Foundations of Quantum Mechanics: Assignment 10

Exercise 40: Essay question. Describe the Einstein–Podolsky–Rosen argument (either in terms of position and momentum or in terms of spin matrices).

Exercise 41: Positive operators

An operator $S : \mathbb{C}^d \to \mathbb{C}^d$ is positive (= positive semi-definite) iff $\langle \psi | S \psi \rangle \geq 0$ for all ψ . Are the following statements about operators on \mathbb{C}^d true or false? Justify your answers.

- a) $R^{\dagger}R$ is always a positive operator.
- b) If E is a positive operator, then so is $R^{\dagger}ER$.
- c) The positive operators form a subspace of the space of self-adjoint operators.
- d) The sum of two projections is positive only if they commute.
- e) e^{At} is a positive operator for every self-adjoint A and $t \in \mathbb{R}$.

Exercise 42: Symmetrizer and anti-symmetrizer

Let S_N be the group of permutations of $\{1, \ldots, N\}$. A function $\psi(\boldsymbol{x}_1, \ldots, \boldsymbol{x}_N)$ is called

symmetric iff
$$\psi(\boldsymbol{x}_{\pi(1)},\ldots,\boldsymbol{x}_{\pi(N)}) = \psi(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_N)$$
 (1)

anti-symmetric iff
$$\psi(\boldsymbol{x}_{\pi(1)},\ldots,\boldsymbol{x}_{\pi(N)}) = (-)^{\pi} \psi(\boldsymbol{x}_{1},\ldots,\boldsymbol{x}_{N}),$$
 (2)

for every $\pi \in S_N$, where $(-)^{\pi}$ denotes the sign of π (i.e., +1 if π is even, -1 if odd). Let \mathscr{S}_+ denote the subspace of all symmetric functions in $L^2(\mathbb{R}^{3N})$ and \mathscr{S}_- that of anti-symmetric functions. Show that the operators P_{\pm} defined by

$$P_{+}\psi(\boldsymbol{x}_{1},\ldots,\boldsymbol{x}_{N}) = \frac{1}{N!} \sum_{\pi \in S_{N}} \psi(\boldsymbol{x}_{\pi(1)},\ldots,\boldsymbol{x}_{\pi(N)})$$
(3)

$$P_{-}\psi(\boldsymbol{x}_{1},\ldots,\boldsymbol{x}_{N}) = \frac{1}{N!} \sum_{\pi \in S_{N}} (-)^{\pi} \psi(\boldsymbol{x}_{\pi(1)},\ldots,\boldsymbol{x}_{\pi(N)})$$
(4)

are the projections to \mathscr{S}_{\pm} . Use without proof that $(-)^{\pi}(-)^{\rho} = (-)^{\pi \circ \rho}$ for $\pi, \rho \in S_N$.

Exercise 43: Sum of projections

Let \mathscr{H} be a Hilbert space of finite dimension, let P_1 and P_2 be projections in \mathscr{H} , $P_i = P_i^{\dagger}$ and $P_i^2 = P_i$, and let \mathscr{H}_i be the range of P_i . Show that if $Q := P_1 + P_2$ is also a projection ($Q = Q^{\dagger}$ and $Q^2 = Q$), then (a) $\mathscr{H}_1 \perp \mathscr{H}_2$, and (b) the range \mathscr{K} of Q is the span of $\mathscr{H}_1 \cup \mathscr{H}_2$.

Hand in: by Tuesday January 25, 2022, 8:15am via urm.math.uni-tuebingen.de

Reading assignment due Thursday January 27, 2022:

N. Bohr: Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? *Physical Review* **48**: 696–702 (1935)