurs for the model in Eq. (9.25)?

3. In order for an atom or a molecule to be stable, the ionization energy to remove an electron
must be positive. That is, if EN`1,M ă EN,M : it is energetically more convenient for the
system to attract one more electron. Under which conditions the ionization energy is posi-
tive? We know from experience that there are no atoms with N ą Z ` 2. This is intuitively
clear: the ionization energy will be zero, when the total charge of the electrons compensates
the total charge of the nucleus, so that the atoms looks neutral at large distances. Can one
prove this mathematically?
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4. As N increases, the model becomes quickly intractable from an analytic point of view.
Can we say anything quantitative about, e.g., the ground state energy of the system for N
large?

In order to understand these questions, we shall first consider them in a simplified theory,
the Thomas-Fermi model. Later, we shall discuss the rigorous connection between Thomas-
Fermi theory and the original many-body problem.

9.4 Thomas-Fermi theory

Thomas-Fermi (TF) theory is an effective theory for many-body quantum mechanics, which
takes as only input the density of the quantum system, defined as:

ρpzq “ N

ż

dz2 . . . dzN |ψN pz, z2, . . . , zN q|
2 , (9.30)

where ψN is the many-body wave function of the system. Clearly, ρ ě 0,
ş

dz ρpzq “ N . The
quantity ρpzq{N describes the probability density for finding a particle at z “ px, σq. Any
wave function ψN determines uniquely a density ρ; clearly, the converse does not hold.

TF theory is much easier to study than the full many-body problem, due to the fact
that it depends on much less degrees of freedom (the density is a function on R3, while the
wave function is a function on R3N ). Later, we will discuss the rigorous validity of this
approximation, in the limit in which N,Z Ñ8.

The main approximation introduced in TF theory is the replacement of the kinetic energy
of the system with a functional of ρ. In order to understand this approximation, let us first
discuss a simple example.

9.4.1 The free Fermi gas

Consider a system of N spinless, noninteracting particles confined in a cubic box Λ, of side
1, with periodic boundary conditions: Λ “ T3, with T3 the unit torus in three dimensions.
Let us first start with N “ 1. The Hamiltonian is H “ ´∆, on L2pT3q. The eigenfunctions
of the Hamiltonian are given by plane waves:

Hfp “ |p|
2fp , fppxq “ e´ip¨x , p P p2πqZ3 . (9.31)

The vector p is called the momentum of the particle; the constraint p P p2πqZ3 is due
to the requirement of periodic boundary conditions. The energy of the quantum particle
with momentum p is |p|2. Consider now a system of N ą 1 particles. The Hamiltonian

is HN “
řN
j“1´∆j . Clearly, if pfpiq are eigenstates of the Laplacian, then their product

fp1
¨ ¨ ¨ fpN is an eigenstate of HN with energy

řN
i“1 |pi|

2. Since we are interested in fermionic
eigenstates, we shall consider antisymmetric combinations of products of plane waves, that
is Slater determinants:

1
?
N !

ÿ

π

sgnpπqfpπp1qpx1q ¨ ¨ ¨ fpπpNqpxN q . (9.32)

Notice that as soon as pi “ pj for i ‰ j, the Slater determinant vanishes (Pauli principle).
The fermionic ground state of HN is given by the Slater determinant with the smallest energy.
To find such state, we have to minimize the quantity

řN
i“1 |pi|

2 under the constraints that
pi ‰ pj for i ‰ j, and pi P p2πqZ3. The solution to this problem is provided by “filling the
Fermi ball”: one considers the N momenta pi with smallest modulus. In general, one has
that |p| ď pF , where the Fermi momentum pF scales as pF „ cN1{3 for some constant c ą 0.
Notice that in general not all states with momenta such that |p| ď pF will be occupied: the
Fermi ball might be only partially filled, and the ground state might be degenerate.

Suppose, for the sake of simplicity, that the number of particles N is chosen so that the
Fermi ball is completely filled. The ground state energy of the system is:

EN “
ÿ

pPp2πqZ3

|p|ďcN1{3

|p|2 “ N
ÿ

pPp2πqZ3

|p|ďcN1{3

1

N
|p|2 . (9.33)
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Changing variable, one has:

EN “ N1` 2
3

ÿ

pP 2π

N1{3 Z3

|p|ďc

1

N
|p|2 . (9.34)

As N Ñ8, the sum converges to an integral. One has:

EN “ N
5
3

ż

|p|ďc

dp |p|2 ` opN
5
3 q “ CN

5
3 ` opN

5
3 q . (9.35)

Thus, the ground state energy of the system, which is purely kinetic, scales as N5{3. More
generally, in d-dimensions one would find N1` 2

d . This asymptotic behavior is in agreement
with the Weyl law for the sum of the first N eigenvalues of the Dirichlet Laplacian, recall
Theorem 8.2. In the present case, however, the domain Ω has no boundary, hence Theorem
8.2 does not apply directly. One can actually show that the constant C is equal to the
constant appearing in the Weyl asymptotics. In the present example, the density ρpxq
associated to the ground state is constant: ρpxq “ ρ “ N . Thus, the kinetic energy of the
confined system scales as ρ5{3. This connection between kinetic energy and density turns out
to be much more general, and it plays a crucial role in defining the Thomas-Fermi energy
functional.

9.4.2 The Thomas-Fermi energy functional

In TF theory, the energy of the system is determined by the electron density via the following
functional (we omit the spin of the system for simplicity):

ETFpρq “ cTF

ż

dx ρpxq5{3 ´

ż

dx ρpxqV pxq `
1

2

ż

dxdy
ρpxqρpyq

|x´ y|
` U , (9.36)

where V pxq is the electrostatic potential generated by the K fixed nuclei, and U is the
electrostatic repulsion of the nuclei:

V pxq “
K
ÿ

j“1

Zj
|x´Rj |

, U “
K
ÿ

iăj“1

ZiZj
|Ri ´Rj |

. (9.37)

The constant cTF is positive, and later it will be suitably chosen, in order to connect with
the original many-body problem. The following discussion will only use that cTF ą 0.

The domain of the TF functional is given by the set of allowed densities:

FN “ tρ : R3 Ñ R | ρpxq ě 0 , }ρ}1 “ N , ρ P L5{3pR3qu . (9.38)

As we shall prove later, the TF functional is well-defined on this domain. The TF ground
state energy is:

ETF
N “ inf

ρPFN
ETFpρq . (9.39)

Before discussing the mathematical properties of the functional, let us discuss its physical
origin. The first term in Eq. (9.36) takes into account the kinetic energy of the system. As
we have seem for a homogeneous electron gas, Section 9.4.1, the kinetic energy of the system
grows as ρ5{3. For a general system, one cannot expect the density ρpxq associated to the
ground state to be constant. Nevertheless, in general it will vary on a scale that is much
smaller that the mean interparticle distance; to approximate the ground state, one fills a
“local” Fermi ball, with radius ρpxq1{3, and integrates over space. This yields the

ş

ρpxq5{3

term in the TF energy functional. This approximation of the kinetic energy turns out to be
rigorously justified, as we shall discuss later with the Lieb-Thirring kinetic energy inequality.

The second term describes the electrostatic interaction between the electrons and the
nuclei. In the full many-body problem, this is given by:

xψN ,
N
ÿ

i“1

K
ÿ

j“1

Zj
|xi ´Rj |

ψN y . (9.40)
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We have:

xψN ,
N
ÿ

i“1

K
ÿ

j“1

Zj
|xi ´Rj |

ψN y “

N
ÿ

i“1

K
ÿ

j“1

Zj

ż

dx1 . . . dxN |ψN px1, . . . , xN q|
2 1

|xi ´Rj |

“ N
K
ÿ

j“1

Zj

ż

dx1 . . . dxN |ψN px1, . . . , xN q|
2 1

|x1 ´Rj |

”

ż

dx ρpxqV pxq , (9.41)

where in the second step we used the (anti)symmetry of the wave function. The right-hand
side reproduces exactly the second term in the TF energy functional: hence, no approxima-
tion is made here. Consider now the third term. This describes the electrostatic repulsion of
the electrons: it appears as a classical electrostatic energy, generated by the charge density
ρpxq. In the full many-body problem, this terms corresponds to:

xψN ,
N
ÿ

iăj“1

1

|xi ´ xj |
ψN y . (9.42)

Consider the electrons as classical point particles, with positions xi; treat them as indepen-
dent, identically distributed random variables, with probability distributions ρpxq{N . The
law of the large numbers implies:

1

N

ÿ

j:j‰j

1

|xi ´ xj |
»

ż

dx
ρpxq

N

1

|xi ´ x|
. (9.43)

Under this approximation, we replace Eq. (9.42) by:

xψN ,
N
ÿ

iăj“1

1

|xi ´ xj |
ψN y “

1

2
xψN ,

N
ÿ

i‰j

1

|xi ´ xj |
ψN y

»
1

2
xψN ,

N
ÿ

i“1

wpxiqψN y , (9.44)

with wpxq “ pρ ˚ | ¨ |´1qpxq. The big conceptual simplification here is that we replaced a sum
of two-body operators by a sum of one-body operators, exploiting an averaging principle.
Then, we can repeat the computation in Eq. (9.41). We have:

1

2
xψN ,

N
ÿ

i“1

wpxiqψN y “
1

2

ż

dxdy ρpxqρpyq
1

|x´ y|
, (9.45)

which is precisely the third term appearing in the TF energy functional. Finally, the fourth
term appearing in the TF functional is equal to the corresponding term appearing in the full
many-body problem, hence no further approximation is introduced at this point.

The mathematical foundations of TF theory have been developed by Lieb and Simon
in the seventies, see [2] for a review, fifty years after the introduction of the functional by
Thomas and Fermi. It is a milestone in mathematical physics; its development played a
crucial role in understanding the problem of stability of matter for large quantum systems.
Here we shall discuss the mathematics of the TF energy functional, and in particular how
to solve the problems 1.-4. spelled out in Section 9.3 within the framework of TF theory.
Later, we will show how the TF approximation can be rigorously justified starting from the
original many-body problem.

Let us now prove that the TF energy functional is well-defined on its domain FN . The
finiteness of the first term in Eq. (9.36) follows from ρ P L5{3. Consider the second term.
We rewrite it as:

ż

dx ρpxqV pxq “

ż

dx ρpxqVăpxq `

ż

dx ρpxqVąpxq , (9.46)
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where:

Văpxq “
K
ÿ

j“1

Zj
|x´Rj |

χp|x´Rk| ď 1q , Vąpxq “
K
ÿ

j“1

Zj
|x´Rj |

χp|x´Rj | ą 1q . (9.47)

Consider the first term. By Hölder inequality, we have:
ż

dx ρpxq
χp|x´Rj | ď 1q

|x´Rj |
ď }ρ}5{3

›

›

›

χp| ¨ | ď 1q

| ¨ |

›

›

›

5{2
(9.48)

which is finite, thanks to the fact that ρ P L5{3. The second term can be estimated immedi-
ately, using that:

ż

dx ρpxq
χp|x´Rj | ą 1q

|x´Rj |
ď }ρ}1 “ N . (9.49)

All together:
ż

dx ρpxqV pxq ď C
ÿ

j“1

Zjp}ρ}1 ` }ρ}5{3q . (9.50)

Finally, consider the third term in Eq. (9.36). This will be estimated using the Hardy-
Littlewood-Sobolev inequality. Let f P LppRdq and h P LrpRdq. Then, for 1

p `
1
r `

λ
d “ 2:

ˇ

ˇ

ˇ

ż

dxdy fpxqhpyq
1

|x´ y|λ

ˇ

ˇ

ˇ
ď Cpλ, d, pq}f}p}h}r . (9.51)

See [3] for a proof. To apply this inequality to the TF functional, we choose λ “ 1, d “ 3,
and f “ h “ ρ. Choosing p “ r, one has p “ 6{5; hence:

Dpρ, ρq “
1

2

ż

dxdy ρpxqρpyq
1

|x´ y|
ď C}ρ}26{5 . (9.52)

The right-hand side is finite, since by interpolation:

}ρ}6{5 ď }ρ}
λ
1 }ρ}

1´λ
5{3 , (9.53)

with λ “ 7{12. This shows that ETF is well defined on FN .

