Mathematik 1 für Naturwissenschaftler*innen

Übungsblatt 14 (keine Abgabe, Besprechung im Sommersemester)

Aufgabe 68

(keine Abgabe)

Wir betrachten den Vektorraum C([-1,1]) mit dem Skalarprodukt aus Aufgabe 65. Sei $f_n(x) = x^n$. Offensichtlich gilt $f_n \in C([-1,1]) \ \forall \ n \in \mathbb{N}_0$.

a) Berechnen Sie $\langle f_n, f_m \rangle$.

Sei $U = \text{span}(f_0, f_1, f_2, f_3)$.

- b) Bestimmen Sie eine Orthonormalbasis von U.
- c) Bestimmen Sie dim U.
- d) Sei $\{P_0, P_1, P_2, P_3\}$ die Basis aus Teil b. Zeichnen Sie die Graphen der Funktionen P_0, P_1, P_2 und P_3 auf dem Intervall [-1, 1].
- e) Sei $g(x) = (x-1)^2$. Drücken Sie g als Linearkombination der P_i aus.

Aufgabe 69

(keine Abgabe)

Die Funktion

$$\Gamma(s) := \int_0^\infty t^{s-1} e^{-t} dt$$

ist für alle $s \in \mathbb{R}^+$ wohldefiniert. (Warum?)

- a) Berechnen Sie $\Gamma(1)$.
- b) Zeigen Sie: $\Gamma(s+1) = s \Gamma(s) \ \forall s > 0$. HINWEIS: Partielle Integration.
- c) Bestimmen Sie $\Gamma(6)$.
- d) Zeigen Sie:

$$\frac{1}{x^s} = \frac{1}{\Gamma(s)} \int_0^\infty t^{s-1} e^{-xt} dt \quad \forall \ x \in \mathbb{R}^+$$
 HINWEIS: Substitution.