Prof. Dr. Frank Loose Jonathan Walz $\begin{array}{c} {\rm WS}\ 2020/21 \\ {\rm 05.03.2021} \\ {\rm Klausur} \end{array}$

Klausur zu "Integrations- und Maßtheorie"

me:

Geburtsdatum:

Matrikelnummer:

Aufgabe	1	2	3	4	5	6	\sum
maximale Punkte	4+4	4+4	4+4	8	4+4	8	48
erzielte Punkte							

Hinweise:

- Verwenden Sie für jede Aufgabe ein neues Blatt.
- Schreiben Sie auf jedes Blatt die Aufgabennummer und Ihre Matrikelnummer.
- Verwenden Sie keinen Bleistift.

Aufgabe 1:

- (a) Geben Sie die Definition einer σ -Algebra auf einer Menge X.
- (b) Sei X eine Menge. Zeigen Sie, dass

$$\mathfrak{A} := \{ A \in \mathcal{P}(X) : A \text{ ist abz\"{a}hlbar oder } A^c \text{ ist abz\"{a}hlbar} \}$$

eine σ -Algebra auf X ist. Hierbei soll eine Menge $A \subseteq X$ abzählbar heißen, wenn A endlich oder abzählbar unendlich ist.

Aufgabe 2: Sei (X, \mathfrak{A}, μ) ein Maßraum.

(a) Sei $(f_n)_{n\in\mathbb{N}}$ eine Folge nicht-negativer, messbarer Funktionen, $f_n:X\to[0,\infty]$. Zeigen Sie:

$$\int\limits_X (\sum_{n=1}^\infty f_n) \ d\mu = \sum_{n=1}^\infty \int\limits_X f_n \ d\mu$$

(b) Sei $f: X \to \mathbb{R}$ integrierbar und $A \in \mathcal{A}$ und ferner $A_n \in \mathcal{A}$ $(n \in \mathbb{N})$ eine Familie disjunkter Teilmengen von A mit $\bigcup_{n \in \mathbb{N}} A_n = A$. Zeigen Sie:

$$\int_{A} f \, d\mu = \sum_{n=1}^{\infty} \int_{A_{n}} f \, d\mu.$$

Aufgabe 3:

- (a) Formulieren Sie das Prinzip von Cavalieri, wahlweise für Kompakta im \mathbb{R}^3 oder in einer allgemeineren Version.
- (b) Es seien die Zylinder $A, B \subseteq \mathbb{R}^3$ gegeben durch

$$A = \{(x, y, z) \in \mathbb{R}^3 : y^2 + z^2 \le 1, -1 \le x \le 1\}$$

und

$$B = \{(x, y, z) \in \mathbb{R}^3 : x^2 + z^2 \le 1, -1 \le y \le 1\}.$$

Betrachten Sie $M := A \cap B$ und bestimmen Sie das Volumen $\lambda^3(M)$ von M.

Aufgabe 4: Sei

$$K = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le z^2, z \ge 0\}.$$

Berechnen Sie das Volumen $\lambda^3(P)$ des Kugelsektors $P = \mathbb{B}^3 \cap K \subseteq \mathbb{R}^3$.

Aufgabe 5:

- (a) Betrachten Sie die folgende injektive Abbildung $\Phi: (0, 2\pi) \times (-\frac{\pi}{2}, \frac{\pi}{2}) \to \mathbb{R}^3$ welche gegeben sei durch $(\varphi, \vartheta) \mapsto (\cos \varphi \cos \vartheta, \sin \varphi \cos \vartheta, \sin \vartheta)$. Bestimmen Sie das Bild von Φ und begründen Sie, dass das Komplement des Bildes in \mathbb{S}^2 eine Nullmenge bezüglich des zweidimensionalen Hausdorffmaßes \mathcal{H}^2 ist.
- (b) Betrachten Sie zu $\alpha \in (0,\frac{\pi}{2})$ die Menge

$$M_{\alpha} := \{(x, y, z) \in \mathbb{S}^2 : |z| \le \sin \alpha\} \subseteq \mathbb{R}^3.$$

Bestimmen Sie jenen Winkel $\alpha \in (0, \frac{\pi}{2})$, für welchen

$$\mathcal{H}^2(M_\alpha) = \frac{1}{2}\mathcal{H}^2(\mathbb{S}^2)$$

gilt.

Aufgabe 6: Sei $f: \mathbb{R}^2 \to \mathbb{R}^2$, $(x,y) \mapsto (x^3 - xy^2, y^3 - x^2y + 3x)$. Berechnen Sie

$$\int_{\mathbb{S}^1} \langle f, \nu \rangle \, d\mathcal{H}^1,$$

wobei ν das äußere Normalenfeld an \mathbb{S}^1 sei.