Geometry in Physics

Homework Assignment \# 7

Problem 25: Linearisation of vector fields at fixed-points

Let $X \in \mathcal{T}_{0}^{1}(M)$ be a smooth vector field and $x_{0} \in M$ a zero of X, i.e. $X\left(x_{0}\right)=\left(x_{0}, 0\right)$. In a chart φ with $\varphi\left(x_{0}\right)=0$ let

$$
X_{\varphi}(q)=D X_{\varphi}(0) q+\mathcal{O}\left(\|q\|^{2}\right)
$$

be the Taylor approximation of $X_{\varphi}:=I \circ \varphi_{*} X$ at 0 . Here $D f$ denotes the usual differential of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, i.e. the Jacobi matrix $D f(q)_{i j}=\partial_{q_{j}} f_{i}(q)$. Let ψ be a further chart with $\psi\left(x_{0}\right)=0$ and $\Phi=\psi \circ \varphi^{-1}$ the transition map.

Show that

$$
D X_{\psi}(0)=D \Phi(0) D X_{\varphi}(0) D \Phi(0)^{-1}
$$

and conclude that the eigenvalues of the "linearisation" $D X_{\varphi}(0)$ and their multiplicities do not depend on the chosen chart.

Problem 26: The flow of a vector field

For $a, b \in \mathbb{R}$, consider the matrix $A=\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right)$ and define the vector field $X \in \mathcal{T}_{0}^{1}\left(\mathbb{R}^{2}\right)$ as $X: q \mapsto A \cdot q$. Compute the flow Φ_{t}^{X} of X. For a point $q \in \mathbb{R}^{2}$, determine the behaviour of $\Phi_{t}^{X}(q)$ as $t \rightarrow \pm \infty$.

Problem 27: Pullback along a flow

Compute the pullback of the standard metric $d q^{1} \otimes d q^{1}+d q^{2} \otimes d q^{2}$ on \mathbb{R}^{2} along the flow Φ_{t}^{X} from the previous exercise.

Problem 28: Local formula for the Lie derivative

Let $t \in \mathcal{T}_{s}^{r}(M)$ and $X \in \mathcal{T}_{0}^{1}(M)$. Let (V, φ) be a local chart with respect to which we expand t and X as

$$
\left.t\right|_{V}=t_{j_{1} \ldots j_{s}}^{i_{1} \ldots i_{r}} \partial_{q_{i_{r}}} \otimes \ldots \otimes \partial_{q_{i_{r}}} \otimes d q^{j_{1}} \otimes \ldots \otimes d q^{j_{s}},\left.\quad X\right|_{V}=X^{i} \partial_{i}
$$

Compute the corresponding expression for the tensor $\mathcal{L}_{X} t \in \mathcal{T}_{s}^{r}(M)$.

Please upload your written solutions in Ilias until Monday, January 18, 12:30 pm. You can submit as a single person or as a group of two people.

For each problem, you get 2,1 or 0 points, depending on the quality (good, medium or poor) of the solution. To be admitted for the exam, you need to get half of the possible points.

