Foundations of Quantum Mechanics: Assignment 4

Exercise 14: Essay question. Describe the delayed-choice double-slit experiment. Why does it seem paradoxical? How does the paradox get resolved in Bohmian mechanics?

Exercise 15: Fourier transform

(a) Find the Fourier transform $\widehat{\psi}$ of the function

$$
\psi(x)= \begin{cases}0 & x<-1 \tag{1}\\ 2^{-1 / 2} & -1 \leq x \leq 1 \\ 0 & x>1\end{cases}
$$

where x is a 1 -dimensional variable.
(b) (optional) Plot $\widehat{\psi}$ using a computer.
(c) (optional) Using suitable software (such as Mathematica, Maple, or Matlab), make the computer find the formula for $\widehat{\psi}$. (That is, you need to find the command for symbolically computing Fourier transforms and the one for defining a function like (1), and run them.)

Exercise 16: Pauli matrices

The three Pauli matrices are

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \tag{2}\\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

(a) For each of σ_{1} and σ_{2}, find an orthonormal basis of eigenvectors in \mathbb{C}^{2}.
(b) Show that for every unit vector $\boldsymbol{n} \in \mathbb{R}^{3}$, the Pauli matrix in direction $\boldsymbol{n}, \sigma_{\boldsymbol{n}}:=\boldsymbol{n} \cdot \boldsymbol{\sigma}=$ $n_{1} \sigma_{1}+n_{2} \sigma_{2}+n_{3} \sigma_{3}$, has eigenvalues ± 1. (Hint: compute det and trace.)
(c) Show that every self-adjoint complex 2×2 matrix A is of the form $A=c I+\boldsymbol{u} \cdot \boldsymbol{\sigma}$ with $c \in \mathbb{R}$ and $\boldsymbol{u} \in \mathbb{R}^{3}$.

Exercise 17: Potential step

Consider a potential step $V(x)=V_{0} 1_{0 \leq x}$ in 1 d with $V_{0}>0$. We want to compute the reflection and transmission probabilities as a function of the incoming momentum $\hbar k_{0}$, assuming that $E:=$ $\hbar^{2} k_{0}^{2} / 2 m>V_{0}$. A recipe for that is to consider a plane wave $e^{i k_{0} x}$ coming from $x=-\infty$ and see how much gets reflected and transmitted by constructing an eigenfunction ψ of $H, H \psi=E \psi$, from the ansatz

$$
\psi(x)= \begin{cases}A e^{i k_{0} x}+B e^{-i k_{0} x} & \text { for } x<0 \tag{3}\\ C e^{i K_{0} x} & \text { for } x>0\end{cases}
$$

with complex coefficients A, B, C, representing the incoming wave $e^{i k_{0} x}$, the reflected wave $e^{-i k_{0} x}$, and the transmitted wave $e^{i K_{0} x}$. Regarding V as a limit of continuous functions leads to the further requirement that ψ be continuous and continuously differentiable at 0 .
(a) Determine K_{0} from $H \psi=E \psi$.
(b) Determine B and C from A.
(c) The recipe says that the three waves are associated with probability currents $j_{\text {in }}=\hbar k_{0}|A|^{2} / m$, $j_{R}=\hbar k_{0}|B|^{2} / m$, and $j_{T}=\hbar K_{0}|C|^{2} / m$; and that the reflection probability is $P_{R}=j_{R} / j_{\text {in }}$, while the transmission probability is $P_{T}=j_{T} / j_{\text {in }}$. Compute P_{R} and P_{T}.
(d) To justify the recipe, consider a "plane wave packet" $\psi(x)=\phi(x) e^{i k_{0} x}$ with a (non-Gaussian) envelope profile $\phi(x)$ that is nearly constant over a region of length L much larger than the wave length $2 \pi / k_{0}$ and then drops to 0 over a length much smaller than L but still much larger than the wave length. Let us take for granted that under the free Schrödinger evolution the envelope function ϕ will approximately maintain its shape (in particular, its length) for a long time and simply move at speed $\hbar k_{0} / m$. Suppose the packet hits the step at $t=0$; forget about what happens at the edges of the packet and focus on the bulk. A reflected plane wave packet and a transmitted one are generated; at time $\tau>0$, the incoming plane wave packet is used up, and the two outgoing packets end. During $0<t<\tau$, the region around 0 is well approximated by (3); after τ, the outgoing packets keep moving away from the origin. Determine τ and the lengths L_{R} and L_{T} of the reflected and transmitted packets ψ_{R} and ψ_{T}.
(e) Determine $P_{R}=\left\|\psi_{R}\right\|^{2}$ and $P_{T}=\left\|\psi_{T}\right\|^{2}$ and verify that they agree with part (c).
(f) Draw a space-time diagram of the Bohmian trajectories in the bulk (that is, ignoring any edge effects).

Hand in: by Tuesday, November 23, 2021, 8:15am via urm.math.uni-tuebingen.de

No reading assignment this week.

