Übungen zur Integrations- und Maßtheorie

Aufgabe 21. Seien (X, \mathfrak{A}) und (Y, \mathfrak{B}) Messräume und $\Phi: X \to Y$ messbar. Sei weiter μ ein Maß auf (X, \mathfrak{A}) . Dann definieren wir $\nu: \mathfrak{B} \to [0, \infty]$ durch $\nu(B) = \mu(\Phi^{-1}(B))$.

- (a) Zeigen Sie, dass ν ein Maß auf (Y, \mathfrak{B}) ist. (Wir nennen ν das Bildmaß von μ unter Φ und notieren es so: $\nu =: \Phi_* \mu$.)
- (b) Sei nun $g: Y \to [0, \infty]$ messbar. Zeigen Sie, dass dann auch $f:=g \circ \Phi: X \to [0, \infty]$ messbar ist und für alle $B \in \mathfrak{B}$ gilt (vgl. Aufgabe 17):

$$\int_{B} g \, d\nu = \int_{\Phi^{-1}(B)} f \, d\mu.$$

Aufgabe 22. Sei (X, \mathfrak{A}, μ) ein Maßraum und $\hat{\mathfrak{A}}$ die bzgl. μ vervollständigte σ-Algebra von \mathfrak{A} (siehe Aufgabe 07).

- (a) Sei $g: X \to \overline{\mathbb{R}}$ \mathfrak{A} -messbar und $f: X \to \overline{\mathbb{R}}$ eine Funktion mit f = g μ -fast-überall. Zeigen Sie, dass f dann $\hat{\mathfrak{A}}$ -messbar ist.
- (b) Sei nun $f: X \to \overline{\mathbb{R}}$ $\hat{\mathfrak{A}}$ -messbar. Zeigen Sie, dass es dann \mathfrak{A} -messbare Funktionen $g_1, g_2: X \to \overline{\mathbb{R}}$ gibt mit $g_1 = g_2$ μ -fast-überall und $g_1 \leq f \leq g_2$. (Hinweis: Zeigen Sie das zunächst für $\hat{\mathfrak{A}}$ -messbare Treppenfunktionen.)

Aufgabe 23. Sei X ein Maßraum, $I \subseteq \mathbb{R}$ ein offenes Intervall und $f: X \times I \to \mathbb{R}$ eine Funktion, so dass folgendes gilt:

- (i) Für jedes $s \in I$ ist die Funktion $f(\cdot, s): X \to \mathbb{R}, x \mapsto f(x, s)$, integrierbar;
- (ii) für jedes $y \in X$ ist die Funktion $f(y,\cdot): I \to \mathbb{R}, t \mapsto f(y,t)$, differenzierbar.

Zudem existiere eine integrierbare Funktion $g: X \to [0, \infty]$, so dass für alle $x \in X$ und $t \in I$ gilt: $\left|\frac{\partial f}{\partial t}(x, t)\right| \leq g(x)$. Zeigen Sie: Dann ist

- (a) die Funktion $\frac{\partial f}{\partial t}(\cdot,t): X \to \mathbb{R}, x \mapsto \frac{\partial f}{\partial t}(x,t)$, für jedes $t \in I$ integrierbar (also insbesondere messbar),
- (b) die Funktion $h: I \to \mathbb{R}, t \mapsto \int f(\cdot, t) d\mu$, differenzierbar,

und es gilt für alle $t \in I$:

$$\frac{d}{dt} \int f(\cdot, t) \, d\mu = \int \frac{\partial f}{\partial t} (\cdot, t) \, d\mu.$$

Aufgabe 24. Sei $f:[0,\infty)\to\mathbb{R}$ eine Funktion, so dass für alle $n\in\mathbb{N}$ die Einschränkung f|[0,n] Riemann-integrierbar ist.

- (a) Zeigen Sie, dass f Lebesgue-messbar ist. (Hinweis: Bitte verwenden Sie die (unbewiesene) Bemerkung aus der Vorlesung, dass (für alle $n \in \mathbb{N}$) f|[0,n] Lebesgue-messbar ist.)
- (b) Zeigen Sie nun: Ist $f \geq 0$, so ist f genau dann Lebesgue-integrierbar, wenn das uneigentliche Riemann-Integral $\int_0^\infty f(x)\,dx = \lim_{n\to\infty} \int_0^n f(x)\,dx$ existiert und dann gilt:

$$\int_{[0,\infty)} f \ d\lambda = \int_0^\infty f(x) \ dx.$$

Abgabe: Sonntag, 13. Dezember 2020, 18 Uhr via "urm" an Ihren Tutor