Mathematik 1 für Naturwissenschaftler*innen

Anleitung 14 zur Vorbereitung auf die Vorlesung am 08.12.21

Interludium: 7 Komplexe Zahlen

Wir finden es doof, dass wir keine Wurzeln aus negativen Zahlen ziehen können, und erfinden deshalb die neue Zahl i = $\sqrt{-1}$. Dann gilt z.B.

$$i^2 = -1$$
 oder $\sqrt{-9} = \sqrt{9 \cdot (-1)} = \sqrt{9} \cdot \sqrt{-1} = 3i$. (1)

Jetzt bilden wir Zahlen der Form

$$z = x + iy \quad \text{mit} \quad x, y \in \mathbb{R}$$
 (2)

und nennen sie komplexe Zahlen – Symbol: \mathbb{C} .

Mit denen rechnen wir wie gewohnt. https://youtu.be/mEQQtukNOzo (3 min) (3)

Summen, Differenzen und Produkte sind also auch wieder komplexe Zahlen.

Für $z = x + \mathrm{i} y$ mit $x, y \in \mathbb{R}$ nennen wir

$$\operatorname{Re} z = x$$
 den Realteil von z ,
 $\operatorname{Im} z = y$ den Imaginärteil von z und $\overline{z} = x - \mathrm{i} y$ das Komplexkonjugierte von z . (5)

(Mit \overline{z} haben wir gerade eben erweitert, um das mit dem Dividieren hinzubekommen.) Rechnen Sie nach, dass

$$z \cdot \overline{z} = (\operatorname{Re} z)^2 + (\operatorname{Im} z)^2. \tag{6}$$

OK, aber was soll der Quatsch? Diese Zahlen gibt's doch gar nicht. Doch!

Dann ist \mathbb{C} also die coolere Version von \mathbb{R}^2 ? Ja. Aber da geht noch mehr! Um gleich auch die Multiplikation anschaulich zu verstehen, führen wir zunächst die Polardarstellung ein:

Betrag:
$$r = |z| = \sqrt{x^2 + y^2}$$
 bzw. $x = r \cos \phi$
Argument: $\phi = \arg z = \arctan \frac{y}{x}$ bzw. $y = r \sin \phi$ (8)
https://youtu.be/VR3_ouK9owQ (3 min)

Übrigens: $z \cdot \overline{z} = |z|^2$.

7.1 Komplexe e-Funktion

Für $z \in \mathbb{C}$ definieren wir e^z durch die Taylorreihe der Exponentialfunktion...

... und dann können wir ausrechnen, dass $\forall \phi \in \mathbb{R}$

$$e^{i\phi} = \cos\phi + i\sin\phi. \qquad \text{https://youtu.be/ufHiIu7aGL4 } (5\,\text{min}) \eqno(10)$$

Wegen der Funktionalgleichung der e-Funktion bewirkt Multiplikation mit $e^{i\phi}$ also eine

Drehung um den Winkel
$$\phi$$
. https://youtu.be/dS08r91m23w (3 min) (11)

Warum sind wir uns eigentlich sicher, dass $e^{z+w} = e^z e^w$ auch für $z, w \in \mathbb{C}$ gilt? Begründen Sie, warum nun $e^{-i\phi} = \cos \phi - i \sin \phi$ gilt.

Drücken Sie damit Sinus und Kosinus durch $e^{i\phi}$ und $e^{-i\phi}$ aus.

Anwendungen:

$$\sum_{\nu=0}^{n} \sin(\nu x) \qquad \text{https://youtu.be/HSw41yk4rNo} (7 \min)$$
 (13)

Eigentlich waren wir doch in letzter Zeit beim Thema Vektorrechnung...

Ja, das können wir auch mit komplexen Zahlen machen!

Wenn wir einen Vektorraum V über einem Körper K betrachten, dann können die komplexen Zahlen sowohl bei den Vektoren, als auch bei den Skalaren auftauchen:

- Als \mathbb{C}^2 bezeichnen wir den Raum der zwei-komponentigen Vektoren mit komplexen Einträgen. **Überlegen Sie:** Welche Dimension hat \mathbb{C}^2 als Vektorraum über \mathbb{R} ? Welche als Vektorraum über \mathbb{C} ? Können Sie jeweils eine einfache Basis angeben?