Geometry in Physics

Homework Assignment \# 5

Problem 17: Hodge duality in Minkowski space

Let $*$ be the Hodge operator with respect to the Minkowski metric η on \mathbb{R}^{4}. Denoting the canonical coordinates of \mathbb{R}^{4} with $\left(t, x^{1}, x^{2}, x^{3}\right)$ we have $\eta=-\mathrm{d} t \otimes \mathrm{~d} t+\sum_{i=1}^{3} \mathrm{~d} x^{i} \otimes \mathrm{~d} x^{i}$. Compute the images of the canonical basis vectors of $\Lambda_{k}\left(\mathbb{R}^{4}\right)$ for each $0 \leq k \leq 4$ under the map *.

Hint: Save time by using formula (1) from problem 16!

Problem 18: Restriction of forms to submanifolds

Consider \mathbb{R}^{n} with the natural coordinates $\left(x^{1}, \ldots x^{n}\right)$. For $k \leq n$, we have the natural embedding $\psi: \mathbb{R}^{k} \ni\left(x^{1}, \ldots x^{k}\right) \mapsto\left(x^{1}, \ldots x^{k}, 0, \ldots 0\right) \in \mathbb{R}^{n}$. For a given differential form

$$
\omega=\sum_{1 \leq i_{1}<\ldots<i_{p} \leq n} \omega_{i_{1} \ldots i_{p}} d x^{i_{1}} \wedge \ldots \wedge d x^{i_{p}} \in \Lambda_{p}\left(\mathbb{R}^{n}\right),
$$

compute $\psi^{*} \omega$.

Problem 19: Naturality of the exterior derivative

Let $f: M \rightarrow N$ be a smooth map between smooth manifolds M and N and let $\omega \in \Lambda_{p}(N)$. Show that

$$
f^{*} \mathrm{~d} \omega=\mathrm{d}\left(f^{*} \omega\right)
$$

Hint: Look at the computation in the proof of proposition 5.16 in the lecture notes.

Problem 20: Maxwell's equations

Let $*$ be the Hodge operator with respect to the Minkowski metric η on \mathbb{R}^{4}. We assume that the electric field E, the magnetic field B, and the current density J are smooth time-dependent vector fields on \mathbb{R}^{3}, e.g.

$$
E: \mathbb{R} \times \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, \quad(t, x) \mapsto E(t, x)
$$

The charge density is a smooth real-valued function $\rho: \mathbb{R} \times \mathbb{R}^{3} \rightarrow \mathbb{R}$.
One now defines corresponding differential forms on Minkowski space $\widetilde{\mathcal{J}}, \mathcal{E} \in \Lambda_{1}\left(\mathbb{R}^{4}\right)$ and $\mathcal{B}, \mathcal{F} \in$ $\Lambda_{2}\left(\mathbb{R}^{4}\right)$ by

$$
\begin{aligned}
\widetilde{\mathcal{J}} & :=\iota_{\eta}\left(\rho \partial_{t}+J \cdot \partial_{x}\right)=-\rho \mathrm{d} t+J_{i} \mathrm{~d} x^{i}, \\
\mathcal{E} & :=E_{i} \mathrm{~d} x^{i}, \\
\mathcal{B} & :=*\left(-B_{i} \mathrm{~d} t \wedge \mathrm{~d} x^{i}\right), \\
\mathcal{F} & :=\mathcal{B}-\mathrm{d} t \wedge \mathcal{E} .
\end{aligned}
$$

Finally we define the current 3 -form as $\mathcal{J}:=* \widetilde{\mathcal{J}}$.
Prove the following two equivalences:

$$
\begin{aligned}
& \frac{\partial B}{\partial t}+\operatorname{curl} E=0 \quad \& \quad \operatorname{div} B=0 \quad \Longleftrightarrow \quad \mathrm{~d} \mathcal{F}=0 \\
&-\frac{\partial E}{\partial t}+\operatorname{curl} B=J \quad \& \quad \operatorname{div} E=\rho \quad \Longleftrightarrow \quad \mathrm{d}(* \mathcal{F})=\mathcal{J}
\end{aligned}
$$

Thus, Maxwell's equations have a very simple form when written in terms of differential forms.

Please upload your written solutions in Ilias until Monday, December 14, 12:30 pm. You can submit as a single person or as a group of two people.

For each problem, you get 2,1 or 0 points, depending on the quality (good, medium or poor) of the solution. To be admitted for the exam, you need to get half of the possible points.

