Foundations of Quantum Mechanics: Assignment 10

Exercise 40: Essay question. Describe the Einstein-Podolsky-Rosen argument (either in terms of position and momentum or in terms of spin matrices).

Exercise 41: Positive operators

An operator $S: \mathbb{C}^{d} \rightarrow \mathbb{C}^{d}$ is positive (= positive semi-definite) iff $\langle\psi \mid S \psi\rangle \geq 0$ for all ψ. Are the following statements about operators on \mathbb{C}^{d} true or false? Justify your answers.
a) $R^{\dagger} R$ is always a positive operator.
b) If E is a positive operator, then so is $R^{\dagger} E R$.
c) The positive operators form a subspace of the space of self-adjoint operators.
d) The sum of two projections is positive only if they commute.
e) $e^{A t}$ is a positive operator for every self-adjoint A and $t \in \mathbb{R}$.

Exercise 42: Symmetrizer and anti-symmetrizer

Let S_{N} be the group of permutations of $\{1, \ldots, N\}$. A function $\psi\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}\right)$ is called

$$
\begin{align*}
\text { symmetric iff } \psi\left(\boldsymbol{x}_{\pi(1)}, \ldots, \boldsymbol{x}_{\pi(N)}\right) & =\psi\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}\right) \tag{1}\\
\text { anti-symmetric iff } \psi\left(\boldsymbol{x}_{\pi(1)}, \ldots, \boldsymbol{x}_{\pi(N)}\right) & =(-)^{\pi} \psi\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}\right), \tag{2}
\end{align*}
$$

for every $\pi \in S_{N}$, where $(-)^{\pi}$ denotes the sign of π (i.e., +1 if π is even, -1 if odd). Let \mathscr{S}_{+}denote the subspace of all symmetric functions in $L^{2}\left(\mathbb{R}^{3 N}\right)$ and \mathscr{S}_{-}that of anti-symmetric functions. Show that the operators $P_{ \pm}$defined by

$$
\begin{align*}
& P_{+} \psi\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}\right)=\frac{1}{N!} \sum_{\pi \in S_{N}} \psi\left(\boldsymbol{x}_{\pi(1)}, \ldots, \boldsymbol{x}_{\pi(N)}\right) \tag{3}\\
& P_{-} \psi\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}\right)=\frac{1}{N!} \sum_{\pi \in S_{N}}(-)^{\pi} \psi\left(\boldsymbol{x}_{\pi(1)}, \ldots, \boldsymbol{x}_{\pi(N)}\right) \tag{4}
\end{align*}
$$

are the projections to $\mathscr{S}_{ \pm}$. Use without proof that $(-)^{\pi}(-)^{\rho}=(-)^{\pi \circ \rho}$ for $\pi, \rho \in S_{N}$.

Exercise 43: Sum of projections

Let \mathscr{H} be a Hilbert space of finite dimension, let P_{1} and P_{2} be projections in $\mathscr{H}, P_{i}=P_{i}^{\dagger}$ and $P_{i}^{2}=P_{i}$, and let \mathscr{H}_{i} be the range of P_{i}. Show that if $Q:=P_{1}+P_{2}$ is also a projection ($Q=Q^{\dagger}$ and $Q^{2}=Q$), then (a) $\mathscr{H}_{1} \perp \mathscr{H}_{2}$, and (b) the range \mathscr{K} of Q is the span of $\mathscr{H}_{1} \cup \mathscr{H}_{2}$.

Hand in: by Tuesday January 25, 2022, 8:15am via urm.math.uni-tuebingen.de

Reading assignment due Thursday January 27, 2022:
N. Bohr: Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Physical Review 48: 696-702 (1935)

