FOUNDATIONS OF QUANTUM MECHANICS: ASSIGNMENT 8

Exercise 30: Essay question. Why does GRW theory make approximately the same predictions as the quantum formalism?

Exercise 31: Boundary conditions

On the half axis $(-\infty, 0]$, consider the Schrödinger equation $i\hbar\partial\psi/\partial t = -(\hbar^2/2m)\partial^2\psi/\partial x^2$ with boundary condition

$$\alpha \frac{\partial \psi}{\partial x}(x=0) + \beta \psi(x=0) = 0 \tag{1}$$

with constants $\alpha, \beta \in \mathbb{C}$. For $\alpha = 0, \beta = 1$ this is called a *Dirichlet boundary condition*, for $\alpha = 1$ and $\beta = 0$ a *Neumann boundary condition*. [This is Carl Neumann (1832–1925; in Tübingen 1865–1868), not John von Neumann (1903–1957).] For general $(\alpha, \beta) \neq (0, 0)$ it is called a *Robin boundary condition*. Which choices of (α, β) imply that j(x = 0) = 0? (They are reflecting boundary conditions and lead to a unitary time evolution.) Which imply that j(x = 0) > 0 whenever $\psi(x = 0) \neq 0$? (They are absorbing boundary conditions and lead to loss of probability.)

Exercise 32: Uncertainty relation

Compute both sides of the generalized uncertainty relation

$$\sigma_A \, \sigma_B \ge \frac{1}{2} \Big| \langle \psi | [A, B] | \psi \rangle \Big|$$
 (2)

for $A = \sigma_1$ (Pauli matrix), $B = \sigma_2$, and $\psi = |z\text{-down}\rangle$. Hint: In order to obtain σ_A and σ_B , compute first the probability distribution for A and B according to Born's rule.

Exercise 33: Quantum Zeno effect

Zeno of Elea (c. 490–c. 430 BCE) was a Greek philosopher who claimed that motion and time cannot exist because they are inherently paradoxical notions, a claim which he tried to support by formulating various paradoxes, including one involving Achilles and a turtle. In modern times, Alan Turing (of computer science fame, lived 1912–1954) reportedly first discovered the following effect, which was later named after Zeno because of its paradoxical flavor: Suppose a quantum particle moves in 1d, and its initial wave function $\psi_0(x)$ is concentrated in the negative half axis $(-\infty,0)$. We want to model, as a kind of time measurement, a detector, located at the origin, that clicks when the particle arrives. To this end, we imagine that the detector performs, at times $n\tau$ with $n \in \mathbb{N}$ and time resolution $\tau > 0$, a quantum measurement of $1_{x \geq 0}$, i.e., of whether the particle is in the right half axis. The ideal detector would seem to correspond to the limit $\tau \to 0$; however, in this limit, the probability that the detector ever clicks is 0. "A watched pot never boils," wrote Misra und Sudarshan.¹

Prove the following simplified version: In a 2d Hilbert space \mathbb{C}^2 , let $\psi_0 = (1,0)$ evolve with Hamiltonian $H = \sigma_1$, interrupted by a quantum measurement of σ_3 at times $n\tau$ for all $n \in \mathbb{N}$. For any fixed T > 0, the probability that any of the $\approx T/\tau$ measurements in the time interval [0, T] yields the result -1 tends to 0 as $\tau \to 0$.

 $^{^{1}\}mathrm{B}.$ Misra and E.C.G. Sudarshan: The Zeno's paradox in quantum theory. Journal of Mathematical Physics 18: 756-763~(1977)

Hand in: Tuesday December 10, 2019, in class

Reading assignment due Friday December 13, 2019:

J. Bell: Six possible worlds of quantum mechanics. Talk given at the Symposium "Possible Worlds in Arts and Sciences" (1986), reprinted in *Speakable and Unspeakable in Quantum Mechanics* (1987), pages 181–195.