GEOMETRY IN PHYSICS

Homework Assignment # 2

Problem 5: Diffeomorphisms

Show that the manifolds S^1 and \mathbb{R}/\mathbb{Z} constructed in the lecture are diffeomorphic, i.e. find a bijection between these two manifolds and show that it is a diffeomorphism.

Problem 6: Tangent vectors as derivations

In the lecture it was shown that every tangent vector $v \in T_x M$ to a manifold M at a point $x \in M$ defines a derivation D_v at that point. In this problem we motivate that these are actually all derivations at a point $x \in M$, i.e. that every derivation D at x is of the form $D = D_v$ for some tangent vector $v \in T_x M$, by proving the corresponding statement for $M = \mathbb{R}^n$.

Recall that for a *n*-dimensional smooth manifold M a **derivation at** $x \in M$ is a linear map $D: C^{\infty}(M, \mathbb{R}) \to \mathbb{R}$ that satisfies the product rule

$$D(fg) = D(f)g(x) + f(x)D(g) \quad \text{for all } f, g \in C^{\infty}(M, \mathbb{R}).$$
(1)

Now let $M = \mathbb{R}^n$. Prove that every derivation D at $x \in \mathbb{R}^n$ is of the form D_v for some tangent vector $v \in T_x M \cong \mathbb{R}^n$, where

$$D_v(f) = v \cdot \nabla f(x) \,. \tag{2}$$

Hint: First show that (1) implies that D(1) = 0, where $1 \in C^1(M)$ denotes the function that is constant equal to one. Conclude that D(f) = 0 for any constant function. Now look at the first order Taylor expansion of f at the point x with explicit remainder term in integral form to conclude that D(f) is of the form (2).

Problem 7: Polar coordinates

We equip the manifold $M = \mathbb{R}^2 \setminus \{x \in \mathbb{R}^2 \mid x_2 = 0 \text{ and } x_1 \leq 0\} \subset \mathbb{R}^2$ with the charts (M, φ_1) and (M, φ_2) where $\varphi_1(x) = (x_2, x_1)$ and

$$\varphi_2^{-1}: (0,\infty) \times (-\pi,\pi) \to M, \quad (r,\theta) \mapsto (r\cos\theta, r\sin\theta).$$

Show that φ_1 and φ_2 are compatible and express the coordinate vectors ∂_{q_1} and ∂_{q_2} associated with φ_1 as well as the coordinate vectors ∂_r and ∂_{θ} associated with φ_2 at a point $x \in M$ in terms of the canonical basis vectors e_1 and e_2 in $T_x M \cong \mathbb{R}^2$.

Problem 8: Inverse function theorem on manifolds

Let M and N be differentiable manifolds of dimension n and $f \in C^1(M, N)$. Assume that at some $x \in M$ the differential $Df|_x : T_x M \to T_{f(x)}N$ is an isomorphism. Use the inverse function theorem on \mathbb{R}^n in order to show that there exists an open neighbourhood $U \subset M$ of x, such that V := f(U) is open and $f : U \to V$ is a diffeomorphism. Please upload your written solutions in Ilias until Monday, November 23, 12:30 pm. You can submit as a single person or as a group of two people.

For each problem, you get 2,1 or 0 points, depending on the quality (good, medium or poor) of the solution. To be admitted for the exam, you need to get half of the possible points.