Mathematik 1 für Naturwissenschaftler*innen

Anleitung 3 zur Vorbereitung auf die Vorlesung am 13.11.20

4. Funktionen

Eine Funktion besteht aus Definitionsmenge und Abbildungsvorschrift:

$$\begin{array}{ccc} f:D\to Z & & & \\ x\mapsto f(x) & & \text{https://youtu.be/WagVaWUBJ3A} \ (3\min) \end{array} \tag{1}$$

Das Bild einer Funktion ist die Menge aller Funktionswerte:

$$f(D) = \{ y \in Z \mid \exists x \in D, \text{ so dass } f(x) = y \}$$

$$https://youtu.be/3oyll-BjuUs (5 min)$$
(2)

Geben Sie die Bilder der Funktionen

$$f: \mathbb{R} \to \mathbb{R}$$
 und $g: [1,2] \to \mathbb{R}$ $x \mapsto x^2 - 1$ an. (3)

Wenn Bild und Definitionsbereich zweier Funktionen zusammenpassen, so können wir sie nacheinander ausführen. Wir sprechen dann von Verkettungen.

Notation und Beispiele... https://youtu.be/h2XyzPwmpw8 (6 min)
...mit Bemerkungen zu Intervallen und anderen Teilmengen von
$$\mathbb{R}$$
.

Bestimmen Sie $(g \circ f)(x)$ für

$$f: \mathbb{R} \to \mathbb{R} \text{ mit } f(x) = x^3 + 1 \text{ und } g: \mathbb{R} \to \mathbb{R} \text{ mit } g(x) = x^2 - 2.$$
 (5)

4.1 Folgengrenzwerte

Folgen sind Funktionen von \mathbb{N} nach \mathbb{R} , für die wir eine andere Schreibweise (mit Index) verwenden:

Manche Folgen haben einen

Bevor ich Sie jetzt mit einer präzisen Definition verwirre, versuchen Sie mal die folgenden Grenzwerte zu bestimmen, zu berechnen oder zu erraten (falls sie überhaupt existieren):

$$\lim_{n \to \infty} \frac{1}{n^2}, \qquad \lim_{n \to \infty} (-1)^n, \qquad \lim_{n \to \infty} \frac{(-1)^n}{n}, \qquad \lim_{n \to \infty} n^2. \tag{9}$$

Nun definieren wir's mal anständig.

Definition: (Grenzwert)

Eine Folge (a_n) konvergiert gegen den Grenzwert α , wenn gilt:

Für jedes $\varepsilon > 0 \; \exists \; \text{ein} \; N(\varepsilon)$, so dass $|a_n - \alpha| < \varepsilon \; \forall \; n \geq N(\varepsilon)$.

Wir schreiben dann $\lim_{n\to\infty} a_n = \alpha$.

Versuchen Sie damit zu begründen, dass $\lim_{n\to\infty} \frac{1}{n^2} = 0$.

Meistens wollen wir aber gar nicht mit der Definition arbeiten, sondern lieber aus einigen bekannten Grenzwerten auf weitere schließen. Dabei helfen die folgenden...

Rechenregeln für Grenzwerte

Ist $\lim_{n\to\infty} a_n = \alpha$ und $\lim_{n\to\infty} b_n = \beta$ so gilt:

$$1. \lim_{n \to \infty} (a_n + b_n) = \alpha + \beta$$

$$2. \lim_{n \to \infty} (a_n \, b_n) = \alpha \beta$$

$$3. \lim_{n \to \infty} \frac{1}{a_n} = \frac{1}{\alpha} \quad \text{ falls } \quad \alpha \neq 0$$

Merke: Auseinanderziehen erlaubt, falls alles konvergent ist.

Diese Rechenregeln könnten wir nun ausgehend von der Definition beweisen, aber vielleicht schauen wir sie uns lieber anhand eines Beispiels in Aktion an:

Bestimmen Sie selbst

$$\lim_{n \to \infty} \frac{1 - n^5}{1 + n^5}, \qquad \lim_{n \to \infty} \frac{2n + 20}{n^2} \quad \text{und} \quad \lim_{n \to \infty} \frac{1 + n^5}{1 - n^4}.$$
 (12)