9.4.3 Existence and uniqueness of the minimizer in DN

In this section we shall start the study of the variational problem associated to the TF
functional. Before starting, let us comment about the fact that in general one does not
expect the minimizer to exists for all values of N . In fact, one expects the system to be able
to bind a finite number of electrons, dependent on the total nuclear charge Ztot “

řK
j“1 Zj .

This is due to the fact that, for N “ Ztot, the total charge of the electrons is equal to the
total charge of the nuclei. Hence, at large distances, the system will look charge neutral, and
will not be able to attract any further electron. This is confirmed by the fact that in nature
one does not observe stable atoms with N ą Ztot ` 2.

Mathematically, one does not expect the minimizer to exists in FN , for any N . Calling
ρ˚ the minimizer, it might happen that:

ż

dx ρ˚pxq ă N , (9.54)

which means that ρ˚ R FN . Therefore, in order to avoid this problem for the moment, we
will consider the functional on a larger domain,

DN “
!

ρ P L1 X L5{3 | ρ ě 0,

ż

dx ρpxq ď N
)

. (9.55)

This new space allows to take into account the “loss” of electrons at infinity. We will first
prove the existence and uniqueness of the minimizer in this domain, and then later we will
prove that, for suitable values of N , the minimizer actually belongs to FN (particles are not
lost at infinity).
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Theorem 9.4 (Existence of minimizers in DN .). There exists ρ˚ P DN such that the follow-
ing is true:

inf
ρPDN

ETFpρq “ ETFpρ˚q . (9.56)

The proof will be based on the following auxiliary result.

Lemma 9.5. Let ρ1, ρ2 in DN , and ρj Ñ ρ2 weakly in Lp for all p P p1, 5{3s. Then:

lim
jÑ8

Dpρ1, ρjq “ Dpρ1, ρ2q , Dpρ1, ρ2q ď Dpρ1, ρ1q
1{2Dpρ2, ρ2q

1{2 . (9.57)

Proof. (of Lemma 9.5) Let us prove the first property. To this end, we rewrite:

Dpρ1, ρjq “
1

2

ż

dxdy ρ1pyqρjpxq
1

|x´ y|
”

ż

dx ρjpxqfpxq , (9.58)

where fpxq “ p1{2qpρ1 ˚ | ¨ |
´1qpxq. We decompose the function f as f “ fă ` fą, where:

făpxq “
1

2

ż

dy ρ1pyq
χp|x´ y| ď 1q

|x´ y|
, fąpxq “

1

2

ż

dy ρ1pyq
χp|x´ y| ą 1q

|x´ y|
(9.59)

Consider fă. By Hölder inequality,

}fă}8 ď }ρ1}5{3

›

›

›

χp| ¨ | ď 1q

| ¨ |

›

›

›

5{2
ă 8 (9.60)

and:

}fă}1 “

ż

dxdy ρ1pxq
χp|x´ y| ď 1q

|x´ y|
“ C}ρ1}1 ă 8 . (9.61)

Therefore, by interpolation fă P L
ppR3q for all p P r1,8q. Hence, by weak convergence:

lim
jÑ8

ż

dx ρjpxqfăpxq “

ż

dx ρ˚pxqfăpxq . (9.62)

Consider now fąpxq. By Young’s inequality for convolutions,

}fą}p ď }ρ1}q

›

›

›

χp| ¨ | ą 1q

| ¨ |

›

›

›

r
(9.63)

with 1
p “

1
q `

1
r ´ 1 ď 1

r ă
1
3 . Therefore, p ą 3. Using that Lp is equal to the dual of Lp

1

with p1 P p1, 3{2q, by weak convergence:

lim
jÑ8

ż

dx ρjpxqfąpxq “

ż

dx ρ˚pxqfąpxq . (9.64)

This together with Eq. (9.62) proves the first claim in Eq. (9.57). Consider now the second
claim. To prove it, we proceed as follows. Let hpxq “ Ce´c|x|, and let Kpxq “ ph ˚ hqpxq.
Notice that K is a radial function: Kpxq “ Kp|x|q. Let us choose the constant C such that:

ż 8

0

dtKptq “
1

2
. (9.65)

In particular, by a change of variables:

1

2|x´ y|
“

ż 8

0

dtKpt|x´ y|q . (9.66)

We can further rewrite this as:

1

2|x´ y|
“

ż 8

0

dt t3
ż

dz htpx´ zqhtpy ´ zq , htpx´ zq “ hptpx´ zqq . (9.67)
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Therefore, using this decomposition of the Coulomb potential:

Dpρ1, ρ2q “

ż

dxdy ρ1pxqρ2pyq

ż 8

0

dt t3
ż

dz htpx´ zqhtpy ´ zq

“

ż 8

0

dt t3
ż

dz pρ1 ˚ htqpzqpρ2 ˚ htqpzq (9.68)

where the exchange of integrations is allowed by Fubini’s theorem. By Cauchy-Schwarz
inequality:

Dpρ1, ρ2q ď

´

ż 8

0

dt t3
ż

dz pρ1 ˚ htq
2pzq

¯1{2´
ż 8

0

dt t3
ż

dz pρ2 ˚ htq
2pzq

¯1{2

“ Dpρ1, ρ1q
1{2Dpρ2, ρ2q

1{2 . (9.69)

This concludes the proof of the second of Eq. (9.57), and of the Lemma.

We are now ready to prove Theorem 9.4.

Proof. Let ρj be a minimizing sequence in DN . The bounds used to prove the wellposedness
of the TF functional on FN easily imply that:

ETF pρjq ě a}ρj}
5{3
5{3 ´ bN . (9.70)

Therefore, using that |ETF pρjq| ď C (which follows from the finiteness of the j Ñ 8 limit),
the above estimate allows to prove an a priori bound on }ρj}5{3:

}ρj}5{3 ď K , (9.71)

for some constant K independent of j. Since }ρj}1 ď N for all j, by interpolation we get:

}ρj}p ď C , @p P r1, 5{3s . (9.72)

By Banach-Alaoglu theorem, we know that, up to the extraction of a subsequence, ρj Ñ ρ˚
weakly in Lp, for p P p1, 5{3s (one can actually prove that the limit is independent of p).
Also, one can easily check that ρ˚ P DN . Let us first prove that ρ˚ ě 0. Suppose it is false.
Then, there exists a bounded set A Ă R3 such that:

ż

dx ρ˚pxqχApxq ă 0 . (9.73)

However, since by weak convergence
ş

dx ρ˚pxqχApxq “ limjÑ8

ş

dx ρjpxqχApxq, and ρj ě 0,
Eq. (9.73) would imply a contradiction. Thus, ρ˚ ě 0. In a similar way, one can prove that
}ρ˚}1 ď N . Suppose it is false. Then, there exists a bounded set A such that:

ż

dx ρ˚pxqχApxq ą N . (9.74)

Repeating the same argument as before, this implies a contradiction. Thus, ρ˚ P DN . To
prove the claim (9.56), we shall show that:

ETFpρ˚q ď ETF . (9.75)

Consider the kinetic energy contribution. By the lower semicontinuity of norms, one gets:

lim inf
j

}ρj} ě }ρ˚}5{3 . (9.76)

Consider now the electrons-nuclei interaction. We claim that:

lim
j

ż

dx ρjpxqV pxq “

ż

dx ρ˚pxqV pxq . (9.77)
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To prove this, we write:
V pxq “ Văpxq ` Vąpxq , (9.78)

with:

Văpxq “
K
ÿ

j“1

Zj
|x´Rj |

χp|x´Rj | ď 1q , Vąpxq “
K
ÿ

j“1

Zj
|x´Rj |

χp|x´Rj | ą 1q . (9.79)

Consider first Vą. This function belongs in Lp for p ą 3, which is the dual of Lp
1

, for
p1 P p1, 3{2q. Since ρj Ñ ρ˚ in Lp with p1, 5{3s and p1, 3{2q Ă p1, 5{3s, we have:

lim
jÑ8

ż

dx ρjpxqVąpxq “

ż

dx ρ˚pxqVąpxq . (9.80)

Consider now Vă. This function belongs to L5{2, which is the dual of L5{3. Thus, by weak
convergence:

lim
jÑ8

ż

dx ρjpxqVăpxq “

ż

dx ρ˚pxqVăpxq . (9.81)

Eqs. (9.80), (9.81) imply Eq. (9.77). Finally, we claim that:

lim inf
j

Dpρj , ρjq ě Dpρ˚, ρ˚q . (9.82)

The proof of this inequality follows from Lemma 9.5. From

Dpρ˚, ρ˚q “ lim
jÑ8

Dpρ˚, ρjq (9.83)

and:
Dpρ˚, ρjq ď Dpρ˚, ρ˚q

1{2Dpρj , ρjq
1{2 , (9.84)

we get:
lim inf

j
Dpρj , ρjq

1{2 ě Dpρ˚, ρ˚q
1{2 (9.85)

which proves Eq. (9.83). All in all,

ETF “ lim
j
ETFpρjq ě lim inf

j
cTF}ρj}

5{3
5{3 ´ lim

j

ż

dxV pxqρjpxq ` lim inf
j

Dpρj , ρjq

ě ETFpρ˚q , (9.86)

which concludes the proof of the theorem.

To conclude, we will prove convexity of the TF energy functional, that will be important
in establishing the uniqueness of the minimizer, and to understand the behavior in N of the
TF ground state energy.

Lemma 9.6 (Convexity of the TF functional.). The domain DN is convex. Moreover, the
TF functional is strictly convex: for any ρ1, ρ2 P DN , ρ1 ‰ ρ2 and λ P p0; 1q:

ETFpλρ1 ` p1´ λqρ2q ă λETFpρ1q ` p1´ λqETFpρ2q . (9.87)

Proof. The convexity of DN is a simple exercise (if ρ1 and ρ2 belong to DN then it is easy to
check that the convex combination ρλ “ λρ1 ` p1´ λqρ2 belongs to DN ). Next, let us prove
the convexity of the TF functional. We shall study the different contributions separately.

Consider the kinetic energy term cTF

ş

dx ρpxq5{3. This term is strictly convex, thanks to
the strict convexity of the function s ÞÑ s5{3, for s ě 0.

Consider the electron-nuclei interaction,
ş

dx ρpxqV pxq. Being linear in ρ, this term is
trivially convext.

Finally, consider the electron-electron interaction, Dpρ, ρq. We have:

Dpλρ1 ` p1´ λqρ2, λρ1 ` p1´ λqρ2q “ λ2Dpρ1, ρ1q ` p1´ λq
2Dpρ2, ρ2q ` 2λp1´ λqDpρ1, ρ2q

(9.88)
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By Lemma 9.5, Dpρ1, ρ2q ď Dpρ1, ρ1q
1{2Dpρ2, ρ2q

1{2 ď p1{2qpDpρ1, ρ1q `Dpρ2, ρ2qq. Hence,

Dpλρ1 ` p1´ λqρ2, λρ1 ` p1´ λqρ2q ď λ2Dpρ1, ρ1q ` p1´ λq
2Dpρ2, ρ2q

`λp1´ λq
´

Dpρ1, ρ1q `Dpρ2, ρ2q

¯

ď λDpρ1, ρ1q ` p1´ λqDpρ2, ρ2q . (9.89)

This proves convexity of the electron-electron interaction, and concludes the proof of con-
vexity of ETFpρq.

Uniqueness of the minimizer is an immediate consequence of strict convexity.

Corollary 9.7 (Uniqueness of the minimizer.). Let ρ1, ρ2 be two minimizers of ETFpρq in
DN . Then, ρ1 “ ρ2.

