Foundations of QM: IN-Class Problem Set 1

Problem 1: Verify that the Gaussian density

$$\rho(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \tag{1}$$

is normalized, has mean μ , and has standard deviation σ .

Problem 2: Find, for each of the following wave functions with given a > 0, the normalizing constant $\mathcal{N} > 0$ that will ensure $\|\psi\| = 1$.

- (a) $\psi_1(x) = \mathscr{N}_1 e^{-x/a}$ with $x \in [0, \infty)$
- (b) $\psi_2(\boldsymbol{x}) = \mathscr{N}_2 e^{-|\boldsymbol{x}|/a}$ with $\boldsymbol{x} \in \mathbb{R}^3$
- (c) $\psi_3(\boldsymbol{x}) = \mathcal{N}_3 e^{-|\boldsymbol{x}|^2/a^2}$ with $\boldsymbol{x} \in \mathbb{R}^3$

Problem 3: Write $\psi(q) = R(q)e^{iS(q)/\hbar}$ with real-valued functions $R \ge 0$ and S. Show that

$$\boldsymbol{j}_i = \frac{1}{m_i} R^2 \, \nabla_i S \,. \tag{2}$$

Problem 4: An operator A is called *bounded* if there is a constant M > 0 such that

$$\|A\psi\| \le M \|\psi\| \quad \forall \psi \,. \tag{3}$$

The smallest such constant is called the *operator norm* of A, written ||A||. Justify the following statements:

- (a) The Laplacian operator ∇^2 is unbounded.
- (b) In \mathbb{C}^n , every operator is bounded.
- (c) In \mathbb{C}^n , if A is diagonalizable with eigenvalues $\lambda_1, \ldots, \lambda_n$, then

$$||A|| = \max_{j=1}^{n} |\lambda_j|.$$
 (4)

- (d) $||A|| = \sup_{\psi \neq 0} \frac{||A\psi||}{||\psi||} = \sup_{||\psi||=1} ||A\psi||.$
- (e) The operator norm is a norm, i.e., ||A|| > 0 for $A \neq 0$, ||zA|| = |z| ||A||, and $||A + B|| \le ||A|| + ||B||$.
- (f) Let $\mathscr{L}(\mathscr{H})$ be the space of bounded operators on the Hilbert space \mathscr{H} , equipped with the operator norm. One can show that $\mathscr{L}(\mathscr{H})$ is *complete*, i.e., every Cauchy sequence converges. Conclude that if A is bounded, then the exponential series

$$e^A = \sum_{n=0}^{\infty} \frac{A^n}{n!} \tag{5}$$

converges in operator norm.