GEOMETRY IN PHYSICS

Homework Assignment # 1

Problem 1: The sphere as a differentiable manifold

Find a C^1 -atlas for the unit sphere in \mathbb{R}^3 , i.e. for

$$S^{2} = \{ x \in \mathbb{R}^{3} \mid ||x|| = 1 \}.$$

Show that the charts of your atlas are compatible.

Hint: You need at least two charts. You can use, for example, spherical coordinates, the stereographic projection or a generalization of the atlas of S^1 given in the lecture.

Problem 2: Equivalent atlases and differentiable structures

Prove that two atlases \mathcal{A}_1 and \mathcal{A}_2 on a topological manifold M are equivalent if and only if the identity map

$$\mathrm{Id}: (M, [\mathcal{A}_1]) \to (M, [\mathcal{A}_2]), \quad x \mapsto x \,,$$

is a diffeomorphism with respect to the differentiable structures $[\mathcal{A}_1]$ and $[\mathcal{A}_2]$.

Hint: There is not much to do here beyond understanding and somewhat rephrasing the definitions of the involved notions.

Problem 3: Inequivalent atlases

Find two atlases \mathcal{A}_1 and \mathcal{A}_2 for \mathbb{R} that are not equivalent! With the atlases you found, are $M = (\mathbb{R}, [\mathcal{A}_1])$ and $N = (\mathbb{R}, [\mathcal{A}_2])$ diffeomorphic, i.e. does there exist a diffeomorphism $\phi : M \to N$? *Hint: Start by looking for a differentiable homeomorphism* $f : \mathbb{R} \to \mathbb{R}$ *that is* **not** *a diffeomorphism.*

Problem 4: Induced differentiable structure

Let M be a differentiable manifold, N a topological space, and $f: M \to N$ a homeomorphism. Show that N is a topological manifold and that there exists a unique differentiable structure on N such that f is a diffeomorphism.

Please upload your written solutions in Ilias until Monday, November 16, 12:30 pm. You can submit as a single person or as a group of two people.

For each problem, you get 2,1 or 0 points, depending on the quality (good, medium or poor) of the solution. To be admitted for the exam, you need to get half of the possible points.