Proof. Suppose ρ1 ‰ ρ2. By convexity of DN , ρλ “ λρ1 ` p1´ λqρ2 P DN , for λ P p0; 1q. By
convexity of the TF functional:

ETFpρλq ă λETFpρ1q ` p1´ λqETFpρ2q “ λETF
N ` p1´ λqETF

N ” ETF
N . (9.90)

But this is absurd, since ETF
N is the smallest energy that can be reached in DN . Hence

ρ1 “ ρ2.

9.4.4 Ionization in TF theory

In this section we shall investigate the behavior of the TF energy as a function of the
number of particles N . In particular, we would like to understand under which conditions
the ionization energy is positive: ETF

N`1 ă ETF
N . As we shall see, the validity of this inequality

is related to whether the minimizer in DN is actually in FN . We will start from the following
lower bound on the TF energy, that improves on (9.70). The bound shows that the energy
cannot be arbitrarily negative as N increases.

Theorem 9.8. There exists a universal constant C ą 0 such that, for all ρ P DN :

ETFpρq ě ´CZ
5{3
tot

´

K
ÿ

j“1

Z2
j

¯1{3

. (9.91)

The proof of this theorem is based on the following important result, see [3] for a proof.

Theorem 9.9 (Newton’s theorem). Let µ be a rotation invariant measure on R3. Then:

φpxq :“

ż

R3

µpdxq
1

|x´ y|
“

1

|x|

ż

|y|ă|x|

µpdxq `

ż

|y|ą|x|

1

|y|
µpdxq . (9.92)

If one thinks of µ as describing a charge distribution, the function φpxq has the inter-
pretation of electric potential generated by µ. As a consequence, this theorem shows that
spherically symmetric charged objects are equivalent to pointlike charges. Another impor-
tant consequence of this result is that the electric potential generated by a uniformly charged
sphere is constant inside the sphere.

Proof. (of Theorem 9.8.) TheN -dependence of the nonoptimal lower bound (9.70) came from
a naive control of the tail of the Coulomb attraction between the nuclei and the electrons.
Here, we will control the growth in N of this energetic contribution with the positive mutual
Coulomb repulsion of the electrons.

To begin, we write:
V pxq “ Văpxq ` Vąpxq , (9.93)

where, for R ą 0 to be chosen later:

Vąpxq “
K
ÿ

j“1

Zj min
! 1

|x´Rj |
,

1

R

)

. (9.94)

110



The function Vąpxq captures the long range contribution to the electron-nuclei electro-
static interaction, while Văpxq takes into account the singularity. By Newton’s theorem,

Zj min
!

1
|x´Rj |

, 1
R

)

is the electrostatic potential generated by a uniformly charged sphere,

centered in Rj , with radius R:

Zj min
! 1

|x´Rj |
,

1

R

)

“

ż

µjpdxq
1

|x´ y|
, µjpxq “

Zj
4πR2

δp|x´Rj | ´Rq . (9.95)

Therefore,

Vąpxq “

ż

µpdxq
1

|x´ y|
, µpxq “

K
ÿ

j“1

µjpxq . (9.96)

Hence:
ż

dxVąpxqρpxq “

ż

dxdy µpdyqρpxq
1

|x´ y|
” 2Dpµ, ρq , (9.97)

where, for two measures µ1, µ2, not necessarily absolutely continuous:

Dpµ1, µ2q “
1

2

ż

µ1pdxqµ2pdyq
1

|x´ y|
. (9.98)

We then rewrite the TF energy functional as:

ETFpρq “ cTF}ρ}
5{3
5{3 ´

ż

dxVăpxqρpxq ´ 2Dpµ, ρq `Dpρ, ρq ` U

“ cTF}ρ}
5{3
5{3 ´

ż

dxVăpxqρpxq `Dpρ´ µ, ρ´ µq ´Dpµ, µq ` U . (9.99)

The next crucial remark is that Dpρ´µ, ρ´µq, the electrostatic interaction of the net charge
distribution ρ´ µ, is positive: Dpρ´ µ, ρ´ µq ě 0. The proof of this fact follows again from
the representation of the Coulomb interaction as in Eq. (9.67). In fact, setting ν “ ρ´ µ:

Dpν, νq “
1

2

ż

νpdxqνpdyq
1

|x´ y|
“

ż

νpdxqνpdyq

ż 8

0

dt t3
ż

dz htpx´ zqhtpy ´ zq

“

ż 8

0

dt t3
ż

dz pν ˚ htqpzq
2 ě 0 (9.100)

where in the last step we exchanged integrations thanks to Fubini’s theorem. Using this fact,
we can bound from below the TF energy as:

ETFpρq ě cTF}ρ}
5{3
5{3 ´

ż

dxVăpxqρpxq ´Dpµ, µq ` U . (9.101)

Next, let us estimate the energetic contribution due to Vă. We have:

Văpxq “ V pxq ´ Vąpxq “

K
ÿ

j“1

Zj

´ 1

|x´Rj |
´min

! 1

|x´Rj |
,

1

R

)¯

“

K
ÿ

j“1

Zj

´ 1

|x´Rj |
´

1

R

¯

χp|x´Rj | ď Rq . (9.102)

Therefore, by Hölder inequality:

ż

dx ρpxqVăpxq ď

K
ÿ

j“1

Zj

ż

dx
1

|x´Rj |
ρpxqχp|x´Rj | ď Rq

ď
ÿ

j

Zj}ρ}5{3

›

›

›

χp| ¨ | ď 1q

| ¨ |

›

›

›

5{2
ď CR1{5

ÿ

j

Zj}ρ}5{3 . (9.103)
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Finally, let us consider the Dpµ, µq term. We have:

Dpµ, µq “
1

2

ż

µpdxqµpdyq
1

|x´ y|

“
1

2

ż

µpdxqVąpxq

“
1

2

ż

dx
K
ÿ

j“1

Zj
4πR2

δp|x´Rj | ´Rq
K
ÿ

i“1

Zimin
! 1

|x´Ri|
,

1

R

)

“
1

2

ÿ

i,j

ZiZj
4πR2

ż

dx δp|x| ´Rqmin
! 1

|x´Ri `Rj |
,

1

R

)

. (9.104)

Separating the i “ j terms from the i ‰ j terms:

Dpµ, µq “
1

2

ÿ

i‰j

ż

dx δp|x| ´Rq
1

|x`Ri ´Rj |

ZiZj
4πR2

`
1

2

ÿ

i

ż

dx δp|x| ´Rq
1

|x|

Z2
i

4πR2

ď
ÿ

iăj

ZiZj
|Ri ´Rj |

`
1

2

ÿ

i

Z2
i

R
” U `

1

2

ÿ

i

Z2
i

R
. (9.105)

Eqs. (9.101), (9.103), (9.105) imply:

ETFpρq ě cTF}ρ}
5{3
5{3 ´ CZtot}ρ}5{3R

1{5 ´
1

2R

K
ÿ

i“1

Z2
i . (9.106)

The final statement, Eq. (9.91), follows optimizing over R (that is, choosing the R ą 0 that
maximizes the right-hand side).

The next lemma is an immediate consequence of convexity and of the uniform lower
bound.

Lemma 9.10. The TF ground state energy ETF
N is convex, nonincreasing and bounded below.

Proof. Boundedness follows from Theorem 9.8. Let us prove convexity. Let ρ1 be the
minimizer in DN1 and ρ2 be the minimizer in DN2 . We have:

ETF
λN1`p1´λqN2

ď ETFpλρ1 ` p1´ λqρ2q (9.107)

ď λETFpρ1q ` p1´ λqETFpρ2q “ λETF
N1
` p1´ λqETF

N2
,

which proves convexity. To prove that the energy is nonincreasing in N , we simply notice
that the set DN grows with N , hence DN can only decrease.

The previous result implies that the limit:

lim
NÑ8

ETF
N “ E8 (9.108)

exists. We define the critical number of particles Nc as:

Nc “ inf
!

N | ETF
N “ E8

)

. (9.109)

Notice that we do not know yet whether Nc ă 8. The next theorem characterizes the shape
of ETF

N as a function of N .

Theorem 9.11. For N ď Nc, there exists a unique minimizer on ETF in FN . The function
ETF
N is strictly convex and decreasing in r0, Ncs. If Nc ă 8 and N ą Nc, there is no

minimizer in FN . The function ρNc is the unique minimizer in DN . Moreover, ETF
N is

constant in rNc,8q.
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Proof. Let N ď Nc and let ρ˚ be the minimizer of ETF in DN . We claim that:
ż

dx ρ˚pxq “ N . (9.110)

Suppose that
ş

ρ˚ “ N 1 ă N . Then, ρ˚ P DN 1 , which implies that ETF
N 1 “ ETF

N . Since
ETF
N is nonincreasing, ETF

¨ is constant in rN 1, N s. Also, by convexity ETF
¨ is constant for

all N2 ě N 1, which implies that N 1 ě Nc. This however contradicts N 1 ă N ď Nc. Hence,
N 1 “ N . The above argument also proves strict convexity.

Suppose now that Nc ă 8 and that N ą Nc. Suppose that there is a minimizer in FN .
Then, consider the trial state:

1

2

´

ρNc ` ρN

¯

(9.111)

which has pN `Ncq{2 particles. We have:

ETF
Nc
“ E

´1

2
pNc `Nq

¯

ď ETF

´1

2
pρNc

` ρN q
¯

ă
1

2

´

ETFpρNc
q ` ETFpρN q

¯

“
1

2
pETF

Nc
` ETF

N q

“ ETF
Nc

. (9.112)

The first step follows from the (assumed) constant profile of ETF
N for N ě Nc; the second

from the variational principle; the third from strict convexity (since Nc ă N , ρNc
‰ ρN !);

the fourth from the fact that ρN and ρNc are minimizers; and the last from the fact that ETF
N

is constant for N ą Nc. This gives a contradiction, and shows that there is no minimizer in
FN for N ą Nc.

All we are left to do is to determine the value of Nc. To do this, we shall use that the
TF minimizer satisfies a self-consistent equation, called the TF equation.

Theorem 9.12. Let N ď Nc. Then, there exists µ ě 0 such that the unique minimizer
ρN P FN satisfies the equation:

γρ
2{3
N pxq “

´

V pxq ´
1

| ¨ |
˚ ρN pxq ´ µ

¯

`
, pγ “

5

3
cTFq . (9.113)

For N “ Nc, µ “ 0.

Remark 9.13. Eq. (9.113) is called the Thomas-Fermi equation. One can actually prove
that solutions of the TF equation in L1 X L5{3 are minimizers of the TF functional. The
number of particles is determined by the chemical potential µ.

