Mathematik 1 für Naturwissenschaftler*innen

Anleitung 8 zur Vorbereitung auf die Vorlesung am 02.12.20

4.9 Weitere elementare Funktionen

Für a>0 definieren wir die allgemeine Exponentialfunktion von \mathbb{R} nach \mathbb{R}^+ durch $a^x:=\mathrm{e}^{x\log a}$. Es gilt dann

$$\log(a^x) = x \log a. \qquad \text{https://youtu.be/3_3N78ZNmxY (1 min)} \tag{1}$$

Für $a \neq 1$ ist diese Funktion umkehrbar. Die Umkehrfunktion heißt Logarithmus zur Basis a,

$$\log_a: \ \mathbb{R}^+ \to \mathbb{R} \,, \quad \log_a(x) = \frac{\log x}{\log a} \,. \qquad \text{https://youtu.be/GcK8YutoG6g } (2\,\text{min}) \quad (2)$$

Für $\alpha \in \mathbb{R}$ definieren wir die allgemeine Potenz als Funktion von \mathbb{R}^+ nach \mathbb{R}^+ durch $x^{\alpha} := e^{\alpha \log x}$. Für $\alpha \neq 0$ ist die Funktion umkehrbar, mit Umkehrfunktion

$$x \mapsto x^{\frac{1}{\alpha}}, \quad \text{https://youtu.be/syZ1__RjIzU} (2 \min)$$
 (3)

Für $x \in \mathbb{R}^+$ und $\alpha, \beta \in \mathbb{R}$ gelten folglich die **Rechenregeln**

- $(x^{\alpha})^{\beta} = x^{\alpha\beta}$
- $x^{\alpha+\beta} = x^{\alpha} x^{\beta}$
- $ightharpoonup \log(x^{\alpha}) = \alpha \log x$

4.10 Trigonometrische Funktionen

Wiederholen Sie, was Sie bereits über Sinus, Kosinus und Tangens gelernt haben. Die folgende Checkliste hilft.

Ich kenne die Definition von sin, cos und tan in rechtwinkligen Dreiecken.
Ich kann sin, cos und tan am Einheitskreis erklären.
Ich kann erklären, warum $\forall x \in \mathbb{R}$ gilt: $\sin^2(x) + \cos^2(x) = 1$.
HINWEIS: Pythagoras am Einheitskreis.
Ich kann am Einheitskreis erklären, warum $\sin(-x) = -\sin x$. Was gilt für $\cos(-x)$?
Ich kenne spezielle Werte von sin, cos und tan, z.B. an den Stellen $0, \pi, \frac{\pi}{2}, \frac{\pi}{4}$.
Ich kann die Graphen von sin und cos zeichnen (in ein Diagramm), und auch den
Graph von tan (in ein anderes Diagramm).
Ich kenne die Additionstheoreme für Sinus und Kosinus:
(i) $\sin(x+y) = \dots$ (ii) $\cos(x+y) = \dots$
Schreiben Sie die Additionstheoreme auch im Spezialfall $y = x$ auf, und
zeigen Sie damit: $1 + \cos(2x) = 2\cos^2(x)$.

□ Ich kenne die Ableitung des Sinus: $\sin'(x) = \cos x$. Ich kann erklären, wie daraus $\cos'(x) = -\sin x$ folgt. HINWEIS: $\sin(x + \frac{\pi}{2}) = \cos x$ – warum?

Wo schaue ich nach, wenn ich etwas nicht kenne bzw. mich nicht mehr erinnere?

► Vorlesungsvideos:

https://timms.uni-tuebingen.de/tp/UT_20171124_001_mathnat1_0001 (ab 00:21:52) https://timms.uni-tuebingen.de/tp/UT_20171124_002_mathnat1_0001 (bis 00:34:00) Klicken Sie im Video unten rechts auf ≡, um ein Inhaltsverzeichnis zu bekommen, von dem Sie direkt an die gewünschte Stelle springen können.

- ► Skript: Abschnitt 4.10.
- ► KHANACADEMY: Trigonometrie-Skills auf Übungsblatt 4.

Für $0 < x < \frac{\pi}{2}$ gilt

$$\sin x < x < \tan x$$
. https://youtu.be/6AIcXdrktVg (2 min) (4)

Berechnen Sie damit $\lim_{x\to 0} \frac{x}{\sin x}$.

Die Umkehrfunktion des Sinus heißt Arcussinus und hat viele Zweige. Für den Hauptzweig gilt:

$$\arcsin: [-1,1] \rightarrow [-\frac{\pi}{2},\frac{\pi}{2}]$$
 https://youtu.be/ggqKuk4H3xM (3 min) (5)

Die Ableitung können wir mit dem Satz über die Ableitung der Umkehrfunktion bestimmen:

$$\arcsin'(x) = \frac{1}{\sqrt{1 - x^2}} \quad \text{https://youtu.be/n6AMvlGsS1c } (3 \min)$$
 (6)

Bestimmen Sie analog die Ableitung des Hauptzweigs des Arcuskosinus,

$$\arccos: [-1, 1] \to [0, \pi].$$
 (7)

Überlegen Sie: Wo müssen wir den Tangens definieren, damit er bijektiv ist? Den Hauptzweig wählen wir so, dass 0 in der Definitionsmenge des Tanges enthalten ist.

Jetzt schauen wir uns noch die Ableitungen des Tangens und des Arkustangens an:

$$\tan'(x) = 1 + \tan^2(x) = \frac{1}{\cos^2(x)} \qquad \text{https://youtu.be/Y5bGhX6S6B4 } (2\min) \qquad (8)$$

$$\arctan'(x) = \frac{1}{1+x^2}$$
 https://youtu.be/pBi7PqrespQ (1 min) (9)

Zeichnen Sie die Graphen des Arkustangens und seiner Ableitung.