# Groups and Representations 

Homework Assignment 3 (due on 9 Nov 2022)

## Problem 9

Let $\phi: \mathrm{SL}(2, \mathbb{C}) \rightarrow \mathrm{O}(3,1)$ be the homomorphism to the Lorentz group, as introduced in the lectures. Let $\alpha, \beta \in[0,2 \pi], r>0$ and

$$
U=\left(\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right), \quad V=\left(\begin{array}{cc}
\mathrm{e}^{-i \beta} & 0 \\
0 & \mathrm{e}^{i \beta}
\end{array}\right), \quad B=\left(\begin{array}{cc}
r & 0 \\
0 & \frac{1}{r}
\end{array}\right) .
$$

Show:
a) $\phi(U)$ is a rotation about the $x_{2}$-axis by an angle $2 \alpha$.
b) $\phi(V)$ is a rotation about the $x_{3}$-axis by an angle $2 \beta$.
c) $\phi(B)$ is a boost in $x_{3}$-direction, i.e.

$$
\phi(B)=\left(\begin{array}{cccc}
\cosh t & 0 & 0 & \sinh t \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\sinh t & 0 & 0 & \cosh t
\end{array}\right)
$$

for some $t \in \mathbb{R}$.

## Problem 10

$\mathrm{CO}_{2}$ is a linear molecule; in its ground state the carbon atom sits in the middle between the two oxygen atoms. The symmetry group of this system is isomorphic to the Klein four group $V_{4} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ and has the following elements: the identity ( $e$ ), reflections ( $\sigma_{x}$ and $\left.\sigma_{y}\right)$ across the $x$ - and $y$-axis, respectively, and a rotation $(R)$ by $180^{\circ}$ about the origin.
A coplanar vibration entails displacements of the 3 atoms in a fixed plane. It can be characterised by a vector $\left(x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}\right) \in \mathbb{R}^{6}$.


Determine the action of the symmetry group on the canonical basis of $\mathbb{R}^{6}$. Write down the resulting six dimensional representation of $V_{4}$.

Problem 11 (Continuation of Problem 9)
Let $\Lambda \in \mathrm{O}(3,1)$ be time orientation preserving, i.e. $d\left(e_{0}, \Lambda e_{0}\right)>0$. Show that there exist $U, V \in \mathrm{O}(3)$ and a boost $B$ in $x_{3}$-direction, such that

$$
\Lambda=U B V
$$

Hint: First consider $\Lambda e_{0}$ and find $U$ and $B$ such that $B^{-1} U^{-1} \Lambda e_{0}=e_{0}$.

## Problem 12

Let $D_{4}$ be the symmetry group of a square. We denote by $R$ the rotation by $\frac{\pi}{2}$ and by $\sigma$ the reflection across the diagonal through the lower left and upper right corner. We write all group elements as $R^{k} \sigma^{\ell}$ for some $k$ and $\ell$. (Why is this possible and which values do $k$ and $\ell$ take?)
a) Find all conjugacy classes.

Hint: Determine $\sigma R \sigma$ first, this simplifies calculations a lot.
b) Determine all normal subgroups and the isomorphism types of the corresponding quotient groups (i.e. name known groups to which they are isomorphic).
c) Is $D_{4}$ isomorphic to a direct product of non-trivial subgrous?

