Übungen zur Integrations- und Maßtheorie

Aufgabe 13. (a) Sei λ das Borel-Lebesguesche Maß auf \mathbb{R} und $\varepsilon > 0$. Geben Sie eine offene Teilmenge $U \subseteq \mathbb{R}$ an mit $U \supset \mathbb{Q}$ und $\lambda(U) < \varepsilon$ und begründen Sie das. (Hint: Benutzen Sie eine Abzählung von \mathbb{Q} .)

(b) Sei $n \in \mathbb{N}$, λ das Borel-Lebesguesche Maß auf \mathbb{R}^n und $\varepsilon > 0$. Sei weiter $H \subseteq \mathbb{R}^n$ die Hyperebene $H = \{(x_1, \dots, x_n) \in \mathbb{R}^n : x_n = 0\}$. Geben Sie eine offene Quaderüberdeckung $(Q_k)_{k \in \mathbb{N}}$ von H an mit $\sum_k \lambda(Q_k) < \varepsilon$ und begründen Sie.

Aufgabe 14. Wir betrachten die Elementarmatrizen

$$u(b) = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}, \quad v(b) = \begin{pmatrix} 1 & 0 \\ b & 1 \end{pmatrix},$$

für jedes $b \in \mathbb{R}$, und setzen $M = \{u(b) \in \mathrm{SL}_2\mathbb{R} : b \in \mathbb{R}\} \cup \{v(b) \in \mathrm{SL}_2\mathbb{R} : b \in \mathbb{R}\} \subseteq \mathrm{SL}_2\mathbb{R}$.

- (a) Zeigen Sie, dass $SL_2\mathbb{R}$ von M erzeugt wird. (Hint: Elementare Zeilenoperationen)
- (b) Zeigen Sie, dass mit $s = \begin{pmatrix} \sqrt{2} & 0 \\ 0 & \sqrt{2}^{-1} \end{pmatrix} \in \operatorname{SL}_2\mathbb{R}$ und jedem $b \in \mathbb{R}$ gilt:

$$u(b) = s \cdot u(b) \cdot s^{-1} \cdot u(-b).$$

(c) Zeigen Sie nun, dass $SL_2\mathbb{R}$ gleich seiner Kommutatoruntergruppe ist.

Aufgabe 15. Sei $\mathfrak{L} \subseteq \mathfrak{P}(\mathbb{R}^n)$ die Lebesgue-Algebra auf \mathbb{R}^n und $\lambda \colon \mathfrak{L} \to [0, \infty]$ das Lebesguesche Maß auf ihr (vgl. Aufgabe 10).

- (a) Zeigen Sie die Transformationsformel für Isomorphismen $T: \mathbb{R}^n \to \mathbb{R}^n$ auch für alle $A \in \mathfrak{L}$: $TA \in \mathfrak{L}$ und $\lambda(TA) = |\det T|\lambda(A)$.
- (b) Zeigen Sie nun, dass die Transformationsformel für alle $A \in \mathfrak{L}$ sogar für alle linearen Abbildungen $T: \mathbb{R}^n \to \mathbb{R}^n$ gilt (wobei $0 \cdot \infty := 0$ gesetzt wird).

Aufgabe 16. Seien $SL_n\mathbb{R} \subseteq GL_n\mathbb{R}$ die spezielle lineare Gruppe und $SO_n\mathbb{R} \subseteq GL_n\mathbb{R}$ die spezielle orthogonale Gruppe.

- (a) Zeigen Sie, dass $SL_n\mathbb{R}$ und $SO_n\mathbb{R}$ Untergruppen von $GL_n\mathbb{R}$ sind.
- (b) Zeigen Sie, dass $SO_2\mathbb{R}$ genau aus den Drehmatrizen

$$u(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

mit $\theta \in [0, 2\pi]$ besteht. (Hint: In den Spalten einer speziellen orthogonalen Matrix steht eine positiv orientierte Orthonormalbasis.)

(c) Sei $S \in SO_3\mathbb{R} \setminus \{1\}$. Zeigen Sie, dass es einen 1-dimensionalen Unterraum $L \subseteq \mathbb{R}^3$ gibt mit Sx = x, für alle $x \in L$ (eine so genannte Fixgerade), und dass S das senkrechte Komplement $E = L^{\perp}$ von L in sich abbildet und dort eine Drehung um einen Winkel $\theta \in (0, 2\pi)$ (bzgl. einer gewählten Orientierung von E) ist. (Hint: Zeigen Sie, dass $\lambda = 1$ ein Eigenwert von S ist.)

Abgabe: Sonntag, 29. November 2020, 18 Uhr via "urm" an Ihren Tutor