Foundations of Quantum Mechanics: Assignment 13

Exercise 51: Essay question. Explain why empirically indistinguishable ensembles pose a limitation to knowledge.

Exercise 52: 1D projection

Show that if $\|\psi\|=1$, then $|\psi\rangle\langle\psi|$ is the projection to $\mathbb{C} \psi$.

Exercise 53: Tensor product

Suppose the Hilbert spaces \mathscr{H}_{a} and \mathscr{H}_{b} have finite dimensions d_{a}, d_{b}. Show that for any operators $T_{a}: \mathscr{H}_{a} \rightarrow \mathscr{H}_{a}$ and $T_{b}: \mathscr{H}_{b} \rightarrow \mathscr{H}_{b}$, there is a unique operator $T_{a} \otimes T_{b}: \mathscr{H}_{a} \otimes \mathscr{H}_{b} \rightarrow \mathscr{H}_{a} \otimes \mathscr{H}_{b}$ satisfying

$$
\begin{equation*}
\left(T_{a} \otimes T_{b}\right)\left(\psi_{a} \otimes \psi_{b}\right)=\left(T_{a} \psi_{a}\right) \otimes\left(T_{b} \psi_{b}\right) \tag{1}
\end{equation*}
$$

for all $\psi_{a} \in \mathscr{H}_{a}$ and $\psi_{b} \in \mathscr{H}_{b}$, and that it has the following properties:
(i) $\left(T_{a} \otimes T_{b}\right)^{\dagger}=T_{a}^{\dagger} \otimes T_{b}^{\dagger}$
(ii) $\left(T_{a} \otimes T_{b}\right)\left(S_{a} \otimes S_{b}\right)=\left(T_{a} S_{a}\right) \otimes\left(T_{b} S_{b}\right)$
(iii) $\operatorname{tr}\left(T_{a} \otimes T_{b}\right)=\left(\operatorname{tr} T_{a}\right)\left(\operatorname{tr} T_{b}\right)$.

Hint: If $\left\{\phi_{n}^{a}: n=1 \ldots d_{a}\right\}$ is an ONB of \mathscr{H}_{a} and $\left\{\phi_{m}^{b}: m=1 \ldots d_{b}\right\}$ one of \mathscr{H}_{b}, then $\left\{\phi_{n}^{a} \otimes \phi_{m}^{b}\right.$: $\left.n=1 \ldots d_{a}, m=1 \ldots d_{b}\right\}$ is an ONB of $\mathscr{H}_{a} \otimes \mathscr{H}_{b}$. You can express an operator T through its matrix $\left\langle\phi_{n}\right| T\left|\phi_{n^{\prime}}\right\rangle$ relative to an ONB.
(Remark: For two non-interacting systems, the Hamiltonian is of the form $H=H_{a} \otimes I_{b}+I_{a} \otimes H_{b}$, and the time evolution is $e^{-i H t}=e^{-i H_{a} t} \otimes e^{-i H_{b} t}$, i.e., of the form $U_{t}=U_{a, t} \otimes U_{b, t}$.)

Exercise 54: Reduced density matrix

Let $\psi \in \mathbb{S}\left(\mathscr{H}_{a} \otimes \mathscr{H}_{b}\right)$. Show that the reduced density matrix $\rho_{\psi}=\operatorname{tr}_{b}|\psi\rangle\langle\psi|$ is pure (i.e., a 1 d projection) if and only if ψ factorizes, $\psi=\psi_{a} \otimes \psi_{b}$.

Hand in: Tuesday January 28, 2020, in class

Reading assignment due Friday January 31, 2020:
J. Bell: Against 'measurement.' Physics World, August 1990, pages 33-40.

