Mathematik 1 für Naturwissenschaftler*innen

Übungsblatt 11 (Abgabe spätestens 21.01.2022, 8:00)

Aufgabe 57

(10 Punkte)

Sei

$$B = \begin{pmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{pmatrix} \quad \text{und} \quad C = \begin{pmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 5 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & -2 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

- a) Berechnen Sie B^{-1} .
- b) Bestimmen Sie mithilfe von B^{-1} die Lösungen \vec{x} und X von

$$B\vec{x} = \begin{pmatrix} 2\\0\\2\\1\\2 \end{pmatrix}$$
 und $BX = C$.

Wie hätten Sie \vec{x} oder X berechnen können, ohne zunächst B^{-1} zu bestimmen?

Aufgabe 58

(5+2+3 = 10 Punkte)

Seien B und C wie in Aufgabe 57 und

$$A = \begin{pmatrix} -1 & 1 & 1 & 1 \\ 2 & 4 & 2 & 2 \\ 1 & -1 & 4 & 1 \\ 1 & 2 & 1 & 4 \end{pmatrix}.$$

- a) Berechnen Sie det A.
- b) Berechnen Sie det B.
- c) Bestimmen Sie det C, det (C^{-1}) und det (C^{5}) .

Aufgabe 59

(4+6 = 10 Punkte)

Seien $\alpha, b \in \mathbb{R}$ mit $b \neq 0$, und sei $A(b, \alpha) \in \mathbb{R}^{2 \times 2}$ definiert durch

$$A(b,\alpha) = b \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}.$$

- a) Berechnen Sie $A(b_1, \alpha_1) \cdot A(b_2, \alpha_2)$.
- b) Bestimmen Sie $B_n := (A(b, \alpha))^n$, $\det(B_n)$ sowie $(B_n)^{-1}$ für alle $n \in \mathbb{N}$.

Aufgabe 60 (16 Zusatzpunkte)

Üben Sie bis spätestens 04.02.22 auf www.khanacademy.org die Skills

- Inverse of a 3×3 matrix,
- Determinant of a 3×3 matrix,
- Powers of the imaginary unit,
- Plot numbers on the complex plane,
- Add & subtract complex numbers,
- Graphically add & subtract complex numbers,
- Multiply complex numbers und
- Divide complex numbers.

HINWEISE: Siehe Aufgabe 6 (Blatt 1).