Foundations of Quantum Mechanics: Assignment 10

Exercise 38: Essay question. Describe the Einstein-Podolsky-Rosen argument (either in terms of position and momentum or in terms of spin matrices).

Exercise 39: Symmetrizer and anti-symmetrizer

Let S_{N} be the group of permutations of $\{1, \ldots, N\}$. A function $\psi\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}\right)$ is called

$$
\begin{align*}
\text { symmetric iff } \psi\left(\boldsymbol{x}_{\pi(1)}, \ldots, \boldsymbol{x}_{\pi(N)}\right) & =\psi\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}\right) \tag{1}\\
\text { anti-symmetric iff } \psi\left(\boldsymbol{x}_{\pi(1)}, \ldots, \boldsymbol{x}_{\pi(N)}\right) & =(-)^{\pi} \psi\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}\right), \tag{2}
\end{align*}
$$

for every $\pi \in S_{N}$, where $(-)^{\pi}$ denotes the sign of $\pi\left(+1\right.$ if π is even, -1 if odd). Let \mathscr{S}_{+}denote the subspace of all symmetric functions in $L^{2}\left(\mathbb{R}^{3 N}\right)$ and \mathscr{S}_{-}that of anti-symmetric functions. Show that the operators $P_{ \pm}$defined by

$$
\begin{align*}
& P_{+} \psi\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}\right)=\frac{1}{N!} \sum_{\pi \in S_{N}} \psi\left(\boldsymbol{x}_{\pi(1)}, \ldots, \boldsymbol{x}_{\pi(N)}\right) \tag{3}\\
& P_{-} \psi\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}\right)=\frac{1}{N!} \sum_{\pi \in S_{N}}(-)^{\pi} \psi\left(\boldsymbol{x}_{\pi(1)}, \ldots, \boldsymbol{x}_{\pi(N)}\right) \tag{4}
\end{align*}
$$

are the projections to $\mathscr{S}_{ \pm}$. Use without proof that $(-)^{\pi}(-)^{\rho}=(-)^{\pi \circ \rho}$ for $\pi, \rho \in S_{N}$.

Exercise 40: Distinguish ensembles

A source generates
(a) either 10,000 particle pairs in the spin singlet state

$$
\left.\left.\left.\left.\left.\left.\left.\left.\left.\frac{1}{\sqrt{2}}(\mid z \text {-up }\rangle \right\rvert\, z \text {-down }\right\rangle-\mid z \text {-down }\right\rangle \mid z \text {-up }\right\rangle\right) \left.=\frac{1}{\sqrt{2}}(\mid x \text {-up }\rangle \right\rvert\, x \text {-down }\right\rangle-\mid x \text {-down }\right\rangle \mid x \text {-up }\right\rangle\right)
$$

(b) or randomly distributed 5,000 pairs in $\mid z$-up $\rangle \mid z$-down \rangle and 5,000 in $\mid z$-down $\rangle \mid z$-up \rangle
(c) or randomly distributed 5,000 pairs in $\mid x$-up $\rangle \mid x$-down \rangle and 5,000 in $\mid x$-down $\rangle \mid x$-up \rangle.

Alice and Bob are far from each other, and each receives one particle of every pair. By carrying out (local) Stern-Gerlach experiments on their particles and comparing their results afterwards, how can they decide whether the source was of type (a), (b), or (c)?

Exercise 41: Sum of projections

Let \mathscr{H} be a Hilbert space of finite dimension, let P_{1} and P_{2} be projections in $\mathscr{H}, P_{i}=P_{i}^{\dagger}$ and $P_{i}^{2}=P_{i}$, and let \mathscr{H}_{i} be the range of P_{i}. Show that if $Q:=P_{1}+P_{2}$ is also a projection $\left(Q=Q^{\dagger}\right.$ and $Q^{2}=Q$), then (a) $\mathscr{H}_{1} \perp \mathscr{H}_{2}$, and (b) the range \mathscr{K} of Q is the span of $\mathscr{H}_{1} \cup \mathscr{H}_{2}$.

Hand in: Tuesday January 7, 2020, in class

Reading assignment due Friday January 10, 2020:
N. Bohr: Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Physical Review 48: 696-702 (1935)

