Foundations of Quantum Mechanics: Assignment 10

Exercise 38: Essay question. Describe the Einstein–Podolsky–Rosen argument (either in terms of position and momentum or in terms of spin matrices).

Exercise 39: Symmetrizer and anti-symmetrizer

Let S_N be the group of permutations of $\{1, \ldots, N\}$. A function $\psi(\boldsymbol{x}_1, \ldots, \boldsymbol{x}_N)$ is called

symmetric iff
$$\psi(\boldsymbol{x}_{\pi(1)},\ldots,\boldsymbol{x}_{\pi(N)}) = \psi(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_N)$$
 (1)

anti-symmetric iff
$$\psi(\boldsymbol{x}_{\pi(1)},\ldots,\boldsymbol{x}_{\pi(N)}) = (-)^{\pi}\psi(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_N),$$
 (2)

for every $\pi \in S_N$, where $(-)^{\pi}$ denotes the sign of π (+1 if π is even, -1 if odd). Let \mathscr{S}_+ denote the subspace of all symmetric functions in $L^2(\mathbb{R}^{3N})$ and \mathscr{S}_- that of anti-symmetric functions. Show that the operators P_{\pm} defined by

$$P_{+}\psi(\boldsymbol{x}_{1},\ldots,\boldsymbol{x}_{N}) = \frac{1}{N!} \sum_{\pi \in S_{N}} \psi(\boldsymbol{x}_{\pi(1)},\ldots,\boldsymbol{x}_{\pi(N)})$$
(3)

$$P_{-}\psi(\boldsymbol{x}_{1},\ldots,\boldsymbol{x}_{N}) = \frac{1}{N!} \sum_{\pi \in S_{N}} (-)^{\pi} \psi(\boldsymbol{x}_{\pi(1)},\ldots,\boldsymbol{x}_{\pi(N)})$$
(4)

are the projections to \mathscr{S}_{\pm} . Use without proof that $(-)^{\pi}(-)^{\rho} = (-)^{\pi \circ \rho}$ for $\pi, \rho \in S_N$.

Exercise 40: Distinguish ensembles

A source generates

(a) either 10,000 particle pairs in the spin singlet state

$$\frac{1}{\sqrt{2}}(|z-\mathrm{up}\rangle|z-\mathrm{down}\rangle - |z-\mathrm{down}\rangle|z-\mathrm{up}\rangle) = \frac{1}{\sqrt{2}}(|x-\mathrm{up}\rangle|x-\mathrm{down}\rangle - |x-\mathrm{down}\rangle|x-\mathrm{up}\rangle)$$

(b) or randomly distributed 5,000 pairs in $|z-up\rangle|z-down\rangle$ and 5,000 in $|z-down\rangle|z-up\rangle$

(c) or randomly distributed 5,000 pairs in $|x-up\rangle|x-down\rangle$ and 5,000 in $|x-down\rangle|x-up\rangle$.

Alice and Bob are far from each other, and each receives one particle of every pair. By carrying out (local) Stern-Gerlach experiments on their particles and comparing their results afterwards, how can they decide whether the source was of type (a), (b), or (c)?

Exercise 41: Sum of projections

Let \mathscr{H} be a Hilbert space of finite dimension, let P_1 and P_2 be projections in \mathscr{H} , $P_i = P_i^{\dagger}$ and $P_i^2 = P_i$, and let \mathscr{H}_i be the range of P_i . Show that if $Q := P_1 + P_2$ is also a projection ($Q = Q^{\dagger}$ and $Q^2 = Q$), then (a) $\mathscr{H}_1 \perp \mathscr{H}_2$, and (b) the range \mathscr{K} of Q is the span of $\mathscr{H}_1 \cup \mathscr{H}_2$.

Hand in: Tuesday January 7, 2020, in class

Reading assignment due Friday January 10, 2020:

N. Bohr: Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? *Physical Review* **48**: 696–702 (1935)