Mathematik 1 für Naturwissenschaftler*innen

Ubungsblatt 6 (Abgabe spätestens 03.12.2021, 8:00)

Aufgabe 30

(12 Zusatzpunkte)

Bestimmen Sie die Taylorreihen von

a) $\sinh x$

b) $\cosh x$

c) Artanh x

um $x_0 = 0$. Wo konvergieren die Reihen gegen die jeweilige Funktion?

Aufgabe 31

(4 Zusatzpunkte)

Begründen Sie geometrisch, dass $\tan \frac{\pi}{6} = \frac{1}{\sqrt{3}}$. Leiten Sie daraus und mithilfe der arctan-Reihe eine Reihendarstellung für π her. Nennen Sie die Summe der ersten n Terme dieser Reihe π_n . Berechnen Sie (mit Taschenrechner oder Computer) π_n für einige Werte von n, und vergleichen Sie mit dem Ihnen bekannten Wert für π .

Aufgabe 32

(16 Punkte)

Berechnen Sie die Taylorreihen der folgenden Funktionen (ggf. stetig fortgesetzt) um null, und geben Sie an, wo diese konvergieren.

a)
$$e^{-x^2}$$

b)
$$\frac{x-\sin x}{x^3}$$

a)
$$e^{-x^2}$$
 b) $\frac{x - \sin x}{x^3}$ c) $\frac{1}{(1-x)(3-x)}$ d) $\frac{1 - \cos x}{1-x^2}$

$$d) \frac{1 - \cos x}{1 - x^2}$$

Aufgabe 33

(8 Punkte)

Bestimmen Sie die folgenden Grenzwerte (mit Erklärung/Herleitung)!

a)
$$\lim_{x \to 0} \frac{\left(1 - \cos(2x)\right)^8 \sin^3(x)}{(e^{2x} - 1)^{21}}$$

a)
$$\lim_{x \to 0} \frac{\left(1 - \cos(2x)\right)^8 \sin^3(x)}{(e^{2x} - 1)^{21}}$$
 b) $\lim_{x \to 0} \frac{\sin^{2021}(x)}{x^{11} \left(\sin x - x + \frac{x^3}{6}\right)^{402}}$

Aufgabe 34

(12 Punkte)

Bestimmen Sie die Taylorreihen von

a)
$$\frac{1}{21+x}$$
 um $x_0 = 21$, b) e^{-x} um $x_0 = 3$ und c) $\cos x$ um $x_0 = \frac{\pi}{2}$.

b)
$$e^{-x}$$
 um $x_0 = 3$

$$\operatorname{und}$$

Wo konvergieren die Reihen gegen die jeweiligen Funktionen?

Aufgabe 35

(6 Zusatzpunkte)

Üben Sie bis spätestens 09.01.22 auf www.khanacademy.org die Skills

- Taylor & Maclaurin polynomials,
- Integrals & derivatives of functions with known power series und
- Maclaurin series for $\sin x$, $\cos x$, and e^x

HINWEISE: (i) Siehe Aufgabe 6 (Blatt 1).

(ii) Die Taylorreihe um Null heißt auch Maclaurin-Reihe.