Mathematik 1 für Naturwissenschaftler*innen

Übungsblatt 9 (Abgabe spätestens 07.01.2022, 8:00)

Aufgabe 47 (8 Punkte)

Bestimmen Sie alle $z \in \mathbb{C}$, für die gilt: a) $32 = z^5$ b) $z^3 = 9i$ Markieren Sie diese z jeweils in einer Skizze der komplexen Ebene.

Aufgabe 48 (6 Punkte)

Seien $\vec{a}_1, \vec{a}_2, \vec{a}_3$ wie in Aufgabe 45 und $U = \text{span}(\vec{a}_2, \vec{a}_3) \subset \mathbb{R}^3$.

- a) Verwenden Sie in diesem Aufgabenteil das kanonische Skalarprodukt auf \mathbb{R}^3 und die zugehörige Norm.
 - Bestimmen Sie mithilfe von Gram-Schmidt eine ONB von U.
- b) Verwenden Sie in diesem Aufgabenteil das Skalarprodukt aus Aufgabe 44e und die zugehörige Norm.

Bestimmen Sie mithilfe von Gram-Schmidt eine ONB von U.

Aufgabe 49 (8 Zusatzpunkte)

Bestimmen Sie die Polardarstellung der folgenden Punkte (x, y) aus \mathbb{R}^2 :

a)
$$(1, \sqrt{3})$$
 b) $(-2, -2)$ c) $(\sqrt{3}, -1)$ d) $(-\sqrt{2}, \sqrt{2})$

Aufgabe 50 (10 Punkte)

Sei $t \in [0, 2\pi]$. Berechnen Sie für die folgenden Kurven die Geschwindigkeit $\vec{x}(t)$ und zeichnen Sie die Kurven.

a)
$$\vec{x}(t) = \begin{pmatrix} (3\pi - t)\cos t \\ (3\pi - t)\sin t \end{pmatrix}$$
 b) $\vec{x}(t) = \begin{pmatrix} \cos(2t) \\ \sin(2t) \\ t \end{pmatrix}$

Aufgabe 51 (4+4+4=12 Punkte)

Die Lösungsmenge des folgenden LGS ist eine Ebene E_1 im \mathbb{R}^3 ,

$$2x_1 + 1 + 9x_3 = x_2.$$

a) Geben Sie eine Parameterdarstellung sowie die Hessesche Normalform von E_1 an. Welchen Abstand hat die Ebene vom Ursprung?

Die Ebene E_2 im \mathbb{R}^3 ist gegeben als

$$E_2 = \left\{ \vec{x} \in \mathbb{R}^3 \,\middle|\, \vec{x} = \begin{pmatrix} 0\\2\\0 \end{pmatrix} + s \begin{pmatrix} 1\\1\\0 \end{pmatrix} + t \begin{pmatrix} 0\\1\\1 \end{pmatrix}, \ s, t \in \mathbb{R} \right\}.$$

- b) Geben Sie die Hessesche Normalform von E_2 an.
- c) Bestimmen Sie die Schnittmenge von E_2 und E_1 .

Aufgabe 52

(2+2+2=6 Zusatzpunkte)

Seien $\vec{a}_1, \vec{a}_2, \vec{a}_3, \vec{b} \in \mathbb{R}^3$ gegeben. Wir betrachten das LGS

$$x_1\vec{a}_1 + x_2\vec{a}_2 + x_3\vec{a}_3 = \vec{b}$$
 für $x_j \in \mathbb{R}$, $j = 1, 2, 3$.

- a) Bilden Sie das Kreuzprodukt mit \vec{a}_2 von rechts und anschießend das Skalarprodukt des Ergebnisses mit \vec{a}_3 . Lösen Sie nun wenn möglich nach x_1 auf.
- b) Beschaffen Sie sich analoge Lösungsformeln für x_2 und x_3 .
- c) Welche Bedingung müssen die \vec{a}_j erfüllen, damit wir mithilfe der Formeln aus (a) und (b) wirklich die Lösung des LGS erhalten?

Frohe Weihnachten und einen guten Rutsch ins neue Jahr!