FOUNDATIONS OF QUANTUM MECHANICS: ASSIGNMENT 6

Exercise 22: Essay question

Explain why the interference pattern in the double-slit experiment disappears if a detector measures through which slit the electron went, even if we ignore the outcome of the detection. Derive this fact from the projection postulate, using the observable (10.16) as a model of a detector, where B is a suitable neighborhood of one slit. Explain why the pattern on the screen must be the same as if one slit were closed in each run, each slit in 50% of the runs. (Use formulas where appropriate.)

Exercise 23: Projections

(a) Show that a self-adjoint operator P with $P^2 = P$ (i.e., a projection) has no other eigenvalues than 0 and 1.

(b) Show that every self-adjoint operator P with eigenvalues 0 and 1 satisfies $P^2 = P$ (and thus is a projection).

(c) Suppose that $P : \mathscr{H} \to \mathscr{H}$ is a projection with range \mathscr{K} ; one says that P is the projection to \mathscr{K} . Show that I - P is the projection to the orthogonal complement of \mathscr{K} , i.e., to $\mathscr{K}^{\perp} = \{\phi \in \mathscr{H} : \langle \phi | \psi \rangle = 0 \,\forall \psi \in \mathscr{K} \}.$

(d) Suppose that P is the projection to \mathscr{K} . Show that the element in \mathscr{K} closest to a given vector $\psi \in \mathscr{H}$ is $P\psi$.

Exercise 24: Iterated Stern-Gerlach experiment

Consider the following experiment on a single electron. Suppose it has a wave function of the product form $\psi_s(\boldsymbol{x}) = \phi_s \chi(\boldsymbol{x})$, and we focus only on the spinor. The initial spinor is $\phi = (1, 0)$.

(a) A Stern–Gerlach experiment in the y-direction (or σ_2 -measurement) is carried out, then a Stern–Gerlach experiment in the z-direction (or σ_3 -measurement). Both measurements taken together have four possible outcomes: up-up, up-down, down-up, down-down. Find the probabilities of the four outcomes.

(b) As in (a), but now the z-experiment comes first and the y-experiment afterwards. (The fact that the answer to (b) is different from that to (a) is often expressed by saying that the observables σ_2 and σ_3 "cannot be measured simultaneously.")

(c) More generally, if the two self-adjoint matrices A and B have spectral decomposition $A = \sum_{\alpha} \alpha P_{\alpha}$ and $B = \sum_{\beta} \beta Q_{\beta}$, what is the joint distribution of the outcomes if A is measured first and B right afterwards? What if B is measured first and A right afterwards? Show that the two agree iff every P_{α} commutes with every Q_{β} . (This happens iff AB = BA.)

Please turn over.

Exercise 25: Lie algebras of SO(3) and SU(2)

A Lie group G, named after Sophus Lie (1842–1899), is a group that is also a manifold such that the group multiplication and inversion are smooth mappings. Examples of Lie groups include GL(n), SO(n), U(n), SU(n). The elements infinitesimally close to 1 in G form the Lie algebra g of G; more precisely, g is the tangent space of 1, which is here the set

$$\left\{\frac{dA}{dt}(t=0) \middle| A: (-1,1) \to G \text{ smooth}, A(0) = 1\right\}.$$

(a) Determine the Lie algebras so(3) and su(2) as subspaces of the space of all real 3×3 (complex 2×2) matrices.

(b) The exponential mapping $\exp : g \to G$ can be heuristically understood as follows: For $X \in g$, a corresponding group element infinitesimally close to 1 can be written as 1 + X/n with n a large natural number (so 1/n serves as an infinitesimal dt). Hence, roughly speaking, $(1 + X/n) \in G$, hence $(1 + X/n)^n \in G$; take the limit $n \to \infty$ to obtain $\exp(X) =: e^X$. Verify that the matrix exponential (defined by the exponential series) actually maps so(3) to SO(3) and su(2) to SU(2). (Hint: diagonalize $X \in g$.)

(c) For $X, Y \in g$, what does group multiplication of e^X and e^Y look like? We know that the solution Z of $e^Z = e^X e^Y$ is Z = X + Y if X and Y commute, but not in general. A version of the Baker-Campbell-Hausdorff formula says that

the solution of
$$e^{Z} = e^{-tX}e^{-tY}e^{t(X+Y)}$$
 is $Z = \frac{1}{2}t^{2}[X,Y] + O(t^{3})$

as $t \to 0$, with [X, Y] = XY - YX the *commutator* or *Lie bracket*. The Lie bracket is an operation on g that encodes how the group multiplication deviates from addition in g. Thus, one defines a *Lie algebra* in general as a vector space together with a bracket $[\cdot, \cdot] : g \times g \to g$ that is anti-symmetric, bilinear, and satisfies the Jacobi identity

$$[[X, Y], Z] + [[Y, Z], X] + [[Z, X], Y] = 0.$$

Verify that so(3) and su(2) (with commutators as Lie brackets) are isomorphic Lie algebras. (Hint: The Pauli matrices have something to do with rotations about the x-, y-, and z-axis.)

Hand in: Tuesday November 26, 2019, in class

Reading assignment due Friday November 29, 2019: A. Einstein, *Reply to Criticisms*, pages 665–688 in P. Schilpp (editor): *Albert Einstein, Philosopher–Scientist* (1949). Read pages 665–672 and the first quarter of 673.