Proof. Let ρN be the minimizer in FN . For any δ ą 0, for any bounded function f such
that:

ż

dxχpρN pxq ě δqfpxq “ 0 , (9.114)

define:
ρε “ ρN ` εfpxqχpρN pxq ě δq . (9.115)

For ε small enough (dependent of δ), ρε ě 0. Also, the assumption (9.114) implies that
}ρε}1 “ }ρN }1 “ N . Finally, since f is bounded and χpρN pxq ě δq is supported on a
bounded set, ρε P L

5{3. Hence, ρε P FN , and so:

ETFpρεq ě ETFpρN q . (9.116)

Together with differentiability in a neighbourhood of ε “ 0 (which can be easily proven),
this implies:

0 “
d

dε
ETFpρεq |ε“0 . (9.117)

Writing explicitly the right-hand side, one has:

0 “

ż

ρNěδ

dx
´

γρ
5{3
N pxq ` pρN ˚

1

| ¨ |
qpxq ´ V pxq

¯

fpxq (9.118)
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for all bounded f such that
ş

ρN pxqěδ
dx fpxq “ 0. The arbitrariness of f in this class of

functions implies that:

γρ
2{3
N pxq `

1

| ¨ |
˚ ρN pxq ´ V pxq “ ´µ , (9.119)

for some constant µ, and for all x such that ρN pxq ě δ. Being ρN nonnegative, this implies:

γρ
2{3
N pxq “

´

V pxq ´
1

| ¨ |
˚ ρN pxq ´ µ

¯

`
(9.120)

for all x such that ρN pxq ą δ. Taking the δ Ñ 0 limit, we found that ρN pxq satisfies the TF
equation for all x such that ρN pxq ą 0. Let us now explore the region tx | ρN pxq “ 0u. To
this end, consider the function:

ρεpxq “ ρN pxq ` εfpxq , (9.121)

for ε ě 0, f P L5{3 X L1, f ě 0 on tx | ρN pxq “ 0u and
ş

dx fpxq “ 0. The function ρε
belongs to FN . Hence, ETFpρεq ě ETFpρN q for ε ě 0; taking the right derivative, one gets:

0 ď

ż

´

γρN pxq
2{3 ´ V pxq `

1

| ¨ |
˚ ρN pxq

¯

fpxq dx . (9.122)

Next, we split the integral in the right-hand side as:
ż

dx p. . .q “

ż

ρN pxq“0

dx p. . .q `

ż

ρN pxqą0

dx p. . .q ; (9.123)

using the previous result for the region ρN pxq ą 0, we have:

0 ď

ż

ρN pxq“0

dx
´

γρN pxq
2{3 ´ V pxq `

1

| ¨ |
˚ ρN pxq

¯

fpxq ´ µ

ż

ρN pxqą0

dx fpxq

“

ż

ρN pxq“0

dx
´

γρN pxq
2{3 ´ V pxq `

1

| ¨ |
˚ ρN pxq ` µ

¯

fpxq (9.124)

where in the last step we used that
ş

ρN pxq“0
dx fpxq “ ´

ş

ρN pxqą0
dx fpxq. The arbitrariness

of f implies that:

´ µ` V pxq ´
1

| ¨ |
ρN pxq ď 0 on x s.t. ρN pxq “ 0. (9.125)

Taking the positive part:

0 “
´

´ µ` V pxq ´
1

| ¨ |
ρN pxq

¯

`
on x s.t. ρN pxq “ 0. (9.126)

Equivalently,

γρ
2{3
N pxq “

´

´ µ` V pxq ´
1

| ¨ |
ρN pxq

¯

`
on x s.t. ρN pxq “ 0. (9.127)

Eqs. (9.127), (9.120) give the TF equation for all values of x. To conclude, let us comment
on the chemical potential µ. Since ρN pxq, V pxq and p 1

|¨|
˚ ρN qpxq decay at infinity, the TF

equation implies that µ ě 0 (otherwise the right-hand side would be nonzero for |x| Ñ 8,

which would contradict decay for ρ
2{3
N ). Let us prove that for N “ Nc one as µ “ 0.

We repeat the trial state argument, with ρε “ ρNc
` εf . We only assume that ε ě 0,

f ě 0 and that f P L1 X L5{3. In this way, the number of particles is not Nc; this is
however not important, since ρNc is the density with the smallest energy. Hence, one has
ETFpρεq ě ETFpρNcq, for ε ě 0. Taking the right derivative and proceeding as above:

γρ
2{3
Nc
pxq ě

´

V pxq ´ ρ ˚ V pxq
¯

`
; (9.128)
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by the TF equation:
´

V pxq ´ ρ ˚ V pxq ´ µ
¯

`
ě

´

V pxq ´ ρ ˚ V pxq
¯

`
. (9.129)

Notice that the function V pxq´|¨ |´1˚ρNc
pxq has to be positive for some x, otherwise the TF

equation would prove that ρNc
“ 0. The assumption ρNc

P L1XL5{3 implies that | ¨ | ˚ρNc
pxq

is bounded, and V pxq Ñ `8 in proximity of the nuclei; hence V pxq ´ | ¨ |´1 ˚ ρNc
pxq is

positive in a neighbourhood of the nuclei. For these values of x, Eq. (9.129) implies that
µ “ 0. This concludes the proof of Theorem 9.12.

The function:

φpxq “ V pxq ´
1

| ¨ |
˚ ρN pxq , (9.130)

is called the Thomas-Fermi potential. It describes the net electrostatic potential generated
by the nuclei plus the electrons. In terms of this function the TF equation reads:

γρ
2{3
N pxq “

´

φpxq ´ µ
¯

`
. (9.131)

Therefore, the TF minimizer is supported for the values of x such that φpxq ě µ. This is
certainly true if x is close enough to one of the nuclei, since V pxq Ñ 8 there; hence, the
TF equation is telling us that the electrons are localized close to the nuclei, as expected.
The next proposition is an important property of the TF functional, that will be crucial to
compute the critical number of particles Nc.

Proposition 9.14. Let N ď Nc. Then:

φpxq ě 0 . (9.132)

Proof. Let ∆ be the distributional Laplacian. Then:

∆
1

| ¨ |
“ ´δp¨q , (9.133)

with δp¨q the Dirac’s delta. Hence, away from the nuclei:

∆φpxq “ ρN pxq . (9.134)

Now, using the TF equation we can rewrite the density as a function of φ as:

ρN “
´

γ´1
´

V pxq ´
1

| ¨ |
˚ ρN pxq ´ µ

¯

`

¯3{2

” γ´3{2pφpxq ´ µq
3{2
` . (9.135)

Therefore, the TF equation is equivalent to the following PDE:

∆φpxq “ γ´3{2pφpxq ´ µq
3{2
` . (9.136)

Let us consider the set:
A “ tx P R3 | φpxq ă 0u . (9.137)

Notice that the nuclei do not belong to such set, since V pxq Ñ 8 there and ρN ˚ | ¨ |
´1 is

bounded. Away from the nuclei, the function φpxq is continuous, and hence A is open. By
continuity the function φpxq vanishes on the boundary of A. Notice that the set A need not be
compact; nevertheless, the function φpxq is also vanishing at infinity, since | ¨ |´1 ˚ρN pxq Ñ 0
as |x| Ñ 8, see Chapter 2 of [3]. Hence, φpxq vanishes on the boundary of A, and at infinity.
In A, the function ´φ is harmonic:

∆p´φqpxq “ 0 for all x P A. (9.138)

By the maximum principle for harmonic functions [3, 1], the function ´φ reaches its max-
imum on the boundary of A (or at infinity, if A is unbouded). (Strictly speaking, the
maximum principle holds for open and connected domains; in case A is not connected, we
split A into connected components, and we repeat the argument in each component.)

Hence ´φpxq ď 0 for all x P A, which implies that φpxq “ 0 in A. That is, A is the empty
set. This proves that φpxq ě 0 for all x.
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To conclude the section, we compute the critical number of particles Nc.

Theorem 9.15. Nc “ Ztot.

Proof. The starting point is Newton’s theorem, for a uniformly distributed charge on a sphere
of radius r:

1

4πr2

ż

|ω|“r

dω
1

|ω ´ y|
“ min

!1

r
,

1

|y|

)

. (9.139)

We then compute:

1

4πr2

ż

|ω|“r

dω φpωq “

K
ÿ

j“1

Zj
1

4πr2

ż

|ω|“r

dω
1

|ω ´Rj |
´

1

4πr2

ż

|ω|“r

dω
´ 1

| ¨ |
˚ ρN

¯

pωq

“

K
ÿ

j“1

Zj min
!1

r
,

1

|Rj |

)

´
1

4πr2

ż

dy ρN pyqmin
! 1

|y|
,

1

r

)

ě 0 . (9.140)

where the last inequality follows from Proposition 9.14. Taking r ě |Rj | for all j, we have:

Ztot

r
´

ż

|y|ďr

dy min
!1

r
,

1

|y|

)

ρN pyq (9.141)

which implies:

Ztot ě

ż

|y|ďr

dy ρN pyq . (9.142)

Taking the r Ñ8 limit:
Ztot ě N ñ Ztot ě Nc . (9.143)

To conclude the proof, suppose now that Ztot ą Nc. Let ρNc be the minimizer with Nc

particles. By the TF equation:

γρ
2{3
Nc
pxq “

´

V pxq ´
1

| ¨ |
˚ ρNc

pxq
¯

`

“ V pxq ´
1

| ¨ |
˚ ρNc

pxq (9.144)

where in the last step we used again the positivity of the TF potential. Averaging over a
sphere of radius r we get:

γ

4πr2

ż

|ω|“r

dω ρ
2{3
Nc
pωq “

1

4πr2

ż

|ω|“r

dω φpωq . (9.145)

On one hand, by concavity of s ÞÑ s2{3:

1

4πr2

ż

|ω|“r

dω ρNcpωq
2{3 ď

´ 1

4πr2

ż

|ω|“r

dω ρNcpωq
¯2{3

; (9.146)

on the other hand, by Newton’s theorem, taking r ě |Rj | for all j:

1

4πr2

ż

dω φpωq “
Ztot

r
´

ż

dy min
!1

r
,

1

|y|

)

ρNcpyq ě
Ztot

r
´

ż

dy
1

r
ρNcpyq “

Ztot ´Nc

r
.

(9.147)
All together, for r ě |Rj |:

´ 1

4πr2

ż

|ω|“r

dω ρNcpωq
¯2{3

ě
Ztot ´Nc

γr
ě
C

r
(9.148)
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for some C ą 0, since by assumption Ztot ą Nc. Now, let rewrite the number of particles
Nc in spherical coordinates:

Nc “

ż

dx ρNc
pxq “

ż 8

0

dr r2

ż

|ω|“1

dω ρNc
prωq

“

ż 8

0

dr r2 1

r2

ż

|ω|“r

dω ρNc
pωq (9.149)

where in the last step we performed a change of variables. By the lower bound (9.148):

Nc ě

ż 8

maxt|Rj |u

dr r2 C

r3{2
“ `8 , (9.150)

which contradicts Nc ă Ztot. Hence, Nc “ Ztot.

9.4.5 Scaling properties of the TF energy

One of the advantages of TF theory is that it allows to obtain a very simple prediction for
the energy of neutral atoms (K “ 1, Z “ N). As we shall see, this prediction becomes exact
as N Ñ8.

Proposition 9.16. Let K “ 1. We have ρZpxq “
Z2

γ3 ρpZ
1{3x{γq, with ρ the minimizer of:

eTFpρq “
3

5

ż

dx ρpxq5{3 ´

ż

dx ρpxq
1

|x|
`Dpρ, ρq (9.151)

on F1. Oe has:
ETF
Z “ pe0{γqZ

7{3 , (9.152)

with e0 the ground state energy of eTFpρq on F1. Numerically, e0 » ´3.678.

Proof. For a given ` ą 0, let us define the corresponding function ρ as:

ρZpxq “ Z`3ρpZ1{3`xq . (9.153)

Notice that ρ P L1 X L5{3, and }ρ}1 “ 1. To find the correct value of `, let us rewrite the
energy of ρZ as:

ETF
Z “ γZ5{3`2

3

5

ż

dx ρpxq5{3 ´ Z2`

ż

dx ρpxq
1

|x|
` Z2`Dpρ, ρq . (9.154)

The final claim follows setting γZ5{3`2 “ Z2`, that is ` “ Z1{3{γ.

Remark 9.17. The above proposition shows that the TF density profile has amplitude OpZ2q,
and that it varies on scale Z´1{3. In other words, TF theory shows that the TF minimizer
is concentrated in a region of diameter OpZ´1{3q around the position of the nucleus. The
energy of a neutral atom takes a particularly simple form, Eq. (9.152); remarkably, in the
N » Z Ñ8 limit, this prediction becomes quantitatively correct.

9.5 Stability of matter of the second kind via TF theory

9.5.1 The no-binding theorem

One of the limitations of TF theory is that it does not predict the existence of molecules:
this is the content of the no-binding theorem, due to Teller in ’62 and proven by Lieb and
Simon in ’77.

Suppose we are given a system of nuclei. Let us partition them in two sets, A and B.
We define the electrostatic potential of the nuclei in the set 7 “ A,B as:

V7pxq “
ÿ

jP7

Zj
|x´Rj |

“

ż

dµ7pyq
1

|x´ y|
. (9.155)
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The TF energy of the system corresponding to the nuclei in 7 is:

ETF
7 pρq “ cTF

ż

dx ρpxq5{3 ´

ż

dxV7pxqρpxq `Dpρ, ρq `
ÿ

kăj
k,jP7

ZkZj
|Ri ´Rj |

. (9.156)

We denote by ETF
7,N the corresponding ground state energy: ETF

7,N “ infρPDN ETF
7,N pρq.

