Groups and Representations

Homework Assignment 4 (due on 16 November 2021)

Problem 13

Let $(\mathbb{R},+)$ be the additive group of real numbers, and

$$
\Gamma(x)=\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right), \quad x \in \mathbb{R}
$$

a representation on \mathbb{C}^{2}. Find all invariant subspaces. Is Γ completely reducible?

Problem 14

Let G be a finite group and $\Gamma: G \rightarrow \mathrm{GL}(V)$ a finite dimensional representation. Prove that $|\operatorname{det} \Gamma(g)|=1 \forall g \in G$.

Problem 15

Let G be a finite group, $|G|=n$. We number the group elements, $G=\left\{g_{j}, j=1 \ldots n\right\}$, denote by m the number of conjugacy classes c (with n_{c} elements) and by p the number of non-equivalent irreducible representations Γ^{i} of G (with dimensions d_{i}).
Consider the matrix U with entries $u_{j a}=\sqrt{\frac{d_{i a}}{n}} \Gamma^{i_{a}}\left(g_{j}\right)_{\mu_{a} \nu_{a}}$ with a triple $a=\left(i_{a}, \mu_{a}, \nu_{a}\right)$.
Employ the results of Sections 2.5 and 2.6 in order to solve the following problems.
a) Determine the dimensions of U and express the orthogonality relation for irreducible representations (Theorem 6) in terms of U.
b) Show:
(i) $\sum_{i \leq p} d_{i} \operatorname{tr}\left(\Gamma^{i}\left(g_{j}\right) \Gamma^{i}\left(g_{k}\right)^{\dagger}\right)=n \delta_{j k}$,
(ii) $\sum_{g \in c} d_{i} \Gamma^{i}(g)=n_{c} \chi_{c}^{i} \mathbb{1}$ and
(iii) $\sum_{i \leq p} n_{c} \chi_{c}^{i} \overline{\chi_{c^{\prime}}^{i}}=n \delta_{c c^{\prime}}$.
c) Conclude that $m=p$.

Problem 16 (Continuation of Problem 12)
We now determine all irreducible representations of D_{4} (up to equivalence):
d) What are the dimensions of the irreducible representations?
e) Find all one dimensional irreducible representations.

Hint: First consider irreducible representations of quotient groups, cf. the remarks on (non-)faithful representations in Section 2.1.
f) Determine the character table and the remaining representation(s).

Problem 17

Let V be a finite-dimensional vector space and $P: V \rightarrow V$ a linear operator with $P^{2}=P$.
a) Show that there exist subspaces U and W with $V=U \oplus W,\left.P\right|_{U}=\mathbb{1}$ and $\left.P\right|_{W}=0$. Let $\langle\cdot, \cdot\rangle$ be a scalar product on V, and let $P^{\dagger}=P$.
b) Show that $U=W^{\perp}$.

