GEOMETRY IN PHYSICS

Homework Assignment # 7

Problem 25: Linearisation of vector fields at fixed-points

Let $X \in \mathcal{T}_0^1(M)$ be a smooth vector field and $x_0 \in M$ a zero of X, i.e. $X(x_0) = (x_0, 0)$. In a chart φ with $\varphi(x_0) = 0$ let

$$X_{\varphi}(q) = DX_{\varphi}(0) q + \mathcal{O}(||q||^2)$$

be the Taylor approximation of $X_{\varphi} := I \circ \varphi_* X$ at 0. Here Df denotes the usual differential of a function $f : \mathbb{R}^n \to \mathbb{R}^n$, i.e. the Jacobi matrix $Df(q)_{ij} = \partial_{q_j} f_i(q)$. Let ψ be a further chart with $\psi(x_0) = 0$ and $\Phi = \psi \circ \varphi^{-1}$ the transition map.

Show that

$$DX_{\psi}(0) = D\Phi(0) DX_{\varphi}(0) D\Phi(0)^{-1}$$

and conclude that the eigenvalues of the "linearisation" $DX_{\varphi}(0)$ and their multiplicities do not depend on the chosen chart.

Problem 26: The flow of a vector field

For $a, b \in \mathbb{R}$, consider the matrix $A = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ and define the vector field $X \in \mathcal{T}_0^1(\mathbb{R}^2)$ as $X : q \mapsto A \cdot q$. Compute the flow Φ_t^X of X. For a point $q \in \mathbb{R}^2$, determine the behaviour of $\Phi_t^X(q)$ as $t \to \pm \infty$.

Problem 27: Pullback along a flow

Compute the pullback of the standard metric $dq^1 \otimes dq^1 + dq^2 \otimes dq^2$ on \mathbb{R}^2 along the flow Φ_t^X from the previous exercise.

Problem 28: Local formula for the Lie derivative

Let $t \in \mathcal{T}_s^r(M)$ and $X \in \mathcal{T}_0^1(M)$. Let (V, φ) be a local chart with respect to which we expand t and X as

$$t|_{V} = t^{i_{1}\dots i_{r}}_{j_{1}\dots j_{s}}\partial_{q_{i_{r}}} \otimes \dots \otimes \partial_{q_{i_{r}}} \otimes dq^{j_{1}} \otimes \dots \otimes dq^{j_{s}}, \qquad X|_{V} = X^{i}\partial_{i}.$$

Compute the corresponding expression for the tensor $\mathcal{L}_X t \in \mathcal{T}_s^r(M)$.

Please upload your written solutions in Ilias until Monday, January 18, 12:30 pm. You can submit as a single person or as a group of two people.

For each problem, you get 2,1 or 0 points, depending on the quality (good, medium or poor) of the solution. To be admitted for the exam, you need to get half of the possible points.