GEOMETRY IN PHYSICS

Homework Assignment # 9

Problem 33: The sphere is conformal to flat space

Consider $S^2 = \{x \in \mathbb{R}^3 \mid \sum (x^i)^2 = 1\} \subset \mathbb{R}^3$, equipped with the metric $g_{S^2} = i^* g_{\mathbb{R}^3}$, where $g_{\mathbb{R}^3}$ is the Euclidean metric and $i : S^2 \to \mathbb{R}^3$ the inclusion map. Let $x = (0, 0, 1) \in S^2$ be the north pole. Furthermore, consider the map $\phi : \mathbb{R}^2 \to S^2 \setminus \{x\}$, given by

$$(y^1,y^2) \to \left(\frac{2y^1}{1+(y^1)^2+(y^2)^2},\frac{2y^2}{1+(y^1)^2+(y^2)^2},\frac{-1+(y^1)^2+(y^2)^2}{1+(y^1)^2+(y^2)^2}\right).$$

You may assume that $\phi : \mathbb{R}^2 \to S^2 \setminus \{x\}$ is a diffeomorphism (its inverse is given by the stereographic projection). Show that there is a function $f \in C^{\infty}(\mathbb{R}^2)$ such that $\phi^* g_{S^2} = f \cdot g_{\mathbb{R}^2}$.

Problem 34: Covariant derivative and isometries

Let (M_1, g_1) and (M_2, g_2) be pseudo-Riemannian manifolds with Levi-Civita connections ${}^{g_1}\nabla$ and ${}^{g_2}\nabla$, respectively. Let $\phi: (M_1, g_1) \to (M_2, g_2)$ be an isometry. Show that

$$\phi_*{}^{g_1}\nabla_X Y = {}^{g_2}\nabla_{\phi_*X}\phi_*Y$$

for all $X, Y \in \mathcal{T}_0^1(M_1)$.

Problem 35: Covariant derivative of conformal metrics

Let (M, g) be a pseudo-Riemannian manifold and $f \in C^{\infty}(M)$ a positive function. Find a relation between the two covariant derivatives ${}^{g}\nabla$ and ${}^{h}\nabla$ of g and $h := f \cdot g$. *Hint: The formula is nicer, if you write* $f = e^{2u}$ *for some* $u \in C^{\infty}(M)$.

Problem 36: Covariant derivative of tensors

Let (M, g) be a semi-Riemannian manifold and $t \in \mathcal{T}_s^r(M)$ be a tensor field whose coefficients in a chart (V, φ) are given by the functions

$$t^{i_1\dots i_r}_{j_1\dots j_s}: V \to \mathbb{R}.$$

Compute the coefficients of $\nabla t \in \mathcal{T}_{s+1}^r(M)$ in the same chart. Hint: It is reasonable to consider the case of 1-forms first.

Please upload your written solutions in Ilias until Monday, February 01, 12:30 pm. You can submit as a single person or as a group of two people.

For each problem, you get 2,1 or 0 points, depending on the quality (good, medium or poor) of the solution. To be admitted for the exam, you need to get half of the possible points.