Theorem 9.18 (No binding theorem.). Suppose N ď Ztot “
řK
j“1 Zj. Then:

mintETF
A,N1

` ETF
B,N2

| N1 `N2 “ Nu ď ETF
N . (9.157)

We can think of ETF
A,N1

`ETF
B,N2

as the energy of the system after the sets A and B have
been pushed infinitely far away from each other, so that their mutual interaction is negligible.
Consider the configuration of N1 and N2 particles in the sets A and B such that the sum
of the two energies is minimal. The theorem is telling us that there is no energetic gain in
bringing the two systems close together. Of course, the argument can be iterated for A and
B separately, and so on.

The conclusion is that the energetic gain due to the formation of a molecule (a stable
system composed by more than one nucleus) is missed by TF theory. As we shall see later,
this limitation of TF theory will be used in a positive way, to give a very simple proof of
stability of matter of the second kind. But first, let us prove the no binding theorem.

A crucial role in the proof we shall present is due to the following lemma, due to Baxter.

Lemma 9.19. Let ρ ě 0, ρ P L1pR3q X LppR3q, with p ą 3{2. There exists g such that
0 ď g ď ρ such that:

p
1

| ¨ |
˚ gqpxq “ VApxq if ρpxq ą gpxq ě 0. (9.158)

Moreover,

p
1

| ¨ |
˚ gqpxq ď VApxq if ρpxq “ gpxq. (9.159)

Proof. The proof is based on calculus of variations. Let us define the functional:

Ipgq “ Dpg, gq ´

ż

dxdy gpxq
µApyq

|x´ y|
. (9.160)

The functional is well defined on Dρ “ tg | 0 ď g ď ρu, and it is bounded below. Let tgju be
a minimizing sequence in Dρ. Then, }gj}p ď }ρ}p ď C for p ą 3{2. This means that there
exists a weakly convergent subsequence g P Dρ in Lp, that we shall still denote by gj with a
slight abuse of notation. We claim that:

lim inf
j

Ipgjq ě Ipgq . (9.161)

This shows that g is a minimizer of I. The proof of (9.161) follows from lim infj Dpgj , gjq ě
Dpg, gq, Eq. (9.83), and from limj Dpgj , µAq “ Dpg, µAq, Eq. (9.77).

To prove Eqs. (9.158), (9.159) we shall use a trial state argument. Let us first explore
the region x : 0 ă gpxq ă ρpxq. Consider:

gεpxq “ gpxq ` εfpxqχpδ ď gpxq ď ρpxq ´ δq , (9.162)

with f bounded and δ ą 0. Clearly, gε P Dρ for |ε| small enough. Hence,

Ipgεq ě Ipgq . (9.163)

Taking the derivative with respect to ε (it can be proven that the function is differentiable):

0 “
d

dε
Ipgεq |ε“0ñ 0 “

ż

δďgpxqďρpxq´δ

dx fpxq
´

p
1

| ¨ |
˚ gqpxq ´ VApxq

¯

. (9.164)
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By arbitrariness of f , taking the δ Ñ 0` limit:

p
1

| ¨ |
˚ gqpxq “ VApxq if 0 ă gpxq ă ρpxq. (9.165)

Let us now explore the region gpxq “ ρpxq. Consider the trial state:

gεpxq “ gpxq ` εfpxqχpmaxtρpxq ´ δ, δu ď gpxq ď ρpxqq , (9.166)

for ε ď 0, f ě 0. Taking the left derivative:

0 ě

ż

maxtρpxq´δ,δuďgpxqďρpxq

dx fpxq
´

p
1

| ¨ |
˚ gqpxq ´ VApxq

¯

. (9.167)

Again by arbitrariness of f , for δ Ñ 0`:

p
1

| ¨ |
˚ gqpxq ď VApxq if gpxq “ ρpxq. (9.168)

Finally, let us consider the region gpxq “ 0. Let us introduce the trial state:

gεpxq “ gpxq ` εfpxqχp0 ď gpxq ď mintδ, ρpxq ´ δuq , (9.169)

for ε ě 0, f ě 0. Taking the right derivative:

0 ď

ż

0ďgpxqďmintδ,ρpxq´δu

dx fpxq
´

p
1

| ¨ |
˚ gqpxq ´ VApxq

¯

(9.170)

which implies, as δ Ñ 0`:

p
1

| ¨ |
˚ gqpxq ě VApxq if gpxq “ 0. (9.171)

We are left with excluding the case p 1
|¨|
˚ gqpxq ą VApxq. To this end, consider the set:

P “
!

x | p
1

| ¨ |
˚ gqpxq ě VApxq

)

. (9.172)

Clearly, P Ă tx | gpxq “ 0u. Notice that the points Rj , the center of the nuclei, do not
belong to P : this is due to the fact that VApxq “ `8 there, and 1

|¨|
˚gqpxq is bounded. Away

from these points, the function

p
1

| ¨ |
˚ gqpxq ´ VApxq (9.173)

is continuous. Hence, the set P is open, and p 1
|¨|
˚ gqpxq ´ VApxq “ 0 on BP . Moreover,

∆x

´

p
1

| ¨ |
˚ gqpxq ´ VApxq

¯

“ ´gpxq ` µApxq “ 0 @x P P , (9.174)

since x ‰ Rj and P Ă tx | gpxq “ 0u. Therefore, function p 1
|¨|
˚ gqpxq ´ VApxq is harmonic in

P . By the maximum principle, p 1
|¨|
˚ gqpxq ´ VApxq “ 0, which proves that P is empty.

We are now ready to prove the no-binding theorem, Theorem 9.18.

Proof. (of Theorem 9.18.) Let ρ ” ρN be the minimizer of ETF in FN , for N ď Ztot. To
prove the theorem, it is enough to show that there exists g, h such that 0 ď g, h ď ρ such
that g ` h “ ρ and:

ETF
A pgq ` ETF

B phq ď ETFpρq . (9.175)

Consider the kinetic energies. Since pa` bq5{3 ě a5{3 ` b5{3 for all a, b ě 0, we immediately
get:

ż

dx gpxq5{3 `

ż

dxhpxq5{3 ď

ż

dx pgpxq ` hpxqq5{3 . (9.176)

119



Let us now study the interaction. In view of Eq. (9.176), to conclude the proof it is enough
to show that:

´2Dpg, µAq `Dpg, gq `
ÿ

kăj
k,jPA

ZjZk
|Rj ´Rk|

´2Dph, µBq `Dph, hq `
ÿ

kăj
k,jPB

ZjZk
|Rj ´Rk|

ď ´2Dpg ` h, µA ` µBq `Dpg ` h, g ` hq `
ÿ

kăj

ZkZj
|Rj ´Rk|

. (9.177)

The inequality (9.177) can be rewritten as:

0 ď ´2Dpg, µBq ´ 2Dph, µAq ` 2Dpg, hq `
ÿ

kăj
kPA,jPB

ZkZj
|Rk ´Rj |

“ ´2Dpg, µBq ´ 2Dph, µAq ` 2Dpg, hq ` 2DpµA, µBq

“ 2Dpg ´ µA, h´ µBq . (9.178)

Let now now choose g, ρ to be as in Lemma 9.19. We rewrite Dpg ´ µA, h´ µBq as:

Dpg ´ µA, h´ µBq “

ż

x:gpxq“ρpxq

dx phpxq ´ µBpxqq ˚
´

p
1

| ¨ |
˚ gqpxq ´ VApxq

¯

`

ż

x:gpxqăρpxq

dx phpxq ´ µBpxqq ˚
´

p
1

| ¨ |
˚ gqpxq ´ VApxq

¯

” ´

ż

x:gpxq“ρpxq

dxµBpxq ˚
´

p
1

| ¨ |
˚ gqpxq ´ VApxq

¯

(9.179)

where we used that hpxq “ 0 if gpxq “ ρpxq and that p 1
|¨|
˚ gqpxq ´ VApxq “ 0 if gpxq ă ρpxq,

by Lemma 9.19. Also, the same lemma implies that p 1
|¨|
˚ gqpxq ´ VApxq ď 0 for gpxq “ ρpxq,

hence Dpg´µA, h´µBq ě 0, which proves Eq. (9.177). This concludes the proof of Theorem
9.18.

The next result is a simple corollary of the no-binding theorem, that will play a crucial
role in the proof of stability of matter of the second kind for the many-body problem.

Corollary 9.20. For any ρ P L1 X L5{3, ρ ě 0, for any γ ą 0:

ETFpρq ě ´
3.678

γ

K
ÿ

j“1

Z
7{3
j . (9.180)

Proof. Consider a collection of K nuclei, and separate one, say the one in R1 with charge
Z1, from the rest: A “ tR1u and B “ tRju

K
j“2. By the no-binding theorem, using that

ETF
7,N ě ETF

7,Ztot
:

ETFpρq ě ETF
A,Z1

` inftETF
Z2,...,Zk

pρq | ρ P FZ2`...ZK u

“ ´
3.678

γ
Z

7{3
1 ` inftETF

Z2,...,Zk
pρq | ρ P FZ2`...ZK u , (9.181)

where in the last step we used Proposition 9.16. Iterating the argument K ´ 1 times, the
claim follows.

9.5.2 Proof of stability of matter

As we shall see in this section, the no binding theorem of Thomas-Fermi theory can be used
to proved stability of matter of the second kind for the full many-body probblem, described
by the Hamiltonian HN,KpZ,Rq on L2

antipR3N q. We shall prove the following theorem.

120



Theorem 9.21 (Stability of matter of the second kind.). There exists a constant CpZq ą 0
such that, for all ψN P H

1
antipR3N q, }ψN }2 “ 1:

xψN , HN,KpZ,RqψN y ě ´CpZqpN `Kq . (9.182)

This lower bound is compatible with the fact that the ground state energy of the initial
many-body problem grows linearly with the number of particles. If not, matter could not
be extensive (recall the discussion in Section 9.3): splitting the system into subsystems
could produce an enormous increase/decrease of the energy. The first proof of stability of
matter was given by Dyson and Lenard in ’67. Here we shall discuss the proof of Lieb and
Thirring ’77, much simpler than the original one, based on Thomas-Fermi theory and on the
Lieb-Thirring kinetic energy inequality.

Theorem 9.22 (LT kinetic energy inequality.). There exists K ą 0 such that for any
ψN P L

2
antipR3N q:

xψN ,
N
ÿ

j“1

´∆jψN y ě K

ż

dx ρψpxq
5
3 , (9.183)

where ψψpxq “ N
ş

dx2 . . . dxN |ψN px, x2, . . . , xN q|
2 is the density associated to ψN .

This inequality is a consequence of another important result in quantum mechanics, the
Lieb-Thirring inequality for sums of negative eigenvalues. Let H “ ´∆ ` V on L2pRdq be
a self-adjoint Schrödinger operator, with V P L1`d{2pRdq, and V satisfying the assumptions
in Section 7.4 needed in order to define the eigenvalues with the min-max principles. Let Ej
be the eigenvalues of H (which can be defined as in Section 7.4). Then, the Lieb-Thirring
inequality states that:

ÿ

j:Ejď0

|Ej | ď Ld

ż

dxV pxq1`d{2 , (9.184)

for some explicit Ld ą 0 (see [3] for generalizations). This inequality is compatible with
the semiclassical approximation for the sum of negative eigenvalues, recall the discussion of
Section 8.5. Let us show how Eq. (9.184) implies the kinetic energy inequality (9.183).

