Foundations of Quantum Mechanics: Assignment 11

Exercise 43: Essay question. Any proof of nonlocality must involve an *entangled* wave function of *at least two* particles. Explain.

Exercise 44: Positive operators

An operator $S : \mathbb{C}^d \to \mathbb{C}^d$ is positive iff $\langle \psi | S \psi \rangle \geq 0$ for all ψ . Are the following statements about operators on \mathbb{C}^d true or false? Justify your answers.

- (a) $R^{\dagger}R$ is always a positive operator.
- (b) If E is a positive operator, then so is $R^{\dagger}ER$.
- (c) The positive operators form a subspace of the space of self-adjoint operators.
- (d) The sum of two projections is positive only if they commute.
- (e) e^{At} is a positive operator for every self-adjoint A and $t \in \mathbb{R}$.

Exercise 45: Consecutive quantum measurements

Let A_1, \ldots, A_n be self-adjoint operators in \mathscr{H} whose spectra $\sigma(A_k)$ are purely discrete (i.e., countable), so that

$$A_k = \sum_{\alpha \in \sigma(A_k)} \alpha P_{k,\alpha}$$

with $P_{k,\alpha}$ the projection to the eigenspace of A_k with eigenvalue α . Consider a quantum system with initial wave function $\psi_0 \in \mathscr{H}$ with $\|\psi_0\| = 1$ at time t_0 . At times $t_1 < t_2 < \ldots < t_n$, ideal quantum measurements of A_1, \ldots, A_n (respectively) are carried out with outcomes $Z_1, \ldots, Z_n \in \mathbb{R}$ $(t_0 < t_1)$. Show that there is a POVM E on \mathbb{R}^n such that

$$\mathbb{P}\Big((Z_1,\ldots,Z_n)\in B\Big)=\langle\psi_0|E(B)|\psi_0\rangle$$

and give an explicit expression for E(B).

Exercise 46: POVMs

(a) Suppose E_1 and E_2 are POVMs on \mathscr{Z}_1 and \mathscr{Z}_2 , respectively, both acting on \mathscr{H} ; let $q_1, q_2 \in [0, 1]$ with $q_1 + q_2 = 1$. Show that $E(B) := q_1 E_1(B \cap \mathscr{Z}_1) + q_2 E_2(B \cap \mathscr{Z}_2)$ defines a POVM on $\mathscr{Z}_1 \cup \mathscr{Z}_2$.

(b) Suppose experiment \mathscr{E}_1 has distribution of outcomes $\langle \psi | E_1(\cdot) | \psi \rangle$, and \mathscr{E}_2 has distribution of outcomes $\langle \psi | E_2(\cdot) | \psi \rangle$. Describe an experiment with distribution of outcomes $\langle \psi | E(\cdot) | \psi \rangle$.

(c) Give an example of a POVM for which the E_z do not pairwise commute. Suggestion: Choose $E_1(z)$ that does not commute with $E_2(z')$ for $\mathscr{Z}_1 \cap \mathscr{Z}_2 = \emptyset$.

Hand in: Tuesday January 14, 2020, in class

Reading assignment due Friday January 17, 2020:

J. Bell: Bertlmann's Socks and the Nature of Reality. Journal de Physique 42: C2 41–61 (1981)