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FOUNDATIONS OF QM: IN-CLASS PROBLEMS

Let x be a 1-d variable and g,(z) the Gaussian probability density,

1 22
go(x) = e 257, (1)
2ro

The Dirac 6 function can be defined heuristically as

5(x) = lim g, (). (2)

o—0

Since d(x) = 0 for z # 0 and 6(0) = oo, the § function is not a function in the ordinary sense; it
is called a distribution. Based on the heuristic (2), one defines

/5 r—a) f(x)de:=lim | g,(z —a)f(z)dz. (3)

o—0 R

It follows that if the function f is continuous at a, then

[ o= e saydo = o). (4)

Mathematicians take this as the definition of the § distribution; that is, they define (- — a) as a
linear operator from some function space such as . (Schwartz space) to C, f +— f(a).

Problem 8: Dirac delta function (introductory level)

(a) One defines the Fourier transform /5;(/{) of 0,(z) = 6(x — a) by applying the usual integral
formula. Find ga(k') for arbitrary constant a € R, and find the function 1 whose Fourier transform
is (k) = 6(k — b) with arbitrary constant b € R.

(b) One defines the derivative ¢’ of the ¢ function heuristically by

0'(x) = lim g () (5)
and its integrals by
/5’(x —a) f(x)dx == lin% go(x —a) f(x)dx. (6)
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Sketch g/ for small o.

(c) Using integration by parts and (4), show that (for f € %)
/ §(z—a) —f'(a). (7)

(d) Show that 2%2—16(5@ +e)—d(x—e)) =d(x).

(e) For a € R\ {0}, show that /R(S(Ozx) f(z)dx = —f(0).



Problem 9: Delta function in higher dimension
(a) The d-dimensional Dirac delta function is defined by

6z —a) =6(x; —ay) - 0(xq — ag) (8)

Instead of §%(x — a), one sometimes simply writes (x — a). Verify that
[ ¥ - a) @) e~ sa). (9)
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(b) For a generalized orthonormal basis (GONB) with continuous parameter, {¢, : k € R¢}, one
requires that

(e, | Pres) = 0Ky — ke2) . (10)

Verify this relation for the basis functions of Fourier transformation,

dr(x) = (2m) "2k (11)

(c) Verify that every ¢y as given by (11) is an eigenfunction of each momentum operator P; =
—ihd/0xj, j =1,...,d. Thus, (11) defines a GONB that simultaneously diagonalizes all P;. It is
therefore called the momentum basis.

(d) Now consider another basis, given by

dy(x) = 82 —y). (12)

Verify Eq. (10) for these functions. Then verify that every ¢, is an eigenfunction of each posi-
tion operator X;¢(x) = z;¢(x), j = 1,...,d. Thus, (12) defines a GONB that simultaneously
diagonalizes all X;. It is therefore called the position basis.

Problem 10: Distributional solutions of the Schrédinger equation

While we have considered so far (and will mostly consider) only solutions 9, of the Schrodinger
equation with initial data v € L*(R? C™), it is possible to define solutions for initial data that
are distributions, at least for the free Schrédinger equation: For any distribution 7', take its Fourier
transform, multiply by the appropriate function of k and ¢, and Fourier transform back. Find the
Fourier transform of iy if ¥y(x) = §(x — a).



Problem 11: For mathematicians

In order to make Problem 10 work rigorously, one needs (i) a suitable space Z containing “all”
distributions; (ii) a definition of the Fourier transform T € 9 for every T € &; and (iii) that a
multiplication operator M, with a function of the form ¢(k) = exp(i polynomial(k)) maps Z to
itself. To this end, one considers the Schwartz space . of rapidly decaying functions, i.e., those
Y with 02| < Cpqlz|™ for all z € RY a0 € N, n € Ny; one endows . with the topology in
which v,, — v iff

where ® = z{*---25? and 9P = 81& o -85‘1; one defines & as the continuous dual space .,
i.e., the set of continuous C-linear mappings T : . — C; .¢’ is called the space of tempered
distributions; and one uses that the Fourier transformation % (as well as % ') maps . to itself
and is continuous as a mapping . — .&.

x20P (Y, — ) (x)| 2= 0 for all o, B € NY,

o= sup
a?ﬁ

xR

(a) Prove that the § distribution is a continuous mapping from . to C.

b) Let C (R?) be the space of smooth functions ¢ such that ¢ and all of its derivatives are
poly

bounded by polynomials, |0%¢p(k)| < |Pa(k)| for a suitable polynomial P,. Show that for every
such ¢, the multiplication operator M, is a continuous operator ./ — ..

Problem 12: Bohmian trajectories for plane waves (easy)
Let 1; be a plane wave solution of the Schrodinger equation with wave vector k. Show that for

every constant vector a € R3,

Qt)=a-+ Z—"’t (13)

is a Bohmian trajectory with initial position Q(0) = a.

Problem 13: Galilean relativity of Bohmian mechanics
Consider again the Galilean boost

' =xz+vt, t'=t (14)
with a constant v € R3. Suppose that the potential V is translation invariant and use in-class
Problem 6b to show that if t — (Q,...,Qy) is a solution of Bohmian mechanics then so is
t= Q... Q).