Proof. (of Theorem 9.22) Let γ
p1q
ψ be the reduced one-particle density matrix of ψN , and

consider a class of Schrödinger operators H “ ´∆` V with V such that (9.184) holds true.
Let HN “

ř

iH
piq. By the definition of density matrix:

xψN , HNψN y “ TrHγ
p1q
ψ . (9.185)

Being γ
p1q
ψ a nonnegative, trace-class operator, it can be written as γ

p1q
ψ “

ř

j λj |fjyxfj |, for

some orthonormal fj P L
2pRdq and 0 ď λj ď 1, due to the fact that 0 ď γ

p1q
ψ ď 1, recall

Section 9.2. Therefore:

xψN , HNψN y “
ÿ

j

λjTrHPj “
8
ÿ

j“1

λjxfj , Hfjy . (9.186)

Clearly, xf0, Hf0y ě E0, the ground state of H. Hence:

xψN , HNψN y ě E0 `

8
ÿ

j“2

λjxfj , Hfjy . (9.187)

Being f1 orthogonal to f0, xf1, Hf1y ě E1, the first excited state of H. The argument can
be iterated for all negative eigenvalues; we have:

xψN , HNψN y ě
ÿ

j:Ejď0

Ej `
ÿ̊

j

λjxfj , Hfjy (9.188)
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where the asterisk denotes that fj are orthogonal to all eigenfunctions φi of the negative
eigenvalues. Therefore, by the variational characterization of eigenvalues, xfj , Hfjy ě 0,
which gives:

xψN , HNψN y ě
ÿ

j:Ejď0

Ej ě ´C

ż

dxV´pxq
1` d2 , (9.189)

where the last step follows from Eq. (9.184). Now, let us choose:

V pxq “ ´cρψpxq
2
d . (9.190)

Since ρψ P L
1, V pxq P Ld{2. For this choice of V , Eq. (9.189) implies:

xψN ,
N
ÿ

j“1

´∆jψN y ě ´Cc1`2{d

ż

dx ρψpxq
1`2{d ´ xψN ,

N
ÿ

j“1

V pxjqψN y

“ ´Cc1`2{d

ż

dx ρψpxq
1`2{d ` c

ż

dx ρψpxq
1`2{d . (9.191)

The claim follows after optimizing over c ą 0.

We are now ready to prove Theorem 9.21.

Proof. By the Lieb-Thirring kinetic energy inequality:

xψN , HN,KψN y ě K

ż

dxψψpxq
5{3´

K
ÿ

j“1

Zj

ż

dx ρψpxq
1

|x´Rj |
`xψN ,

ÿ

iăj

1

|xi ´ xj |
ψN y`U .

(9.192)
Let us now find a useful lower bound for the many-body interaction, in terms of the TF
interaction. Let us apply Corollary 9.20 for Zj “ 1, Rj “ xj and K “ N . In this setting,
U “

ř

iăj
1

|xi´xj |
. The bound (9.180) implies the following lower bound:

N
ÿ

iăj

1

|xi ´ xj |
ě ´

3.678

γ
N ´

3

5
γ

ż

dx ρpxq5{3 `
N
ÿ

j“1

ż

dx ρpxq
1

|x´ xj |
´Dpρ, ρq (9.193)

for any γ ą 0 and for any ρ P L1 X L5{3, ρ ě 0. Choose ρ ” ρψN , Then, plugging the bound
(9.193) in (9.192) we get:

xψN , HN,KψN y ě pK ´
3

5
γq

ż

dx ρψpxq
5{3 ´

K
ÿ

j“1

Zj

ż

dx ρψpxq
1

|x´Rj |

`

N
ÿ

j“1

ż

dx ρpxqxψN ,
1

|x´ xj |
ψN y ´Dpρψ, ρψq ` U ´

3.678

γ
N

” pK ´
3

5
γq

ż

dx ρψpxq
5{3 ´

K
ÿ

j“1

Zj

ż

dx ρψpxq
1

|x´Rj |
`Dpρψ, ρψq ` U

´
3.678

γ
N . (9.194)

The first line reconstructs the TF energy functional, with a new constant cTF (positive,
choosing the old γ small enough). Therefore, the final claim follows from Corollary 9.20.

9.6 TF theory as the N Ñ 8 limit of quantum mechanics

In this section we shall give a rigorous derivation of TF theory starting from many-body
quantum mechanics. As we shall see, TF theory becomes exact once the number of particles
goes to infinity. We shall prove a theorem that provides a rigorous bound for the energy
difference of large quantum systems and the TF approximation.
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The result will hold in a suitable scaling regime, that we shall describe here. Let N0 P N,
and let QN “ N{N0. Also, let Z0

P NK , and let Z “ QNZ
0. Finally, let R0

P R3K , and let

R “ Q
´1{3
N R0. It is not difficult to see that:

ETF
N pZ,Rq “ Q

7{3
N ETF

N0 pZ
0, R0

q . (9.195)

That is, as N Ñ 8, every contribution to the TF ground state energy scales as Q
7{3
N . We

shall suppose that N0 ď Z0
tot, to make sure that the TF minimizer has N0 particles. We will

prove the following theorem.

Theorem 9.23. Let γ “ p6π2q2{3. Then, there exists δ ą 0 independent of N such that:

|EQ
N pZ,Rq ´Q

7{3
N ETF

N0
pZ0, R0

q| ď CN7{3´δ . (9.196)

Therefore, the theorem proves that Thomas-Fermi theory becomes exact in the N Ñ8,
for the ground state energy:

lim
NÑ8

EQ
N pZ,Rq

Q
7{3
N ETF

N0
pZ0, R0

q
“ 1 . (9.197)

The proof of the theorem will be based on matching upper and lower bounds for the ground
state energy.

9.6.1 Upper bound

Let us start by proving an upper bound for the ground state energy, that gives the TF energy
at leading order in N . To do this, we shall use Hartree-Fock theory.

Consider a Slater determinant:

ψN “
1
?
N !

ÿ

π

sgnpπqfπp1qpx1q ¨ ¨ ¨ fπpNqpxN q , (9.198)

with reduced one-particle density matrix given by:

ω “
N
ÿ

j“1

|fjyxfj | . (9.199)

As we have seen in Section 9.2, the energy of a fermionic wave function is expressed in terms
of the one- and two-particle density matrices. For the special case of Slater determinants, it
turns out that the energy is a functional of the one-particle density matrix only. Consider a
many-body Hamiltonian of the form:

HN “
ÿ

i

hi `
ÿ

iăj

Vpxi ´ xjq . (9.200)

Then:
xψN , HNψN y “ EHFpωq , (9.201)

where EHF is the Hartree-Fock energy functional:

EHFpωq “ Trhω `
1

2

ż

dxdy V px´ yqpωpx;xqωpy; yq ´ |ωpx; yq|2q . (9.202)

The last term describes the many-body interaction in HF theory. It is given by a sum of two
terms: the first is called the direct term, the second is called the exchange term. Notice that
for a positive potential, the exchange term is negative.

We define the HF ground state energy as the smallest energy of a Slater determinant.
Due to the one-to-one correspondence between Slater determinants and rank´N orthogonal
projections, the HF ground state energy is:

EHF
N “ inf

ωPPN
EHFpωq , (9.203)

123



where PN :“ tω : L2pR3q Ñ L2pR3q | ω2 “ ω˚ “ ω, Trω “ Nu. Since Slater determiants
form a subset of L2

apR3N q, we trivially have:

EQ
N “ inf

ψNPL2
apR3N q

xψN , HNψy

xψN , ψN y
ď EHF

N . (9.204)

The idea will be to come up with a good trial state for the HF energy functional, that
reproduces ETF

N at leading order in N . To do that, we shall rely on the next Theorem.

Theorem 9.24. Suppose that V ě 0. Let K : L2pR3q Ñ L2pR3q be an admissible one-
particle density matrix: 0 ď K ď 1, TrK “ N . Then, there exists a Slater determinant ψN
such that:

xψN , HNψy ď EHFpKq . (9.205)

This theorem immediately implies the Lieb’s variational principle:

ETF
N “ inf

K admissible
EHFpKq . (9.206)

Hence, it gives us the freedom to look for a larger class of trial states:

EQ
N ď EHF

N ď EHFpKq for any admissible K. (9.207)

Proof. (of Theorem 9.24.) We shall prove the theorem in the case K is finite rank: K “
řM
i“1 λi|fiyxfi|, with 0 ď λi ď 1. The general case follows from an approximation argument,

that we leave as an exercise. Define:

hpkq “ xfk, hfky , V pk`q “ xfk ^ f`, V fk ^ f`y , (9.208)

where fk ^ f` “
1?
2
pfk b f` ´ f` b fkq. Then, a simple computation gives:

EHFpKq “
ÿ

k

λkh
pkq `

1

2

ÿ

k,`

λkλ`V
pk`q . (9.209)

Suppose M ą N . If not, M “ N and there is nothing to prove. Then, there exists at least
two eigenvalues λp and λq such that 0 ă λp, λq ă 1. Without loss of generaily, we assume
that:

hpqq `
ÿ

k

λkV
pkqq ď hppq `

ÿ

k

λkV
pkpq . (9.210)

Let δ “ mintλp, 1´ λ1u. Clearly, δ ą 0. Define:

K “
ÿ

kRtp,qu

λk|fkyxfk| ` pλp ´ δq|fpyxfp| ` pλq ` δq|fpyxfp|

”
ÿ

k

λk|fkyxfk| . (9.211)

Obviously, K is admissible. Notice that if δ “ λp then λp “ 0, and if δ “ 1´λq then λq “ 1.
Hence, the number of eigenvalues of K that are neither 0 or 1 is strictly smaller than the
same quantity for K. After iterating the above procedure at most M times, we will be left
with a density matrix with eigenvalues equal to either 0 or 1, i.e. the reduced one-particle
density matrix of a Slater determinant. To conclude the proof, we have to make sure that
the energy does not increase in the process:

EHFpKq ď EHFpKq . (9.212)

To do this, we compute, recalling Eq. (9.209):

EHFpKq ´ EHFpKq “ δ
´

hppq `
ÿ

`

V pp`qλ` ´ h
pqq ´

ÿ

`

V pq`qλ`

¯

´ δ2Vqp , (9.213)

where the term in parenthesis is ě 0, by Eq. (9.210), and Vqp ě 0, as a consequence of
V ě 0. This implies Eq. (9.212), and concludes the proof.
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Legitimated by Lieb’s variational principle, we will choose a trial state K for the HF
functional that is not a projetcion. Since TF theory is a semiclassical approximation of
quantum mechanics, it makes sense to use coherent states. We define:

K “
1

p2πq3

ż

dpdqMpp, qqπpq , πpq “ |FpqyxFpq| , Fpqpxq “ eipxGpx´ qq . (9.214)

We shall assume that 0 ďMpp, qq ď 1, and that 1
p2πq3

ş

dpdqMpp, qq “ N . This implies that

K is admissible. The idea is to try to choose Mpp, qq so to make the energy as small as
possible. A good ansatz is:

Mpp, qq “ χpp2 ´ φTFpqq ď ´µq , (9.215)

with φTF the Thomas-Fermi potential and µ ě 0 chosen so that K is admissible. Using the
TF equation, Eq. (9.215) can be rewritten as:

Mpp, qq “ χpp2 ď pφTFpqq ´ µq`q “ χpp2 ď γρpqq2{3q , (9.216)

with ρ the N -particle TF minimizer. Notice that:

TrK “
1

p2πq3

ż

dpdqMpp, qq “
4π

p2πq3
γ3{2

3

ż

dq ρpqq “ N , (9.217)

provided γ “ p6π2q2{3. Also:

Tr´∆K “
1

p2πq3

ż

dqdpMpp, qqpp2 ` }∇G}22q

“
3

5
γ

ż

dq ρpqq5{3 `N}∇G}22 . (9.218)

Hence, we get, using that the exchange term is nonpositive:

EHFpKq ď
3

5
γ

ż

dx ρpxq5{3 ´

ż

dxV pxqKpx, xq `
1

2

ż

dxdy
1

|x´ y|
Kpx;xqKpy; yq

`U ` CN}∇G}22 . (9.219)

