Foundations of Quantum Mechanics: Assignment 5

Exercise 18: Essay question. Describe what the Heisenberg uncertainty relation asserts.

Exercise 19: Spectral theorem

In this problem we use the following generalization of the spectral theorem (formulated here in finite dimension): If the self-adjoint $d \times d$ matrices A and B commute, then they can be simultaneously unitarily diagonalized, i.e., there is an orthonormal basis $\left\{\phi_{1}, \ldots, \phi_{d}\right\}$ such that each ϕ_{j} is an eigenvector of A and an eigenvector of B.
Show that a $d \times d$ matrix C can be unitarily diagonalized iff C commutes with C^{\dagger}. Such a matrix is called "normal." (Hint: write $C=A+i B$.)

Exercise 20: Spinors

Verify that $|\boldsymbol{\omega}(\phi)|=\|\phi\|_{S}^{2}=\phi^{*} \phi$. Proceed as follows: By (9.6), $\boldsymbol{\omega}(z \phi)=|z|^{2} \boldsymbol{\omega}(\phi)$, it suffices to show that unit spinors are associated with unit vectors. By (9.6) again, it suffices to consider ϕ with $\phi_{1} \in \mathbb{R}$ (else replace ϕ by $e^{i \theta} \phi$ with appropriate θ). So we can assume, without loss of generality, $\phi=\left(\cos \alpha, e^{i \beta} \sin \alpha\right)$ with $\alpha, \beta \in \mathbb{R}$. Evaluate $\phi^{*} \boldsymbol{\sigma} \phi$ explicitly in terms of α and β, using the explicit formulas (9.3) for $\boldsymbol{\sigma}$. Then check that it is a unit vector.

Exercise 21: Half Angles

(a) Show that for unit vectors ϕ, χ in spin space S,

$$
2|\langle\phi \mid \chi\rangle|^{2}=1+\sum_{a=1}^{3}\left\langle\phi \mid \sigma_{a} \phi\right\rangle\left\langle\chi \mid \sigma_{a} \chi\right\rangle .
$$

(b) Conclude further that if ϕ and χ have angle $\theta=\arccos |\langle\phi \mid \chi\rangle|$ in S, then $\boldsymbol{\omega}(\phi)$ and $\boldsymbol{\omega}(\chi)$ have angle 2θ in \mathbb{R}^{3}.

Exercise 22: Can't Distinguish Non-Orthogonal State Vectors

(a) Alice gives to Bob a single particle whose spin state ψ is either $(1,0)$ or $(0,1)$ or $\frac{1}{\sqrt{2}}(1,1)$. Bob can carry out a quantum measurement of an arbitrary self-adjoint operator. Show that it is impossible for Bob to decide with certainty which of the three states ψ is.
(b) The same with only $(1,0)$ and $\frac{1}{\sqrt{2}}(1,1)$.

Hand in: By Tuesday November 30, 2021, 8:15 am via urm.math.uni-tuebingen.de.

Reading assignment due Thursday December 2, 2021: T. Maudlin, Three Measurement Problems. Topoi 14(1): 7-15 (1995). Read pages 7-12 and the first two paragraphs on page 13.

