Mathematik 1 für Naturwissenschaftler*innen

Anleitung 16 zur Vorbereitung auf die Vorlesung am 13.01.21

5.5 Skalarprodukt und Norm (Fortsetzung)

Orthonormalbasen sind also schön. Was machen wir, wenn wir "nur" eine Basis haben?

Gram-Schmidtsches Orthogonalisierungsverfahren

Gegeben: Basis $\{\vec{a}_1,\ldots,\vec{a}_n\}$ von V.

Gesucht: ON-Basis $\{\vec{c}_1, \ldots, \vec{c}_n\}$ von V.

Lösung:

$$\vec{c}_1 = \frac{\vec{a}_1}{\|\vec{a}_1\|} \tag{1}$$

$$\vec{b}_2 = \vec{a}_2 - \langle \vec{c}_1, \vec{a}_2 \rangle \vec{c}_1$$
 $\vec{c}_2 = \frac{\vec{b}_2}{\|\vec{b}_2\|}$ (2)

$$\vec{b}_n = \vec{a}_n - \sum_{j=1}^{n-1} \langle \vec{c}_j, \vec{a}_n \rangle \vec{c}_j \qquad \qquad \vec{c}_n = \frac{\vec{b}_n}{\|\vec{b}_n\|}$$
(3)

Warum sollte das klappen? https://youtu.be/m_ySSTGld70 (7 min) (4)

Beispiel: \mathbb{R}^3 mit kanonischem Skalarprodukt,

$$\vec{a}_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \quad \vec{a}_2 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \quad V = \operatorname{span}(\vec{a}_1, \vec{a}_2).$$
 (5)

https://youtu.be/GhRDuJskXDo (5 min)

Überlegen Sie: Was passiert, wenn wir das Verfahren auf Startvektoren $\{\vec{a}_1, \ldots, \vec{a}_n\}$ anwenden, die l.a. sind, die also keine Basis bilden?

5.6 Kreuzprodukt und Spatprodukt im \mathbb{R}^3

Für $\vec{a}, \vec{b} \in \mathbb{R}^3$ definieren wir das **Kreuzprodukt** (oder Vektorprodukt) durch

$$\vec{a} \times \vec{b} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix} . \tag{6}$$

Vorbemerkung: https://youtu.be/yJbe5TyoG7I (2min) (7)

Berechnen Sie
$$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \times \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$$
.

Satz 13. (Eigenschaften von \times) $F\ddot{u}r$ alle $\vec{a}, \vec{b}, \vec{c} \in \mathbb{R}^3$ und alle $\lambda \in \mathbb{R}$ gilt:

(i)
$$\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$$
 (antikommutativ)

(ii)
$$\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$$
 (Distributivgesetz)

(iii)
$$\lambda(\vec{a} \times \vec{b}) = (\lambda \vec{a}) \times \vec{b} = \vec{a} \times (\lambda \vec{b})$$

(iv)
$$|\vec{a} \times \vec{b}| = Fl\ddot{a}che \ des \ von \ \vec{a} \ und \ \vec{b} \ aufgespannten \ Parallelogramms$$

(v)
$$\vec{a} \times \vec{b}$$
 ist orthogonal zu \vec{a} und zu \vec{b} (bzgl. des kanonischen Skalarprodukts)

(vi)
$$falls \ \vec{a} \times \vec{b} \neq \vec{0}$$
, $bilden \ \vec{a}$, \vec{b} und $\vec{a} \times \vec{b}$ ein $Rechtssystem$ (rechte $Hand-Regel$)

Beweis:

Rechnen Sie nach, dass $\vec{e_1} \times \vec{e_2} = \vec{e_3}$ gilt (mit den kanonischen Einheitsvektoren $\vec{e_i}$).

Überlegen Sie: Gilt $(\vec{a} \times \vec{b}) \times \vec{c} = \vec{a} \times (\vec{b} \times \vec{c})$ für beliebige $\vec{a}, \vec{b}, \vec{c} \in \mathbb{R}^3$?

Für $\vec{a}, \vec{b}, \vec{c} \in \mathbb{R}^3$ definieren wir das **Spatprodukt** durch

$$\left| \vec{a}, \vec{b}, \vec{c} \right| = \left(\vec{a} \times \vec{b} \right) \cdot \vec{c} \tag{12}$$

Eigenschaften:

$$\blacktriangleright \ \left| \vec{a}, \vec{b}, \vec{c} \right| = \left| \vec{b}, \vec{c}, \vec{a} \right| = \left| \vec{c}, \vec{a}, \vec{b} \right|$$

$$\blacktriangleright \left| \vec{b}, \vec{a}, \vec{c} \right| = - \left| \vec{a}, \vec{b}, \vec{c} \right|$$

▶ Der Betrag von $\left| \vec{a}, \vec{b}, \vec{c} \right|$ ist gleich dem Volumen des, von den Vektoren aufgespannten, Parallelepipeds bzw. Spats.

Begründung:

Reprise: 7 Komplexe Zahlen

Für $n \in \mathbb{N}$ suchen wir alle Lösungen $z \in \mathbb{C}$ der Gleichung $z^n = 1$. Wir verwenden die Polardarstellung $z = re^{i\phi}$. Überlegen Sie: Welche Bedingungen müssen r und ϕ erfüllen?

Vorschau: 5.7 Geraden und Ebenen

Welche Darstellungen für Geraden und Ebenen (im \mathbb{R}^2 oder \mathbb{R}^3) kennen Sie? Welche Begriffe fallen Ihnen im Zusammenhang mit Geraden, Ebenen und Vektoren ein?