Foundations of Quantum Mechanics: Assignment 8

Exercise 30: Essay question. Why does GRW theory make approximately the same predictions as the quantum formalism?

Exercise 31: Boundary conditions

On the half axis $(-\infty, 0]$, consider the Schrödinger equation $i \hbar \partial \psi / \partial t=-\left(\hbar^{2} / 2 m\right) \partial^{2} \psi / \partial x^{2}$ with boundary condition

$$
\begin{equation*}
\alpha \frac{\partial \psi}{\partial x}(x=0)+\beta \psi(x=0)=0 \tag{1}
\end{equation*}
$$

with constants $\alpha, \beta \in \mathbb{C}$. For $\alpha=0, \beta=1$ this is called a Dirichlet boundary condition, for $\alpha=1$ and $\beta=0$ a Neumann boundary condition. [This is Carl Neumann (1832-1925; in Tübingen 1865-1868), not John von Neumann (1903-1957).] For general $(\alpha, \beta) \neq(0,0)$ it is called a Robin boundary condition. Which choices of (α, β) imply that $j(x=0)=0$? (They are reflecting boundary conditions and lead to a unitary time evolution.) Which imply that $j(x=0)>0$ whenever $\psi(x=0) \neq 0$? (They are absorbing boundary conditions and lead to loss of probability.)

Exercise 32: Uncertainty relation

Compute both sides of the generalized uncertainty relation

$$
\begin{equation*}
\left.\sigma_{A} \sigma_{B} \geq \frac{1}{2}|\langle\psi|[A, B]| \psi\right\rangle \mid \tag{2}
\end{equation*}
$$

for $A=\sigma_{1}$ (Pauli matrix), $B=\sigma_{2}$, and $\psi=\mid z$-down \rangle. Hint: In order to obtain σ_{A} and σ_{B}, compute first the probability distribution for A and B according to Born's rule.

Exercise 33: Quantum Zeno effect

Zeno of Elea (c. 490 -c. 430 BCE) was a Greek philosopher who claimed that motion and time cannot exist because they are inherently paradoxical notions, a claim which he tried to support by formulating various paradoxes, including one involving Achilles and a turtle. In modern times, Alan Turing (of computer science fame, lived 1912-1954) reportedly first discovered the following effect, which was later named after Zeno because of its paradoxical flavor: Suppose a quantum particle moves in 1d, and its initial wave function $\psi_{0}(x)$ is concentrated in the negative half axis $(-\infty, 0)$. We want to model, as a kind of time measurement, a detector, located at the origin, that clicks when the particle arrives. To this end, we imagine that the detector performs, at times $n \tau$ with $n \in \mathbb{N}$ and time resolution $\tau>0$, a quantum measurement of $1_{x \geq 0}$, i.e., of whether the particle is in the right half axis. The ideal detector would seem to correspond to the limit $\tau \rightarrow 0$; however, in this limit, the probability that the detector ever clicks is 0 . "A watched pot never boils," wrote Misra und Sudarshan. ${ }^{1}$

Prove the following simplified version: In a 2 d Hilbert space \mathbb{C}^{2}, let $\psi_{0}=(1,0)$ evolve with Hamiltonian $H=\sigma_{1}$, interrupted by a quantum measurement of σ_{3} at times $n \tau$ for all $n \in \mathbb{N}$. For any fixed $T>0$, the probability that any of the $\approx T / \tau$ measurements in the time interval $[0, T]$ yields the result -1 tends to 0 as $\tau \rightarrow 0$.

[^0]Reading assignment due Friday December 13, 2019:
J. Bell: Six possible worlds of quantum mechanics. Talk given at the Symposium "Possible Worlds in Arts and Sciences" (1986), reprinted in Speakable and Unspeakable in Quantum Mechanics (1987), pages 181-195.

[^0]: ${ }^{1}$ B. Misra and E.C.G. Sudarshan: The Zeno's paradox in quantum theory. Journal of Mathematical Physics 18: 756-763 (1977)