The first line looks very much like the TF functional, except that Kpx, xq appears instead
of ρpxq. We compute:

Kpx;xq “
1

p2πq3

ż

dpdqMpp, qq|Gpx´ qq|2 “

ż

dq ρpqq|Gpx´ qq|2 ” pρ ˚ |G|2qpxq . (9.220)

Consider the density-density interaction. We rewrite it as:

Dpρ ˚ |G|2, ρ ˚ |G|2q “
1

2

ż

dx pρ ˚ |G|2qpxqpρ ˚ |G|2 ˚
1

| ¨ |
qpxq , (9.221)

that is as a L2 scalar product. Rewriting it in Fourier space, and using that the Fourier
transform of the convolution is the product of the Fourier transforms:

Dpρ ˚ |G|2, ρ ˚ |G|2q “
1

2

ż

dp |ρ̂ppq|2|y|G|2ppq|2
1

p2
ď Dpρ, ρq , (9.222)

where we used that:
|y|G|2ppq| ď }|y|G|2|}8 ď }|G|

2}1 “ 1 . (9.223)

Thus, the bound (9.222) reproduces the TF density-density interaction. To conclude, con-
sider the electron-nuclei interaction. We rewrite it as:

´

ż

dxV pxqKpx;xq “ ´

ż

dxV pxqρpxq `

ż

dxV pxqpρpxq ´Kpx;xqq . (9.224)
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The last term is an error term, that we have to estimate. We rewrite it as:

ż

dxV pxqpρpxq ´Kpx;xqq “
K
ÿ

j“1

Zj

ż

dx ρpxq
´ 1

|x´Rj |
´ |G|2 ˚

1

| ¨ ´Rj |
pxq

¯

. (9.225)

Let us suppose that:

Gpxq “ R´3{2G0px{Rq , G0pxq ” G0p|x|q , (9.226)

with G0 compactly supported for |x| ď 1 and }G0}2 “ 1, }∇G0}2 ď C. With this choice,

}∇G}22 “ R´2}∇G0}
2
2 . (9.227)

Thus, |Gpxq|2 is a spherically symmetric charge distribution, with total charge 1: by Newton’s
theorem,

|G|2 ˚
1

| ¨ ´Rj |
pxq “

1

|x´Rj |
, for |x´Rj | ą R. (9.228)

Hence, we can rewrite Eq. (9.225) as:

ż

dxV pxqpρpxq ´Kpx;xqq “

K
ÿ

j“1

Zj

ż

|x´Rj |ďR

dx ρpxq
´ 1

|x´Rj |
´ |G|2 ˚

1

| ¨ ´Rj |
pxq

¯

ď

K
ÿ

j“1

Zj

ż

|x´Rj |ďR

dx ρpxq
1

|x´Rj |
. (9.229)

Now, from the TF equation for the minimizer:

γρpxq2{3 “

´

K
ÿ

j“1

Zj
|x´Rj |

´ ρ ˚
1

| ¨ |
pxq ´ µ

¯

`

ď

K
ÿ

j“1

Zj
|x´Rj |

. (9.230)

Assuming that R ! |Ri ´Rj | for i ‰ j, we get:

ρpxq ď C
Z

3{2
max

|x´Rj |3{2
. (9.231)

Hence, plugging this bound in Eq. (9.229) we get:

ż

dxV pxqpρpxq ´Kpx;xqq ď CZ5{2
max

ż

|x|ďR

dx
1

|x|5{2
ď CN5{2R1{2 . (9.232)

All in all, plugging the bounds (9.222), (9.232) in Eq. (9.219) we find:

EHFpKq ď ETF
N ` CNR´2 ` CN5{2R1{2 . (9.233)

The optimal value of R is R “ CN´3{5, which is indeed such that R ! |Ri ´ Rj | for i ‰ j
(recall that, by assumption, the internuclear distance is order N´1{3). With this choice:

EQ
N ď EHFpKq ď ETF

N ` CN11{5 . (9.234)

Since ETF
N „ N7{3, the error term is subleading as N Ñ8. This concludes the proof of the

upper bound.

9.6.2 Lower bound

To conclude the proof of Theorem 9.23, we need a lower bound on the ground state energy
that agrees with TF at leading order.
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A Properties of Sobolev spaces

Here we shall collect some basic properties of Sobolev spaces. We refer the reader to [3, 1]
for more details. Given an open set U Ď Rd, recall the definition of Sobolev space W k,ppUq:

W k,ppUq “ tu : U Ñ C | Bαu P LppUq for all α s.t. |α| ď ku . (A.1)

The norm } ¨ }Wk,ppUq is defined as:

}u}p
Wk,ppUq

“
ÿ

α:|α|ďk

}Bαu}pLppUq . (A.2)

A special role in quantum mechanics is played by H1pUq :“ W 1,2pUq. More generally,

we define HkpUq “ W k,2pUq. We shall also denote by W k,p
0 pUq the space of functions in

W k,ppUq which are vanishing on the boundary of U .

A.1 Sobolev inequality

The Sobolev inequality allows to bound from below Lp norms of Du with Lq norms of u.
As we shall see, this cannot be true for all p, q. Let u P C8c pRdq, u ‰ 0, uλpxq :“ upλxq.
Suppose that there exists C ą 0, independent of λ, such that:

}uλ}LqpRdq ď C}∇uλ}LppRdq . (A.3)

By a change of variables,

}uλ}LqpRdq “

ˆ
ż

dx|uλpxq|
q

˙
1
q

“

ˆ

1

λd

˙
1
q

}u}LqpRdq,

}∇uλ}LppRdq “
ˆ
ż

dx|∇uλpxq|p
˙

1
p

“

ˆ

λ

λ
d
p

˙

}∇u}LppRdq .

(A.4)

Therefore, Eq. (A.3) implies:

}u}LqpRdq ď Cλ1´ dp`
d
q }∇u}LppRdq. (A.5)

Thus, if 1´ d
p`

d
q ‰ 0, by taking either λÑ 0 or λÑ8, Eq. (A.5) would imply }u}LppRdq ď 0,

that is u “ 0, which is a contradiction.
Therefore, we might only hope to prove Eq. (A.3) for:

1`
d

q
´
d

p
“ 0 ñ

1

q
“

1

p
´

1

d
. (A.6)

Let 1 ď p ă d. We define the Sobolev conjugate of p as the number q ” p˚ for which Eq.
(A.6) holds true:

p˚ :“
dp

d´ p
. (A.7)

Notice that p˚ ą p.

Theorem A.1 (Gagliardo-Nirenberg-Sobolev inequality). Let 1 ď p ă d. There exists a
constant C ” Cpd, pq such that

}u}Lp˚ pRdq ď C}∇u}LppRdq, @u P C1
c pRdq. (A.8)

The proof will be based on the generalized Hölder inequality:

ż

U

ˇ

ˇ

ˇ

m
ź

i“1

ui

ˇ

ˇ

ˇ
dx ď

m
ź

i“1

}ui}Lpi pUq,
m
ÿ

i“1

1

pi
“ 1. (A.9)

Remark A.2. The proof crucially relies on the fact that u is compactly supported: the
inequality is trivially false if u “ 1. However, the constant C does not depend on the support
of u.
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Proof. Let us start with the case p “ 1. Using the compact support of u,

upxq “

ż xi

´8

dyiuxipx1, ¨ ¨ ¨ , xi´1, yi, xi`1, ¨ ¨ ¨ , xdq (A.10)

thus

|upxq| ď

ż 8

´8

dyi|∇upx1, ¨ ¨ ¨ , yi, ¨ ¨ ¨ , xdq|. (A.11)

For p “ 1 the Sobolev conjugate of p is p˚ “ d
d´1 . Therefore, it is natural to consider:

|upxq|
d
d´1 ď

d
ź

i“1

ˆ
ż 8

´8

dyi|∇upx1, ¨ ¨ ¨ , yi, ¨ ¨ ¨ , xdq|

˙
1
d´1

. (A.12)

We have:

ż 8

´8

dx1|upxq|
d
d´1 ď

ż 8

´8

dx1

d
ź

i“1

ˆ
ż 8

´8

dyi|∇upx1, ¨ ¨ ¨ , yi, ¨ ¨ ¨ q|

˙
1
d´1

“ (A.13)

“

ż 8

´8

dx1

ˆ
ż 8

´8

dy1|∇upy1, ¨ ¨ ¨ q|

˙
1
d´1 n

ź

i“2

ˆ
ż 8

´8

dyi|∇upx1, ¨ ¨ ¨ , yi, ¨ ¨ ¨ q|

˙
1
d´1

“

ˆ
ż 8

´8

dy1|Dupy1, ¨ ¨ ¨ q|

˙
1
d´1

ż 8

´8

dx1

d
ź

i“2

ˆ
ż 8

´8

dyi|Dupx1, ¨ ¨ ¨ , yi, ¨ ¨ ¨ q|

˙
1
d´1

.

Let us now apply the generalized Hölder inequality, with pi “ d´ 1. We have

ż 8

´8

dx1|upxq|
d
d´1 ď

ˆ
ż 8

´8

dy1|∇upy1, ¨ ¨ ¨ q|

˙
1
d´1 n

ź

i“2

ˆ
ż 8

´8

dx1dyi|∇upx1, ¨ ¨ ¨ , yi, ¨ ¨ ¨ q|

˙
1
d´1

.

(A.14)

Next, let us integrate over x2. We get:

ż 8

´8

dx1dx2|upxq|
d
d´1

ď

ż

dx2

ˆ
ż 8

´8

dy1|∇upy1, ¨ ¨ ¨ q|

˙
1
d´1 d

ź

i“2

ˆ
ż 8

´8

dx1dyi|∇upx1, ¨ ¨ ¨ , yi, ¨ ¨ ¨ q|

˙
1
d´1

“

ˆ
ż 8

´8

dx1dy2|∇upx1, y2 ¨ ¨ ¨ q|

˙
1
d´1

ż

dx2

ˆ
ż 8

´8

dy1|∇upy1, x2, ¨ ¨ ¨ q|

˙
1
d´1

¨

¨

d
ź

i“3

ˆ
ż 8

´8

dx1dyi|∇upx1, x2, ¨ ¨ ¨ , yi, ¨ ¨ ¨ q|

˙
1
d´1

.

(A.15)

Using again the generalized Hölder inequality for the x2 integration, choosing pi “ d´ 1, we
have

(A.15) ď

ˆ
ż 8

´8

dx1dx2|∇upx1, x2 ¨ ¨ ¨ q|

˙
2
d´1

¨

¨

n
ź

i“3

ˆ
ż 8

´8

dx2

ż 8

´8

dx1dyi|∇upx1, ¨ ¨ ¨ , yi, ¨ ¨ ¨ , xdq|

˙
1
d´1

.

(A.16)

Iterating the same procedure n times (i.e. integrating again over dx3, ¨ ¨ ¨ , dxd) we finally
get

ż

dx1 ¨ ¨ ¨ dxd|upxq|
d
d´1 ď

ˆ
ż

dx1 ¨ ¨ ¨ dxd|∇upx1, ¨ ¨ ¨ , xdq|

˙
d
d´1

, (A.17)

which proves the inequality for p “ 1.
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Let us now consider 1 ă p ă d. Let v :“ |u|γ , γ ą 1 to be chosen later. By Eq. (A.17),
we have
ˆ
ż

|u|
γd
d´1 dx

˙

d´1
d

ď

ż

|∇|u|γ |dx “ γ

ż

|u|γ´1|∇u|dx ď γ

ˆ
ż

|u|pγ´1q p
p´1 dx

˙

p´1
p

ˆ
ż

|∇u|p
˙

1
p

,

(A.18)

where in the last step we used the Hölder with q “ p{pp´ 1q. Now let us choose γ such that
γd
d´1 “ pγ ´ 1q p

p´1 . That is,

γ

ˆ

d

d´ 1
´

p

p´ 1

˙

“ ´
p

p´ 1
ñ γ

ˆ

p´ d

pd´ 1qpp´ 1q

˙

“ ´
p

p´ 1
, (A.19)

i.e. γ “ ppd´ 1q{pd´ pq ą 1. Plugging this choice into Eq. (A.18) we get:

ˆ
ż

|u|
γd
d´1

˙

d´1
d

ˆ
ż

|u|
γd
d´1

˙´
p´1
p

ď γ

ˆ
ż

|Du|p
˙

1
p

, (A.20)

with
d´ 1

d
´
p´ 1

p
“
ppd´ 1q ´ dpp´ 1q

dp
“
d´ p

dp
”

1

p˚
, (A.21)

and hence
γd

d´ 1
“

pd

d´ p
“ p˚ . (A.22)

We conclude that:
ˆ
ż

dx|u|p
˚

˙
1
p˚

ď γ

ˆ
ż

dx|∇u|p
˙

1
p

, 1 ă p ă d , (A.23)

which is what we wanted to prove.

