Übungen zu Analysis 2 (Mathematik für Physiker III)

Prof. Dr. P. Pickl Manuela Feistl, Viet Hoang

Blatt 3

Aufgabe 1: Beweisen oder widerlegen Sie jede der folgenden Aussagen (a) – (e):

- a) A := [0, 1] ist eine kompakte Teilmenge von \mathbb{R} .
- b) A := [0, 1) ist eine kompakte Teilmenge von \mathbb{R} .
- c) Für jedes $x \in \mathbb{R}^n$, $n \in \mathbb{N}$, ist $\{x\}$ eine kompakte Teilmenge von \mathbb{R}^n .
- d) $A := \{(0, y) : y \in \mathbb{R}\}$ ist eine kompakte Teilmenge von \mathbb{R}^2 .
- e) Sei $\|\cdot\|$ irgendeine Norm auf \mathbb{R}^n , so ist für jedes $x \in \mathbb{R}^n$ und jedes $\epsilon > 0$, die abgeschlossene Kugel $\overline{B}_x(\epsilon)$ um x mit Radius ϵ eine kompakte Teilmenge von \mathbb{R}^n .

Aufgabe 2: Seien M und K kompakte Teilmengen von \mathbb{R}^n . Zeigen Sie, dass die Menge M+K definiert durch

$$M + K := \{x + y : x \in M, y \in K\}$$

ebenfalls kompakt ist.

Aufgabe 3: Sei $(a_n)_{n\in\mathbb{N}}$ eine konvergente Folge in \mathbb{R} mit Grenzwert a. Zeigen Sie unter Verwendung der Definition der Überdeckungskompaktheit, dass die Menge

$$M := \{a_n | n \in \mathbb{N}\} \cup \{a\}$$

kompakt ist.

Dazu die Definition: Eine Menge $X \subset M$ eines topologischen Raumes M ist überdeckungskompakt, falls es für jede offene Überdeckung von X eine endliche Teilüberdeckung gibt, d.h. falls $X \subset \bigcup_{i \in I} U_i$ dann gibt es ein $J \subset I$ mit $|J| < \infty$ so dass $X \subset \bigcup_{i \in J} U_i$

Aufgabe 4: Wir versehen die Menge

$$X:=\left\{(x,y)\in\mathbb{R}^2|0< x\leq 1, y=\sin\left(\frac{1}{x}\right)\right\}\cup\left\{(0,y)\in\mathbb{R}^2|-1\leq y\leq 1\right\}$$

mit der euklidischen Metrik des \mathbb{R}^2 . Zeigen Sie, dass X zusammenhängend, aber nicht wegzusammenhängend ist.

Abgabe eines Lösungsp
dfs je Dreiergruppe bis Mittwoch, den 10.11.2021, um 14.00 Uhr.