Geometry in Physics

Homework Assignment \# 4

Problem 13: Transformation of coordinates

Let M be a manifold and (V, φ) and $(\tilde{V}, \tilde{\varphi})$ be coordinate neighborhoods with associated coordinate 1 -forms $\left\{d q^{i}\right\}_{1 \leq i \leq n}$ and $\left\{d \tilde{q}^{j}\right\}_{1 \leq j \leq n}$. Show that

$$
\left.d q^{i}\right|_{x}=\left.A_{j}^{i} d \tilde{q}^{j}\right|_{x}, \quad \text { with } A_{j}^{i}=\left.\partial_{j}\left(e^{i} \circ \varphi \circ \tilde{\varphi}^{-1}\right)\right|_{\tilde{\varphi}(x)},
$$

for all $x \in V \cap \tilde{V}$. Here, e^{i} denotes the projection onto the i th coordinate. The shorthand notation of this formula is

$$
d q^{i}=\frac{\partial q^{i}}{\partial \tilde{q}^{j}} d \tilde{q}^{j} .
$$

Determine the transformation rule for coordinate (r, s)-tensor fields

$$
\partial_{q_{i_{1}}} \otimes \ldots \otimes \partial_{q_{i_{r}}} \otimes d q^{j_{1}} \otimes \ldots \otimes d q^{j_{s}} .
$$

Problem 14: The wedge product

Let $\omega \in \Lambda_{k}$ and $\nu \in \Lambda_{p}$. Show that

$$
\omega \wedge \nu=(-1)^{k p} \nu \wedge \omega .
$$

Hint: You can use basis representations and the property (5.1) of the wedge product of covectors.

Problem 15: The canonical volume form

Let $g \in V_{2}^{0}$ be non-degenerate, $\left(e^{j}\right)_{j=1, \ldots, n}$ and $\left(\tilde{e}^{j}\right)_{j=1, \ldots, n}$ bases of V^{*} with the same orientation, and

$$
g=\sum_{i, j=1}^{n} g_{i j} e^{i} \otimes e^{j}=\sum_{i, j=1}^{n} \tilde{g}_{i j} \tilde{e}^{i} \otimes \tilde{e}^{j} .
$$

Show that

$$
\begin{equation*}
\sqrt{\left|\operatorname{det} g_{i j}\right|} e^{1} \wedge e^{2} \wedge \ldots \wedge e^{n}=\sqrt{\left|\operatorname{det} \tilde{g}_{i j}\right|} \tilde{e}^{1} \wedge \tilde{e}^{2} \wedge \ldots \wedge \tilde{e}^{n} \tag{*}
\end{equation*}
$$

i.e. that the canonical volume form ε defined by the expression $(*)$ does not depend on the choice of basis.

Problem 16: The Hodge isomorphism

In this assignment we show that for a non-degenerate and symmetric $g \in V_{2}^{0}$ the Hodge operator satisfies

$$
\begin{equation*}
\left.* \circ *\right|_{\Lambda_{k}}=(-1)^{k(n-k)} \operatorname{sgn}\left(\operatorname{det} g_{i j}\right) . \tag{1}
\end{equation*}
$$

(a) First argue that there exists a basis $\left(e^{j}\right)$ of V^{*} such that the component matrix $g_{i j}$ of $g=g_{i j} e^{i} \otimes e^{j}$ is diagonal, i.e. $g_{i j}=0$ if $i \neq j$.
(b) Let $1 \leq j_{1}<j_{2}<\cdots<j_{k} \leq n$ be an ordered k-tuple with $j_{i} \in\{1, \ldots, n\}$. Now compute $*\left(e^{j_{1}} \wedge \cdots \wedge e^{j_{k}}\right):=i_{e^{j_{1}} \wedge \cdots \wedge e^{j_{k}}} \varepsilon$, where $\left(e^{j}\right)$ is the basis from (a).
(c) Finally show equation (1).

Please upload your written solutions in Ilias until Monday, December 7, 12:30 pm. You can submit as a single person or as a group of two people.

For each problem, you get 2,1 or 0 points, depending on the quality (good, medium or poor) of the solution. To be admitted for the exam, you need to get half of the possible points.