This inequality can be used to prove that, in some cases, Sobolev spaces are embedded in
Lq spaces.

Theorem A.3 (Sobolev embedding). Let U Ă Rd open and bounded. Let u P W 1,p
0 pUq,

1 ď p ă d. Then
}u}LqpUq ď C}∇u}LppUq, @q P r1, p˚s, (A.24)

with C ” Cpp, q, Uq.

Remark A.4. i) In particular, q “ p is allowed, since p˚ ą p. We have:

}u}LppUq ď C}∇u}LppUq, (A.25)

which takes the name of Poincaré inequality.

ii) The Poincaré inequality allows us to prove that on Hp
0 pUq, the norms }∇u}LppUq and

}u}HppUq are equivalent. In fact, one trivially has:

}∇u}LppUq ď }u}HppUq (A.26)

and, by Poincaré inequality:

}u}HppUq ď
´

}u}pLppUq ` }∇u}
p
LppUq

¯
1
p

ď C}∇u}LppUq . (A.27)

iii) Theorem A.3 is telling us that

u P Hp
0 pUq ñ u P LqpUq, @q P r1, p˚s. (A.28)

We stress that the smallest such LqpUq space is Lp
˚

pUq. Indeed, by Hölder:

}u}q “

ˆ
ż

U

dx|upxq|q
˙

1
q

ď

ˆ
ż

U

dx|upxq|qp
˙

1
qp
ˆ
ż

U

dx

˙
1
p1

ď C}u}p˚ , (A.29)

where 1
p1 `

1
p “ 1 and p “ p˚

q ą 1. We say that the space Hp
0 pUq is embedded in Lp

˚

pUq,

p˚ “ dp
d´p , 1 ď p ă n.
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iv) Finally, the Sobolev inequality (A.24) can be extended to functions in HppUq, under
the assumption that the boundary of U is of class C1.

Proof. Let u P W 1,p
0 pUq. Then, there exists tumumPN, um P C8c pUq such that um Ñ u in

W 1,ppUq. Let us extend um to Rd, setting um “ 0 on RdzU . By the GNS inequality,

}um ´ ul}p˚ ď C}Dpum ´ ulq}p Ñ 0 as m, lÑ8. (A.30)

Thus, tumu is a Cauchy sequence in Lp
˚

pUq, and hence um Ñ ũ in Lp
˚

pUq. Being U
bounded, ũ P LqpUq, @q : 1 ď q ď p˚. In particular, ũ P LppUq, which shows that u “ ũ, and
therefore that u P Lq for all q P r1, p˚s.

By the GNS inequality:

}um}Lp˚ pUq ď C}∇um}LppUq . (A.31)

Then, by convergence in W 1,ppUq:

}∇um}LppUq “ }∇pum ´ u` uq}LppUq Ñ }∇u}LppUq as mÑ8. (A.32)

Also,
}um}Lp˚ pUq ě C}um}LqpUq, @1 ď q ď p˚, (A.33)

and
}um}LqpUq “ }um ´ u` u}LqpUq Ñ }u}LqpUq as mÑ8. (A.34)

by convergence in Lp
˚

pUq. All in all:

}u}LqpUq ď C}∇u}LppUq, (A.35)

for some C ” CpU, d, pq.

A.2 Weak to strong convergence

Here we shall use the result of the previous section to prove the following result.

Theorem A.5 (Weak to strong convergence). Suppose that ψj Ñ ψ weakly in H1pRdq. Let
A Ă Rd be any set of finite measure and let χA be its characteristic function. Then:

χAψj Ñ χAψ strongly in LppRdq (A.36)

for every 1 ď p ă 2d{pd ´ 2q when d ě 3, every p ă 8 when d “ 2 and every p ď 8 when
d “ 1. In fact, for d “ 1 the convergence is pointwise and uniform.

Proof. The proof is based on an approximation argument via the heat kernel e∆t. We claim
that for any ψ P H1pRdq:

}ψ ´ e∆tψ}2 ď }∇ψ}2
?
t , (A.37)

where:

pe∆tψqpxq “
1

p4πtqd{2

ż

Rd
expt´|x´ y|2{4tuψpyqdy . (A.38)

The estimate (A.37) follows from Plancherel theorem:

}ψ ´ e∆tψ}22 “

ż

Rd
|ψ̂pkq|2p1´ expt´|k|2tuq2dk

ď

ż

Rd
|ψ̂pkq|2|k|2t ” }∇ψ}22t , (A.39)

where we used that p1´ expt´|k|2tu ď mint1, |k|2tu. By the uniform boundedness principle,
see Theorem 2.12 of [3], the weak convergence ψj Ñ ψ in H1pRdq implies that }∇ψj}2 ď C
uniformly in j. Therefore,

}ψj ´ e
∆tψj}2 ď

?
tC . (A.40)
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Now, let φj “ e∆tψj . Assuming for the moment that φj converges strongly in L2pRdq to
φ “ e∆tψ, we shall prove that χAψ

j converges strongly to χAψ. Simply note that:

}χApψj ´ ψq}2 ď }χApψj ´ φjq}2 ` }χApφj ´ φq}2 ` }χApφ´ ψq}2 . (A.41)

The first and the last term can be bounded using that:

}χAψj ´ φj}2 ď }ψj ´ φj}2 ď
?
t}∇ψj}2

}χApφ´ ψq}2 ď }φ´ ψ}2 ď
?
t}∇ψ}2 (A.42)

Again by the uniform boundedness principle, }∇ψj}2 ď C. Also, by the lower semicontinuity
of norms, Theorem 2.11 of [3],

}∇ψ}2 ď lim inf
jÑ8

}∇ψj} ď C (A.43)

we see that the sum of the first and of the last term in Eq. (A.41) is estimated by 2C
?
t.

Therefore, under the assumption that φj converges strongly to φ, for any ε ą 0 we can find
t and j such that:

}χApψj ´ ψq}2 ď 2C
?
t` }χApφj ´ φq}2 ď ε . (A.44)

This proves the claim Eq. (A.36) for p “ 2. It remains to prove that χAφj Ñ χAφ strongly
in L2pRdq. To see this, note that by (A.38) and Hölder inequality:

χApxq|φjpxq| ď p4πtq
´d{2

´

ż

expt´2x2{4tudx
¯1{2

}ψj}2χApxq . (A.45)

By the uniform boundedness principle, }ψj}2 ď }ψj}H1
ď C. Therefore, φj is bounded

uniformly in j. On the other hand, φjpxq Ñ φpxq pointwise, since ψj Ñ ψ weakly in H1

and for every fixed x the function y ÞÑ expt´|x ´ y|2{4tu is in the dual of H1. Therefore,
pointwise convergence follows from dominated convergence. This concludes the proof of
(A.36) for p “ 2.

Let us now prove Eq. (A.36) for all p such that 1 ď p ă 2d{pd ´ 2q. Consider first
1 ď p ď 2. By Hölder inequality:

}χApψ ´ ψjq}p ď }χA}r}χApψ ´ ψjq}2 , (A.46)

with 1{p “ 1{r ` 1{2. Using that χA P L
r for all r, this proves the theorem for 1 ď p ă 2.

Finally, consider p ą 2. Again by Hölder:

}χApψ ´ ψjq}p ď }χApψ ´ ψjq}
α
2 }χApψ ´ ψjq}

1´α
q (A.47)

with α “ p1{p ´ 1{qqp1{2 ´ 1{qq, which is strictly positive if p ă q. Then, by the Sobolev
inequality:

}χApψ ´ ψjq}LqpRdq “ }ψ ´ ψj}LqpAq ď Cp}∇ψ}L2pRdq ` }∇ψ}L2pAqq ď C 1 , (A.48)

where we used again the uniform boundedness principle and the lower semicontinuity of the
norm.

B Bathtub principle

In this appendix we shall briefly discuss the bathtub principle, used for instance in Section
8.2. We refer the reader to [3] for a more extensive discussion. Let µ be a Borel measure,
and let f be a real valued function, such that µpx : fpxq ă tq is bounded for all t. Consider
the functional

Ipgq “

ż

dµpxq fpxqgpxq , (B.1)

defined on gpxq such that 0 ď gpxq ď 1 and
ş

dµpxq gpxq “ G. We are interested in minimizing
Ipgq over all such functions. We claim that:

inf Ipgq “ Ipg˚q , g˚pxq “ χpfpxq ă sq ` cχpfpxq “ sq , (B.2)
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where the numbers s and c are defined as:

s “ suptt | µpx : fpxq ă tq ď Gu , cµpx : fpxq “ sq “ G´ µpx : fpxq ă sq . (B.3)

Notice that
ş

dµpxqg˚pxq “ G. First of all, let us prove that c ď 1. Suppose that µpfpxq “
sq ‰ 0; otherwise, c is undetermined. Suppose that c ą 1. Then:

ż

dµpxqχpfpxq ď sq ă

ż

dµpxq g˚pxq “ G . (B.4)

Moreover,

µpfpxq ď sq “

ż

dµpxqχpfpxq ď sq

“

ż

dµpxq lim
nÑ8

χpfpxq ă s` 1{nq

“ lim
nÑ8

µpfpxq ă s` 1{nq , (B.5)

where the last step follows from monotone convergence theorem: the function χpfpxq ă
s`1{nq is nonincreasing in n, and its integral is bounded uniformly in n, by the assumptions
on f . Therefore:

lim
nÑ8

µpfpxq ă s` 1{nq ă G (B.6)

which means that there exists N large enough such that:

µpfpxq ă s` 1{Nq ă G . (B.7)

This however contradicts the definition of s in Eq. (B.3), hence c ď 1.
To prove that g˚ is a minimizer, it is enough to show that given any h such that 0 ď

hpxq ď 1 and
ş

dµpxqhpxq “ G, one has Ipg˚ ´ hq ď 0. Let us check this. We write:

Ipg˚ ´ hq “

ż

făs

dµpxqfpxqpg˚pxq ´ hpxqq `

ż

fąs

dµpxqfpxqpg˚pxq ´ hpxqq

`

ż

f“s

dµpxqfpxqpg˚pxq ´ hpxqq

ď s

ż

făs

dµpxqpg˚pxq ´ hpxqq `

ż

fąs

dµpxqfpxqp´hpxqq

`s

ż

f“s

dµpxqpg˚pxq ´ hpxqq

ď s

ż

făs

dµpxqpg˚pxq ´ hpxqq ` s

ż

fąs

dµpxqp´hpxqq

`s

ż

f“s

dµpxqpg˚pxq ´ hpxqq

“ s
´

ż

făs

dµpxqpg˚pxq ´ hpxqq `

ż

fąs

dµpxqpg˚pxq ´ hpxqq

`

ż

f“s

dµpxqpg˚pxq ´ hpxqq
¯

(B.8)

where in the first inequality we used that g˚pxq “ 1 is fpxq ă s, and in the second inequality
that g˚pxq “ 0 if fpxq ą s. Therefore,

Ipg˚ ´ hq ď s

ż

dµpxqpg˚pxq ´ hpxqq “ spG´Gq “ 0 , (B.9)

which concludes the proof of the claim.
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