Groups and Representations

Homework Assignment 4 (due on 16 November 2021)

Problem 13

Let $(\mathbb{R}, +)$ be the additive group of real numbers, and

$$\Gamma(x) = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}, \quad x \in \mathbb{R},$$

a representation on \mathbb{C}^2 . Find all invariant subspaces. Is Γ completely reducible?

Problem 14

Let G be a finite group and $\Gamma: G \to \operatorname{GL}(V)$ a finite dimensional representation. Prove that $|\det \Gamma(g)| = 1 \ \forall g \in G$.

Problem 15

Let G be a finite group, |G| = n. We number the group elements, $G = \{g_j, j = 1 \dots n\}$, denote by m the number of conjugacy classes c (with n_c elements) and by p the number of non-equivalent irreducible representations Γ^i of G (with dimensions d_i).

Consider the matrix U with entries $u_{ja} = \sqrt{\frac{d_{ia}}{n}} \Gamma^{ia}(g_j)_{\mu_a\nu_a}$ with a triple $a = (i_a, \mu_a, \nu_a)$.

Employ the results of Sections 2.5 and 2.6 in order to solve the following problems.

- a) Determine the dimensions of U and express the orthogonality relation for irreducible representations (Theorem 6) in terms of U.
- b) Show:

(i)
$$\sum_{i \le p} d_i \operatorname{tr} \left(\Gamma^i(g_j) \Gamma^i(g_k)^{\dagger} \right) = n \delta_{jk},$$

(ii)
$$\sum_{g \in c} d_i \Gamma^i(g) = n_c \chi_c^i \mathbb{1}$$
 and

(iii)
$$\sum_{i \le p} n_c \, \chi_c^i \, \overline{\chi_{c'}^i} = n \delta_{cc'}.$$

c) Conclude that m = p.

Problem 16 (Continuation of Problem 12)

We now determine all irreducible representations of D_4 (up to equivalence):

- d) What are the dimensions of the irreducible representations?
- e) Find all one dimensional irreducible representations.

 HINT: First consider irreducible representations of quotient groups, cf. the remarks on (non-)faithful representations in Section 2.1.
- f) Determine the character table and the remaining representation(s).

Problem 17

Let V be a finite-dimensional vector space and $P:V\to V$ a linear operator with $P^2=P$.

- a) Show that there exist subspaces U and W with $V = U \oplus W$, $P|_U = 1$ and $P|_W = 0$. Let $\langle \cdot, \cdot \rangle$ be a scalar product on V, and let $P^{\dagger} = P$.
 - b) Show that $U = W^{\perp}$.